PILOT'S INFORMATION MANUAL

From S/N 1050
P/N T00.DMHP1PYEE1 - EDITION 1 - REVISION 2

CAUTION

THIS INFORMATION MANUAL IS A NON-OFFICIAL COPY OF THE PILOT'S OPERATING HANDBOOK AND MAY BE USED FOR GENERAL INFORMATION PURPOSES ONLY. IT IS NOT KEPT CURRENT AND THEREFORE CANNOT BE USED AS A SUBSTITUTE FOR AIRWORTHINESS AUTHORITIES APPROVED MANUAL WHICH IS THE ONLY ONE INTENDED FOR OPERATION OF THE AIRPLANE.

The content of this document is the property of SOCATA S.A.S. It is supplied in confidence and commercial security of its contents must be maintained. It must not be used for any purpose other than that for which it is supplied, nor may information contained in it be disclosed to unauthorized persons. It must not be reproduced nor transmitted in any form in whole or in part without permission in writing from the owners of the Copyright. Information in this document is subject to change without notice.

© 2014 - 2015 - 2016 - SOCATA S.A.S
All rights reserved

SOCATA SAS
Customer support
65921 TARBES CEDEX 9
FRANCE
SOCATA MODIFICATIONS - INDEX

NOTE

The standardized name for SOCATA modifications is: MODXX-XXXX-XX

<table>
<thead>
<tr>
<th>MOD No.</th>
<th>Subject</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-0234-24</td>
<td>Electrical distribution and primary distribution</td>
<td>Major</td>
</tr>
<tr>
<td>70-0264-34A</td>
<td>Mode S transponder with Extended Squitter - GTX 33D with antenna diversity</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0264-34B</td>
<td>Mode S transponder with Extended Squitter GTX 33 without antenna diversity</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0322-00</td>
<td>Evolution of wing tips, tail cone and lights</td>
<td>Major</td>
</tr>
<tr>
<td>70-0323-71</td>
<td>Propulsion efficiency improvement</td>
<td>Major</td>
</tr>
<tr>
<td>70-0324-00</td>
<td>Modified pedestal and Single Lever Power Control Assy</td>
<td>Major</td>
</tr>
<tr>
<td>70-0325-21</td>
<td>Automatic altitude cabin selection</td>
<td>Major</td>
</tr>
<tr>
<td>70-0330-00</td>
<td>New metal-metal bonding</td>
<td>Major</td>
</tr>
<tr>
<td>70-0336-26</td>
<td>Fire extinguisher relocation in cockpit</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0341-32</td>
<td>New TBM700 Landing Gear Control and Display Panel</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0342-52</td>
<td>Lower main landing gear doors</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0346-55</td>
<td>New rudder ledge contour</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0347-53</td>
<td>Improved G1000 instrument panel</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0348-27</td>
<td>Control wheel CROUZET</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0357-71</td>
<td>Takeoff and landing at 850shp - Increase of takeoff power</td>
<td>Major</td>
</tr>
<tr>
<td>70-0359-71</td>
<td>Air inlet inertial separator actuator</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0361-32</td>
<td>Landing gear wide washer</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0364-25</td>
<td>Modified pylon upholstery</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0365-27</td>
<td>Fabrication principe replacement of rods flight control</td>
<td>Major</td>
</tr>
<tr>
<td>70-0369-25</td>
<td>Obsolescence of cabin lighting LED and lenses</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0370-52</td>
<td>Wide door motor obsolescence</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0372-33</td>
<td>Back lighted panels</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0373-33</td>
<td>PL1 (Circuit breaker panel) lighting and label</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0374-33</td>
<td>Servicing plugs</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0375-28</td>
<td>Modification of MT40 fuel pressure sensor installation</td>
<td>Minor</td>
</tr>
<tr>
<td>70-0376-33</td>
<td>Pedestal lighting improvement</td>
<td>Minor</td>
</tr>
<tr>
<td>MOD70 No.</td>
<td>SUBJECT</td>
<td>CLASSIF.</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>70-0379-23</td>
<td>Capability for future integration of the CPDLC (Controller Pilot Data Link Communication) antenna</td>
<td>minor</td>
</tr>
<tr>
<td>70-0381-31</td>
<td>M51 Hourmeter - Improvement of flight time calculation</td>
<td>minor</td>
</tr>
<tr>
<td>70-0383-00</td>
<td>G1000 Integrated Flight Deck Software : V14 Software for TBM 850/900</td>
<td>Major</td>
</tr>
<tr>
<td>70-0384-77</td>
<td>TORQUE & IGNITION functions maintained during switching of S1 from "NORMAL" position to "EMERGENCY" position</td>
<td>minor</td>
</tr>
<tr>
<td>70-0385-23</td>
<td>AVIONICS MASTER and GROUND CLEARANCE architecture modification</td>
<td>minor</td>
</tr>
<tr>
<td>70-0393-25</td>
<td>Replacement of air circuit seal on pilot door</td>
<td>minor</td>
</tr>
<tr>
<td>70-0400-28</td>
<td>Removal of MT40 transducer</td>
<td>minor</td>
</tr>
<tr>
<td>70-0401-92</td>
<td>Illuminated push-buttons</td>
<td>minor</td>
</tr>
<tr>
<td>70-0402-28</td>
<td>Fuel sequencer evolution</td>
<td>minor</td>
</tr>
<tr>
<td>70-0403-24</td>
<td>Battery firewall modification</td>
<td>minor</td>
</tr>
<tr>
<td>70-0404-57</td>
<td>Aileron trimming</td>
<td>minor</td>
</tr>
<tr>
<td>70-0406-10</td>
<td>Boarding kit adaptation to new cowlings, control wheel and five blades propeller</td>
<td>minor</td>
</tr>
<tr>
<td>70-0407-00</td>
<td>Aural warning evolution and Software G1000 Integrated Flight Deck : V15 SOFTWARE for TBM 850/900</td>
<td>Major</td>
</tr>
<tr>
<td>70-0407-00C</td>
<td>Software G1000 Integrated Flight Deck : V15.11 SOFTWARE for TBM 900</td>
<td>Major</td>
</tr>
<tr>
<td>70-0407-00D</td>
<td>Aural warning evolution and software G1000 integrated flight deck : V15.11 software for TBM850 and TBM900 (S/N 1000 to 1105)</td>
<td>minor</td>
</tr>
<tr>
<td>70-0411-52</td>
<td>Pilot door by seal improvement</td>
<td>minor</td>
</tr>
<tr>
<td>70-0416-14</td>
<td>Add a placard "no smoking"in the aircraft cabin</td>
<td>minor</td>
</tr>
<tr>
<td>70-0417-25</td>
<td>Add of a paper clip on both flywheels</td>
<td>minor</td>
</tr>
<tr>
<td>70-0421-21</td>
<td>Improvement of the cockpit frontal windshield and side windows defog</td>
<td>minor</td>
</tr>
<tr>
<td>70-0423-34A</td>
<td>Safe flight lift transducer and AoA computer installation</td>
<td>minor</td>
</tr>
<tr>
<td>70-0425-34</td>
<td>M[1-2-3]F - 8GB blank SD cards for G1000 database</td>
<td>minor</td>
</tr>
<tr>
<td>70-0427-28</td>
<td>Fuel low level sensor</td>
<td>minor</td>
</tr>
<tr>
<td>70-0429-21</td>
<td>Air distribution - evolution of the ventilation duct under cabin floor</td>
<td>minor</td>
</tr>
<tr>
<td>70-0430-34</td>
<td>Radome with reduced honeycomb structure</td>
<td>minor</td>
</tr>
<tr>
<td>70-0432-24</td>
<td>Starter generator NACA</td>
<td>minor</td>
</tr>
<tr>
<td>70-0434-30</td>
<td>Wing leading edges - creation of deicing boot without honeycomb</td>
<td>minor</td>
</tr>
<tr>
<td>70-0435-79</td>
<td>Oil cooler air inlet duct</td>
<td>minor</td>
</tr>
<tr>
<td>70-0437-25</td>
<td>ARTEX ELT 1000 Emergency locator transmitter</td>
<td>minor</td>
</tr>
<tr>
<td>70-0439-79</td>
<td>Oil pressure limits change</td>
<td>Major</td>
</tr>
<tr>
<td>70-0440-72</td>
<td>New torque indication engine piston</td>
<td>minor</td>
</tr>
</tbody>
</table>

Edition 1 - December 5, 2014
Rev. 2
POD 70.0449-72
- OVERSPEED GOVERNOR JIHOSTROJ
- Bronze insert adding
- **Minor**

POD 70-0450-76
- Single lever power control HA12-1000-3 Amdt A
- **Minor**

POD 70-0455-31
- Lightweight Flight Data Recorder (ADRS - CARS)
- **Minor**

POD 70-0459-46
- Flight stream 210 installation (GARMIN)
- **Minor**

POD 70-0461-52
- Honeycomb thickness modification on main landing gear doors
- **Minor**

POD 70-0463-92
- Unique PL45 TEST push-button
- **Minor**

POD 70-0472-28
- Modification of S35 low fuel pressure switch for retrofit
- **Minor**

POD 70-0473-53
- "Fire proof" treatment of the nose landing gear bay
- **Minor**

POD 70-0474-27
- Flywheel - Bearings improvement
- **Minor**

POD 70-0477-00
- Printed circuit U60
- **Minor**

POD 70-0478-92
- Electrical harness - AoA capability
- **Minor**

POD 70-0479-24
- EPS Circuit Breaker - P/N contact of W10 pin B modified
- **Minor**

POD 70-0485-11
- Modification of oxygen switch placards
- **Major**

POD 70-0486-21
- Air duct distribution
- **Minor**

POD 70-0495-92
- Cabin electrical harness for 7Y9Y aircraft - design and installation
- **Minor**

POD 70-0498-57
- Improvement of lift transducer integration
- **Minor**

POD 70-0499-30
- Modification for lift transducer capability
- **Minor**

POD 70-0500-25
- 2016 interior - 2016 carbon finish
- **Minor**

POD 70-0510-27
- Stick shaker
- **Major**

POD 70-0529-21
- ECS auto mode removal
- **Minor**

NOTE

Optional modifications are integrated in the list of equipment - refer to the list of equipment available in SOCATA Report reference NAV No. 34/90-RJ-App 2, located at the end of this POH.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>LIMITATIONS</td>
<td>2</td>
</tr>
<tr>
<td>EMERGENCY PROCEDURES</td>
<td>3</td>
</tr>
<tr>
<td>NORMAL PROCEDURES</td>
<td>4</td>
</tr>
<tr>
<td>PERFORMANCE</td>
<td>5</td>
</tr>
<tr>
<td>WEIGHT AND BALANCE</td>
<td>6</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>7</td>
</tr>
<tr>
<td>AIRPLANE HANDLING, SERVICING AND MAINTENANCE</td>
<td>8</td>
</tr>
<tr>
<td>SUPPLEMENTS</td>
<td>9</td>
</tr>
</tbody>
</table>
SECTION 1

GENERAL

TABLE OF CONTENTS

1.1 - GENERAL ... 1.1.1
1.2 - THREE VIEW DRAWING ... 1.2.1
1.3 - DESCRIPTIVE DATA ... 1.3.1
 ENGINE .. 1.3.1
 PROPELLER .. 1.3.1
 FUEL ... 1.3.2
 ENGINE OIL ... 1.3.3
 MAXIMUM CERTIFICATED WEIGHTS 1.3.3
 STANDARD AIRPLANE WEIGHTS 1.3.3
 CABIN AND ENTRY DIMENSIONS 1.3.4
 SPECIFIC LOADINGS ... 1.3.4
1.4 - ABBREVIATIONS AND TERMINOLOGY 1.4.1
 METEOROLOGICAL TERMINOLOGY 1.4.1
 GENERAL AIRSPEED TERMINOLOGY AND SYMBOLS 1.4.1
 POWER TERMINOLOGY .. 1.4.2
 AIRPLANE PERFORMANCE AND FLIGHT PLANNING TERMINOLOGY 1.4.2
 WEIGHT AND BALANCE TERMINOLOGY 1.4.2
 GENERAL ABBREVIATIONS ... 1.4.4
 RADIO - NAVIGATION ABBREVIATIONS 1.4.7
1.5 - CONVERSION FACTORS ... 1.5.1
1.6 - PRESSURE AND STANDARD ATMOSPHERE 1.6.1
 STANDARD ATMOSPHERE ... 1.6.1
 PRESSURE CONVERSION TABLE 1.6.2
1.1 - GENERAL

This Handbook contains 9 Sections, and includes the material required by FAR Part 23 to be furnished to the pilot for operation of the TBM 900 airplane. It also contains supplemental data supplied by the manufacturer.

The "GARMIN" G1000 Integrated Flight Deck Cockpit Reference Guide for the Socata TBM 900, No. 190-00708-05, or any later version as applicable, must be permanently kept in the airplane with the Pilot's Operating Handbook.

The Pilot's Guide for the Electronic Standby Indicator MODEL ESI-2000 P/N 0040-32500-01 Rev. E or any later version as applicable, must be permanently kept in the airplane with the Pilot's Operating Handbook.

Section 1 provides basic data and information of general interest. It also contains definitions or explanations of abbreviations and terminology commonly used.

The general for complex optional systems are given in Section 9, "Supplements" of the Pilot's Operating Handbook.

PART 135 OPERATIONS

For 14 CFR 135 operations, TBM aircraft alternative source of electric power is able to supply 150 percent of the electrical loads of all required instruments and equipment for safe emergency operation of the aircraft for at least 1 hour.

Electrical load shedding procedure provided in Section 3 of this POH must be followed in order to meet the requirements of that Paragraph under 14 CFR 135.163(f)(2).
1.2 - THREE VIEW DRAWING

* Airplane on level field with fully extended FWD shock-absorber

Figure 1.2.1 (1/2) - THREE VIEW DRAWING
1.3 - DESCRIPTIVE DATA

ENGINE

Number of engines: 1

Engine manufacturer: PRATT & WHITNEY CANADA

Engine model number: PT6A - 66D

Engine type: Free turbine, reverse flow and 2 turbine sections

 Compressor type: 4 axial stages
 1 centrifugal stage

 Combustion chamber type: Annular

 Turbine type: 1 gas generator turbine stage
 2 power turbines stages

Horsepower rating and propeller speed: 850 SHP at 2000 RPM

PROPELLER

Number of propellers: 1

Propeller manufacturer: HARTZELL

Propeller model number: HC-E5N-3C / NC8834K

Number of blades: 5

Propeller diameter:
 Minimum: 90 inches (2.286 m)
 Maximum: 91 inches (2.311 m)

Propeller type: Adjustable constant speed, with feathering and hydraulic control reverse

Propeller blade setting at 30 inches station
 Low pitch: 19.5°
 Feathering: 85°
 Maximum reverse: -9°

Propeller governor: 8210.007 WOODWARD
FUEL

Total capacity : 301 USG (1140 Litres)
Total capacity each tank : 150.5 USG (570 Litres)
Total usable : 292 USG (1106 Litres)

CAUTION
THE USED FUEL MUST CONTAIN AN ANTI-ICE ADDITIVE, IN ACCORDANCE WITH SPECIFICATION MIL-I-27686 or MIL-I-85470. ADDITIVE CONCENTRATIONS (EGME or DIEGME) SHALL BE COMPRISED BETWEEN A MINIMUM OF 0.06 % AND A MAXIMUM OF 0.15 % BY VOLUME. REFER TO SECTION 8 "HANDLING, SERVICING AND MAINTENANCE" FOR ADDITIONAL INFORMATION.

CAUTION
THE USE OF AVIATION GASOLINE (AVGAS) MUST BE RESTRICTED TO EMERGENCY PURPOSES ONLY. AVGAS SHALL NOT BE USED FOR MORE THAN 150 CUMULATIVE HOURS DURING ANY PERIOD BETWEEN ENGINE OVERHAUL PERIODS

NOTE
Use of AVGAS to be recorded in engine module logbook

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM-D1655 JET A</td>
<td>AIR 3405C Grade F35</td>
<td>DERD 2494 Issue 9</td>
<td>F35 without additive</td>
</tr>
<tr>
<td>ASTM-D1655 JET A1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM-D1655 JET B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIL-DTL-5624 Grade JP-4</td>
<td>AIR 3407B</td>
<td>DERD 2454 Issue 4 Amdt 1</td>
<td>F40 with additive</td>
</tr>
<tr>
<td>MIL-DTL-5624 Grade JP-5</td>
<td>AIR 3404C Grade F44</td>
<td>DERD 2452 Issue 2 Amdt 1</td>
<td>F44 with additive when utilization</td>
</tr>
<tr>
<td>MIL-DTL-83133 Grade JP-8</td>
<td>AIR 3405C Grade F34</td>
<td>DERD 2453 Issue 4 Amdt 1</td>
<td>F34 with additive S748</td>
</tr>
<tr>
<td></td>
<td>AIR 3404C Grade F43</td>
<td>DERD 2498 Issue 7</td>
<td>F43 without additive</td>
</tr>
</tbody>
</table>

Figure 1.3.1 - RECOMMENDED FUEL TYPES
(Reference : Service Bulletin P & W C. No. 14004)
ENGINE OIL

System total capacity: 12.7 Quarts (12 Litres) (oil cooler included)
Usable capacity: 6 Quarts (5.7 Litres)

Maximum oil consumption in 10 hour period:
- 0.14 qt/hr (0.13 l/hr)
- 0.3 lb/hr (0.136 cc/hr)

Specification

<table>
<thead>
<tr>
<th>Nominal Viscosity</th>
<th>Specification</th>
<th>NATO Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>5cSt</td>
<td>MIL-PRF-23699G</td>
<td>O-156 (STD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O-154 (HTS)</td>
</tr>
</tbody>
</table>

Figure 1.3.2 - RECOMMENDED ENGINE OIL TYPES
(Reference: Service Bulletin P & W C. No. 14001 at the latest revision)

MAXIMUM CERTIFICATED WEIGHTS

Ramp: 7430 lbs (3370 kg)
Takeoff: 7394 lbs (3354 kg)
Landing: 7024 lbs (3186 kg)

Baggage weight
- refer to Section 2 (Paragraph 2.5) for weight and C.G. limits
- refer to Section 6 for cargo loading instructions

STANDARD AIRPLANE WEIGHTS

Standard empty weight: 4583 lbs (2079 kg)
Maximum useful load: 2811 lbs (1275 kg)
CABIN AND ENTRY DIMENSIONS

Maximum cabin width : 3' 11.64" (1.21 m)
Maximum cabin length : 13' 3.45" (4.05 m)
Maximum cabin height : 4' (1.22 m)

Number of cabin entries : 1 (standard) + 1 "pilot" door (if installed)

Entry width (standard) : 3' 6.52" (1.08 m)
Entry height (standard) : 3' 10.85" (1.19 m)
"Pilot" entry mean width : 2' 3.6" (0.70 m)
"Pilot" entry mean height : 3' 2.16" (0.97 m)

SPECIFIC LOADINGS

Wing loading : 38.16 lbs / sq.ft (186.3 kg / m²)
Power loading : 8.7 lbs / SHP (3.95 kg / SHP)
1.4 - ABBREVIATIONS AND TERMINOLOGY

METEOROLOGICAL TERMINOLOGY

ISA : \textit{International standard atmosphere}

OAT : \textit{Outside air temperature}

SAT : \textit{Static air temperature}

QFE : Atmospheric pressure at the airport reference point.

QNH : Atmospheric pressure at sea level, at airplane position.

\textbf{NOTE}

On the ground, the altimeter will indicate "zero" if it is set to QFE; it will indicate airport altitude if it is set to QNH.

Standard Temperature :

Is 15°C (59°F) at sea level pressure altitude and decreases by 2°C (3.6°F) for each 1000 ft of altitude.

Pressure altitude :

Is the altitude read from an altimeter when the altimeter's barometric scale has been set to 29.92 inches of mercury (1013.2 hPa).

GENERAL AIRSPEED TERMINOLOGY AND SYMBOLS

KCAS : \textit{Knots Calibrated Airspeed} is the indicated airspeed expressed in knots corrected for position and instrument error. Knots calibrated airspeed is equal to KTAS in standard atmosphere at sea level.

KIAS : \textit{Knots Indicated Airspeed} is the speed shown on the airspeed indicator and expressed in knots.

KTAS : \textit{Knots True Airspeed} is the airspeed expressed in knots relative to undisturbed air which is KCAS corrected for altitude and temperature.

\(V_A \) : \textit{Maneuvering Speed} is the maximum speed at which full or abrupt control movements may be used.

\(V_{FE} \) : \textit{Maximum Flap Extended Speed} is the highest speed permissible with wing flaps in a prescribed extended position.

\(V_{LE} \) : \textit{Maximum Landing Gear Extended Speed} is the maximum speed at which an airplane can be safely flown with the landing gear extended.

\(V_{LO} \) : \textit{Maximum Landing Gear Operating Speed} is the maximum speed at which the landing gear can be safely extended or retracted.

\(V_{MO} \) : \textit{Maximum Operating Speed} is the speed limit that may not be deliberately exceeded in normal flight operations.

\(V_R \) : \textit{Rotation Speed} is the speed at which rotation is initiated during takeoff to achieve takeoff safety speed at screen height.

\(V_{SO} \) : \textit{Stalling Speed or the minimum steady flight speed} at which the airplane is controllable in the landing configuration.

\(V_{S1} \) : \textit{Stalling Speed or the minimum steady flight speed} obtained in a specific configuration.
V_x: **Best Angle of Climb Speed** is the airspeed which delivers the greatest gain of altitude in the shortest possible horizontal distance.

V_Y: **Best Rate of Climb Speed** is the airspeed which delivers the greatest gain in altitude in the shortest possible time.

POWER TERMINOLOGY

Recovery altitude: Maximum altitude at which it is possible, in standard temperature, to maintain a specified power.

Overheated start: Engine start or attempt to start which causes the interturbine temperature to be higher than the maximum value permissible during start.

Flame out: Involuntary loss of the combustion chamber flame during operation.

GPU: *Ground power unit*.

Feathering: Action which reduces the drag of a propeller by positioning blades at the pitch angle allowing minimal drag.

Maximum Cruise Power: Power developed corresponding to outside (Flight Level and Temperature) conditions (Refer to Chapter 5 “PERFORMANCE”).

Ng: Gas generator RPM.

Np: Propeller rotation speed.

Reverse: Drag produced when the propeller blade setting is negative.

RPM: Revolutions per minute.

SHP: Shaft Horsepower.

TRQ: *Torque*.

AIRPLANE PERFORMANCE AND FLIGHT PLANNING TERMINOLOGY

Climb gradient: The ratio of the change in height during a portion of climb, to the horizontal distance traversed in the same time interval.

Demonstrated crosswind velocity: The velocity of the crosswind component for which adequate control of the airplane during takeoff and landing was actually demonstrated during certification tests. The value shown is not considered to be limiting.

g: Is acceleration due to gravity.

Usable fuel: Total fuel which can be effectively consumed by the engine.

WEIGHT AND BALANCE TERMINOLOGY

Reference datum: Datum perpendicular to the longitudinal airplane centerline from which all distances are measured for balance purpose.
Arm : Is the distance from the reference datum to the center of gravity (C.G.) of an item.

Moment : Is the product of the weight of an item multiplied by its arm.

Center of gravity (C.G.) :
Airplane balance point. Its distance from the reference datum is found by dividing the total moment by the total weight of the airplane.

C.G. limits : Center of Gravity Limits are the extreme center of gravity locations within which the airplane must be operated at a given weight.

Standard empty weight :
Weight of a standard airplane including unusable fuel and full operating fluids (oil and hydraulic fluids).

Basic empty weight :
Standard empty weight plus optional equipment.

Useful load : Is the difference between maximum ramp weight and the basic empty weight.

Maximum ramp weight :
Is the maximum weight approved for ground maneuver. (It includes the weight of start, taxi and run up fuel).

Maximum takeoff weight :
Is the maximum weight approved at the beginning of the takeoff run.

Maximum landing weight :
Is the maximum weight approved for landing touchdown.
GENERAL ABBREVIATIONS

A : Ampere or Amber
ADC : Air Data Computer
AGL : Above ground level
ALT. SEL. : Altitude selector
ALTI : Altimeter
AMP. : Ampere
AP : Autopilot
AUTO SEL : Automatic selector
AUX BP : Auxiliary boost pump
BAT : Battery
BAT OVERHEAT : Battery overheat (only with Cadmium-Nickel battery)
BRT : Brightness
CAS : Crew Alerting System
°C : Celsius degree
CHiPS : Cable Harness Protection System
CONT. : Control
DIEGME : Diethylene glycol monomethyl ether
DISC : Disconnect
DN : Down
ECS : Environmental control system
EDM : Emergency Descent Mode
EGME : Ethylene glycol monomethyl ether
EMER : Emergency
ENCOD. ALTI : Encoding altimeter
ESS. BUS TIE : Essential BUS tie
EXT. LIGHTS : Exterior lightings
°F : Fahrenheit degree
FCU : Fuel control unit
FIRE EXTING : Fire extinguisher
FL : Flight level
FOB : Fuel On Board
FPL : Flight Plan
ft : Feet
ft/min : Feet per minute
G : Green
HI : High
HP : High pressure
hPa : Hectopascal
hr : Hour
HTR : Heater
IGNIT : Ignition
in : Inch
INERT SEP : Inertial separator
INDIC : Indicator
in.Hg : Inch of mercury
INT. LIGHTS : Interior lightings
INSTR. : Instrument
ITT : Interturbine temperature
kg : Kilogram
kt : Knot (1 nautical mile/hr - 1852 m/hr)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kW</td>
<td>Kilowatt</td>
</tr>
<tr>
<td>I</td>
<td>Litre</td>
</tr>
<tr>
<td>L</td>
<td>Left</td>
</tr>
<tr>
<td>l/h</td>
<td>Litre / hour</td>
</tr>
<tr>
<td>lb or lbs</td>
<td>Pound(s)</td>
</tr>
<tr>
<td>L / D</td>
<td>Lift-to-drag</td>
</tr>
<tr>
<td>LDG</td>
<td>Landing</td>
</tr>
<tr>
<td>LDG GR</td>
<td>Landing gear</td>
</tr>
<tr>
<td>LDR</td>
<td>Lightweight Data Recorder</td>
</tr>
<tr>
<td>LFE</td>
<td>Landing Field Elevation</td>
</tr>
<tr>
<td>LRCR</td>
<td>Long Range Cruise</td>
</tr>
<tr>
<td>LO</td>
<td>Low</td>
</tr>
<tr>
<td>LP</td>
<td>Low pressure</td>
</tr>
<tr>
<td>LRN</td>
<td>Long range navigation</td>
</tr>
<tr>
<td>LTS TEST</td>
<td>Lightings test</td>
</tr>
<tr>
<td>m</td>
<td>Metre</td>
</tr>
<tr>
<td>m.a.c.</td>
<td>Mean aerodynamic chord</td>
</tr>
<tr>
<td>MAIN GEN</td>
<td>Main generation</td>
</tr>
<tr>
<td>MAN</td>
<td>Manual</td>
</tr>
<tr>
<td>MAN OVRD</td>
<td>Manual override</td>
</tr>
<tr>
<td>MAX RPM</td>
<td>Maximum revolutions per minute</td>
</tr>
<tr>
<td>MFD</td>
<td>Multi-function Display</td>
</tr>
<tr>
<td>MIN</td>
<td>Minimum</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre</td>
</tr>
<tr>
<td>MLW</td>
<td>Maximum Landing Weight</td>
</tr>
<tr>
<td>MRW</td>
<td>Maximum Ramp Weight</td>
</tr>
<tr>
<td>MTOW</td>
<td>Maximum Takeoff Weight</td>
</tr>
<tr>
<td>MXCR</td>
<td>Maximum Cruise</td>
</tr>
<tr>
<td>MZFW</td>
<td>Maximum Zero Fuel Weight</td>
</tr>
<tr>
<td>NM</td>
<td>Nautical mile</td>
</tr>
<tr>
<td>NOCR</td>
<td>Normal cruise (recommended)</td>
</tr>
<tr>
<td>NORM</td>
<td>Normal</td>
</tr>
<tr>
<td>PFD</td>
<td>Primary Flight Display</td>
</tr>
<tr>
<td>PHF</td>
<td>Plan Horizontal Fixe (Horizontal stabilizer)</td>
</tr>
<tr>
<td>PRESS</td>
<td>Pressure</td>
</tr>
<tr>
<td>PROP</td>
<td>Propeller</td>
</tr>
<tr>
<td>psi</td>
<td>Pounds per square inch</td>
</tr>
<tr>
<td>qt</td>
<td>Quart (¼ USG)</td>
</tr>
<tr>
<td>QTY</td>
<td>Quantity</td>
</tr>
<tr>
<td>R</td>
<td>Red or Right</td>
</tr>
<tr>
<td>RUD</td>
<td>Rudder</td>
</tr>
<tr>
<td>s or sec</td>
<td>Second</td>
</tr>
<tr>
<td>SEL</td>
<td>Selector</td>
</tr>
<tr>
<td>SIG</td>
<td>Signalization</td>
</tr>
<tr>
<td>SL</td>
<td>Sea level</td>
</tr>
<tr>
<td>S/N</td>
<td>Serial number</td>
</tr>
<tr>
<td>SPKR</td>
<td>Speaker</td>
</tr>
<tr>
<td>ST - BY</td>
<td>Stand-by</td>
</tr>
<tr>
<td>STALL HTR</td>
<td>Stall heater</td>
</tr>
<tr>
<td>Std</td>
<td>Standard</td>
</tr>
<tr>
<td>T°</td>
<td>Temperature</td>
</tr>
<tr>
<td>TEMP</td>
<td>Temperature</td>
</tr>
</tbody>
</table>
TO : Takeoff
TURN COORD : Turn coordinator
USG : Gallon U.S
V : Volt or Voltage
WARN : Warning
W / S : Windshield
RADIO - NAVIGATION ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>Automatic Direction Finder System</td>
</tr>
<tr>
<td>ADI</td>
<td>Attitude Director Indicator</td>
</tr>
<tr>
<td>AFCS</td>
<td>Automated Flight Control System</td>
</tr>
<tr>
<td>AHRS</td>
<td>Attitude and Heading Reference System</td>
</tr>
<tr>
<td>ATC</td>
<td>Transponder</td>
</tr>
<tr>
<td>B RNAV</td>
<td>Basic aRea NAVigation</td>
</tr>
<tr>
<td>CDI</td>
<td>Course Deviation Indicator</td>
</tr>
<tr>
<td>COM</td>
<td>Communications Transceivers</td>
</tr>
<tr>
<td>DME</td>
<td>Distance Measuring Equipment</td>
</tr>
<tr>
<td>ELT</td>
<td>Emergency Locator Transmitter</td>
</tr>
<tr>
<td>ESI</td>
<td>Electronic Standby Instrument</td>
</tr>
<tr>
<td>FMS</td>
<td>Flight Management System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>HF</td>
<td>High Frequency</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument Flight Rules</td>
</tr>
<tr>
<td>ILS</td>
<td>Instrument Landing System</td>
</tr>
<tr>
<td>IMC</td>
<td>Instrument Meteorological Conditions</td>
</tr>
<tr>
<td>L NAV</td>
<td>Lateral NAVigation</td>
</tr>
<tr>
<td>LPV</td>
<td>Localizer Precision Vertical</td>
</tr>
<tr>
<td>MKR</td>
<td>Marker Radio Beacon</td>
</tr>
<tr>
<td>NAV</td>
<td>Navigation Indicators or Receivers</td>
</tr>
<tr>
<td>P RNAV</td>
<td>Precision aRea NAVigation</td>
</tr>
<tr>
<td>R NAV</td>
<td>Area NAVigation</td>
</tr>
<tr>
<td>RNP</td>
<td>Required Navigation Performance</td>
</tr>
<tr>
<td>TAS</td>
<td>Traffic Advisory System</td>
</tr>
<tr>
<td>TAWS</td>
<td>Terrain Awareness Warning System</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual Flight Rules</td>
</tr>
<tr>
<td>VHF</td>
<td>Very High Frequency</td>
</tr>
<tr>
<td>VMC</td>
<td>Visual Meteorological Conditions</td>
</tr>
<tr>
<td>V NAV</td>
<td>Vertical NAVigation</td>
</tr>
<tr>
<td>VOR</td>
<td>VHF Omnidirectional Range</td>
</tr>
<tr>
<td>VOR / LOC</td>
<td>VHF Omnidirectional Range LOCalizer</td>
</tr>
<tr>
<td>WAAS</td>
<td>Wide Area Augmentation System</td>
</tr>
<tr>
<td>WXR</td>
<td>Weather surveillance radar</td>
</tr>
<tr>
<td>XPDR</td>
<td>Transponder</td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK
1.5 - CONVERSION FACTORS

<table>
<thead>
<tr>
<th>IMPERIAL AND U.S UNITS TO METRIC UNITS</th>
<th>METRIC UNITS TO IMPERIAL AND U.S UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULTIPLY</td>
<td>BY</td>
</tr>
<tr>
<td>FEET</td>
<td>0.3048</td>
</tr>
<tr>
<td>INCH</td>
<td>25.4</td>
</tr>
<tr>
<td>Imp.Gal</td>
<td>4.546</td>
</tr>
<tr>
<td>USG</td>
<td>3.785</td>
</tr>
<tr>
<td>lb</td>
<td>0.45359</td>
</tr>
</tbody>
</table>

Figure 1.5.1 - IMPERIAL AND U.S UNITS TO METRIC UNITS
Figure 1.5.2 - FEET VERSUS METRES
Figure 1.5.3 - INCHES VERSUS MILLIMETRES
Figure 1.5.4 - POUNDS VERSUS KILOGRAMS
1.6 - PRESSURE AND STANDARD ATMOSPHERE

STANDARD ATMOSPHERE

<table>
<thead>
<tr>
<th>Pressure altitude (ft)</th>
<th>Pressure (hPa)</th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1013.2</td>
<td>+ 15.0</td>
<td>+ 59.0</td>
</tr>
<tr>
<td>2000</td>
<td>942.1</td>
<td>+ 11.0</td>
<td>+ 51.8</td>
</tr>
<tr>
<td>4000</td>
<td>875.0</td>
<td>+ 7.0</td>
<td>+ 44.6</td>
</tr>
<tr>
<td>6000</td>
<td>811.9</td>
<td>+ 3.1</td>
<td>+ 37.6</td>
</tr>
<tr>
<td>8000</td>
<td>752.6</td>
<td>- 0.8</td>
<td>+ 30.5</td>
</tr>
<tr>
<td>10000</td>
<td>696.8</td>
<td>- 4.8</td>
<td>+ 23.4</td>
</tr>
<tr>
<td>12000</td>
<td>644.3</td>
<td>- 8.7</td>
<td>+ 16.2</td>
</tr>
<tr>
<td>14000</td>
<td>595.2</td>
<td>- 12.7</td>
<td>+ 9.2</td>
</tr>
<tr>
<td>16000</td>
<td>549.1</td>
<td>- 16.6</td>
<td>+ 2.2</td>
</tr>
<tr>
<td>18000</td>
<td>505.9</td>
<td>- 20.6</td>
<td>- 5.0</td>
</tr>
<tr>
<td>20000</td>
<td>465.6</td>
<td>- 24.6</td>
<td>- 12.4</td>
</tr>
<tr>
<td>22000</td>
<td>427.8</td>
<td>- 28.5</td>
<td>- 19.3</td>
</tr>
<tr>
<td>24000</td>
<td>392.6</td>
<td>- 32.5</td>
<td>- 26.5</td>
</tr>
<tr>
<td>26000</td>
<td>359.8</td>
<td>- 36.5</td>
<td>- 33.6</td>
</tr>
<tr>
<td>28000</td>
<td>329.3</td>
<td>- 40.4</td>
<td>- 40.7</td>
</tr>
<tr>
<td>30000</td>
<td>300.8</td>
<td>- 44.4</td>
<td>- 47.8</td>
</tr>
<tr>
<td>31000</td>
<td>287.4</td>
<td>- 46.4</td>
<td>- 51.6</td>
</tr>
</tbody>
</table>

Figure 1.6.1 - STANDARD ATMOSPHERE
PRESSURE CONVERSION TABLE

NOTE

The standard pressure of 1013.2 hPa is equal to 29.92 inches of mercury.

<table>
<thead>
<tr>
<th>950</th>
<th>951</th>
<th>952</th>
<th>953</th>
<th>954</th>
<th>955</th>
<th>956</th>
<th>957</th>
<th>958</th>
<th>959</th>
</tr>
</thead>
<tbody>
<tr>
<td>960</td>
<td>961</td>
<td>962</td>
<td>963</td>
<td>964</td>
<td>965</td>
<td>966</td>
<td>967</td>
<td>968</td>
<td>969</td>
</tr>
<tr>
<td>970</td>
<td>971</td>
<td>972</td>
<td>973</td>
<td>974</td>
<td>975</td>
<td>976</td>
<td>977</td>
<td>978</td>
<td>979</td>
</tr>
<tr>
<td>980</td>
<td>981</td>
<td>982</td>
<td>983</td>
<td>984</td>
<td>985</td>
<td>986</td>
<td>987</td>
<td>988</td>
<td>989</td>
</tr>
<tr>
<td>28.94</td>
<td>28.97</td>
<td>29.00</td>
<td>29.03</td>
<td>29.06</td>
<td>29.09</td>
<td>29.12</td>
<td>29.15</td>
<td>29.18</td>
<td>29.20</td>
</tr>
<tr>
<td>990</td>
<td>991</td>
<td>992</td>
<td>993</td>
<td>994</td>
<td>995</td>
<td>996</td>
<td>997</td>
<td>998</td>
<td>999</td>
</tr>
<tr>
<td>29.23</td>
<td>29.26</td>
<td>29.29</td>
<td>29.32</td>
<td>29.35</td>
<td>29.38</td>
<td>29.41</td>
<td>29.44</td>
<td>29.47</td>
<td>29.50</td>
</tr>
<tr>
<td>1000</td>
<td>1001</td>
<td>1002</td>
<td>1003</td>
<td>1004</td>
<td>1005</td>
<td>1006</td>
<td>1007</td>
<td>1008</td>
<td>1009</td>
</tr>
<tr>
<td>29.53</td>
<td>29.56</td>
<td>29.59</td>
<td>29.62</td>
<td>29.65</td>
<td>29.68</td>
<td>29.71</td>
<td>29.74</td>
<td>29.77</td>
<td>29.80</td>
</tr>
<tr>
<td>1010</td>
<td>1011</td>
<td>1012</td>
<td>1013</td>
<td>1014</td>
<td>1015</td>
<td>1016</td>
<td>1017</td>
<td>1018</td>
<td>1019</td>
</tr>
<tr>
<td>29.83</td>
<td>29.85</td>
<td>29.88</td>
<td>29.91</td>
<td>29.94</td>
<td>29.97</td>
<td>30.00</td>
<td>30.03</td>
<td>30.06</td>
<td>30.09</td>
</tr>
<tr>
<td>1020</td>
<td>1021</td>
<td>1022</td>
<td>1023</td>
<td>1024</td>
<td>1025</td>
<td>1026</td>
<td>1027</td>
<td>1028</td>
<td>1029</td>
</tr>
<tr>
<td>30.12</td>
<td>30.15</td>
<td>30.18</td>
<td>30.21</td>
<td>30.24</td>
<td>30.27</td>
<td>30.30</td>
<td>30.33</td>
<td>30.36</td>
<td>30.39</td>
</tr>
<tr>
<td>1030</td>
<td>1031</td>
<td>1032</td>
<td>1033</td>
<td>1034</td>
<td>1035</td>
<td>1036</td>
<td>1037</td>
<td>1038</td>
<td>1039</td>
</tr>
<tr>
<td>30.42</td>
<td>30.45</td>
<td>30.47</td>
<td>30.50</td>
<td>30.53</td>
<td>30.56</td>
<td>30.59</td>
<td>30.62</td>
<td>30.65</td>
<td>30.68</td>
</tr>
<tr>
<td>1040</td>
<td>1041</td>
<td>1042</td>
<td>1043</td>
<td>1044</td>
<td>1045</td>
<td>1046</td>
<td>1047</td>
<td>1048</td>
<td>1049</td>
</tr>
<tr>
<td>30.71</td>
<td>30.74</td>
<td>30.77</td>
<td>30.80</td>
<td>30.83</td>
<td>30.86</td>
<td>30.89</td>
<td>30.92</td>
<td>30.95</td>
<td>30.98</td>
</tr>
</tbody>
</table>

Figure 1.6.2 - PRESSURE CONVERSION TABLE
SECTION 2
LIMITATIONS

TABLE OF CONTENTS

2.1 - GENERAL ... 2.1.1

2.2 - AIRSPEED LIMITATIONS .. 2.2.1

2.3 - POWERPLANT LIMITATIONS .. 2.3.1
ENGINE ... 2.3.1
OIL ... 2.3.2
FUEL .. 2.3.3
PROPELLER ... 2.3.4

2.4 - STARTER OPERATION LIMITS ... 2.4.1

2.5 - WEIGHT AND C.G. LIMITS ... 2.5.1
WEIGHT LIMITS ... 2.5.1
C.G. LIMITS .. 2.5.2

2.6 - OPERATION LIMITS .. 2.6.1
MANEUVER LIMITS .. 2.6.1
TEMPERATURE LIMITS .. 2.6.1
FLIGHT LOAD FACTOR LIMITS ... 2.6.1
GENERATOR LIMITS .. 2.6.1
GFC 700 AUTOPILOT LIMITS ... 2.6.2
G1000 GNSS (GPS/SBAS) NAVIGATION EQUIPMENT APPROVALS .. 2.6.2
G1000 GNSS (GPS/SBAS) NAVIGATION SYSTEM LIMITATIONS ... 2.6.2
SID/STAR ... 2.6.4
ICING CONDITIONS ... 2.6.5
SEVERE ICING CONDITIONS .. 2.6.5
FLAP OPERATING ENVELOPE ... 2.6.5
REVERSE UTILIZATION ... 2.6.5
EQUIPMENT REQUIRED DEPENDING ON TYPE OF OPERATION ... 2.6.6
ALTITUDE OPERATING LIMITS .. 2.6.9
IN-FLIGHT CIRCUIT BREAKER USE LIMITS ... 2.6.9
ENHANCED MODE S .. 2.6.10
CHARTVIEW SYSTEM OPERATING LIMITATIONS .. 2.6.10

2.7 - MISCELLANEOUS LIMITS ... 2.7.1
SEATING LIMITS C.G. ... 2.7.1
BAGGAGE LIMITS .. 2.7.1
MINIMUM CREW .. 2.7.1
MAXIMUM OCCUPANCY ... 2.7.1
USE OF DOORS .. 2.7.1
CHEMICAL TOILET CABINET (IF INSTALLED) .. 2.7.1
CARGO NET INSTALLATION LIMITS ... 2.7.1
LIMITATIONS

EASA Approved

SECTION 2

PILOT'S OPERATING HANDBOOK

Edition 1 - December 5, 2014

Rev. 0

Page 2.0.2

2.8 - MARKINGS

- INDICATED AIRSPEED .. 2.8.1
- PRESSURIZATION ... 2.8.1
- ENGINE INSTRUMENTS ... 2.8.2

2.9 - PLACARDS

- ... 2.9.1
2.1 - GENERAL

“TBM 900” is the trade name of the TBM 700 "N version" airplane (TBM 700 type), which is certified in the Normal Category.

This airplane must be flown in compliance with the limits specified by placards or markings and with those given in this Section and throughout the Pilot’s Operating Handbook.

The "GARMIN" G1000 Integrated Flight Deck Cockpit Reference Guide No. 190-00708-05, or any later version as applicable, must be readily available to the pilot.

The Pilot's Guide for the Electronic Standby Indicator MODEL ESI-2000 P/N 0040-32500-01 Rev. E or any later version as applicable, must be permanently kept in the airplane with the Pilot's Operating Handbook.

Departure into IMC is not authorized if the ESI-2000 battery symbol is present with an amber battery symbol (less than 1 hour remaining), or an amber or red “X” over the battery symbol or a “CAL DUE” message by the battery symbol.

This Section of the airplane Pilot's Operating Handbook presents the various operating limitations, the significance of such limitations, instrument markings, color coding, and basic placards necessary for the safe operation of the airplane, its powerplant and installed equipment.

The limitations included in this Section have been approved by the Federal Aviation Administration in accordance with 14 CFR Section 21.29.

The limitations for some optional systems are given in Section 9, “Supplements” of the Pilot's Operating Handbook.

TBM 700 airplane is certified under EASA.A.010 and FAA N° A60EU Type Certificates.
2.2 - AIRSPEED LIMITATIONS

Airspeed limitations and their operational significance are shown in Figure 2.2.1.

<table>
<thead>
<tr>
<th>SPEED</th>
<th>KCAS</th>
<th>KIAS</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{MO}: Maximum operating speed</td>
<td>271</td>
<td>266</td>
<td>Do not intentionally exceed this speed in normal flight category</td>
</tr>
<tr>
<td>V_A: Maneuvering speed</td>
<td>160</td>
<td>158</td>
<td>Do not make abrupt or full control movements above this speed</td>
</tr>
<tr>
<td>V_{FE}: Maximum flaps extended speed:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>landing configuration</td>
<td>120</td>
<td>122</td>
<td>Do not exceed these speeds depending on flaps position</td>
</tr>
<tr>
<td>takeoff configuration</td>
<td>180</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>V_{LO}: Maximum landing gear operating speed:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>extension</td>
<td>180</td>
<td>178</td>
<td>Do not extend or retract landing gear above this speed</td>
</tr>
<tr>
<td>retraction</td>
<td>151</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>emergency extension</td>
<td>151</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>V_{LE}: Maximum landing gear extended speed</td>
<td>180</td>
<td>178</td>
<td>Do not exceed this speed with landing gear extended</td>
</tr>
</tbody>
</table>

Figure 2.2.1 - AIRSPEED LIMITATIONS
2.3 - POWERPLANT LIMITATIONS

ENGINE

Number of engines: 1

Engine manufacturer: PRATT & WHITNEY CANADA

Engine model number: PT6A - 66D

Maximum power:

100% at Np = 2000 RPM

Ng limitation:

104.1%

Np limitation:

2000 RPM ± 40 RPM

ITT limitations:

- Take off: 850°C
- Maximum climb/cruise: 840°C
- During start:
 - 850°C (no duration limitation)
 - 870°C for 20 seconds max.
 - 1000°C for 5 seconds max.

CAUTION

WHEN NORMALLY OPERATING, REFER TO CHAPTER 5.8 "ENGINE OPERATION" TABLES.
CAUTION

DO NOT MIX DIFFERENT BRANDS OR TYPES OF OIL

Maximum oil temperature : 104 °C

Oil pressure :
- Minimum : 60 psi
- Maximum : 135 psi (a transient oil pressure up to 170 psi is acceptable for maximum 20 seconds)

Normal oil pressure is 105 to 135 psi. Oil pressures under 105 psi are undesirable. Under emergency conditions, to complete a flight, a lower oil pressure of 60 psi is permissible at reduced power level not exceeding 80% torque. Oil pressures below 60 psi are unsafe and require that either the engine be shut down or a landing be made as soon as possible using the minimum power required to sustain flight.

Oil capacity :
- System total capacity : 12.7 Quarts (12 Litres) (Oil cooler included)
- Usable capacity : 6 Quarts (5.7 Litres)

Oil grade (Specification) :

<table>
<thead>
<tr>
<th>Nominal viscosity</th>
<th>US specification (US)</th>
<th>French specification (FR)</th>
<th>English specification (UK)</th>
<th>NATO code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 5cSt</td>
<td>MIL-L-23699C Amdt 1</td>
<td>MIL-L-23699C Amdt 1</td>
<td>DERD 2499 Issue 1</td>
<td>O.156</td>
</tr>
</tbody>
</table>

Figure 2.3.1 - ENGINE OIL RECOMMENDED TYPE
(Reference : Service Bulletin P & W C. No. 14001)
FUEL

Fuel limitations:
- 2 tanks: 150.5 USG (570 Litres) each
- Total fuel: 301 USG (1140 Litres)
- Usable fuel: 292 USG (1106 Litres)
- Unusable fuel: 9 USG (34 Litres)
- Maximum fuel unbalance: 15 USG (57 Litres)

NOTE

Usable fuel can be safely used during all normal airplane maneuvers.

CAUTION

The fuel used must contain an anti-ice additive, in accordance with specification MIL-I-27686 or MIL-I-85470. Additive concentrations (EGME or DIEGME) shall be comprised between a minimum of 0.06 % and a maximum of 0.15 % by volume. Refer to section 8 "Handling, Servicing and Maintenance" for additional information.

The use of aviation gasoline (AVGAS) must be restricted to emergency purposes only. AVGAS shall not be used for more than 150 cumulative hours during any period between engine overhaul periods.

NOTE

Use of AVGAS to be recorded in engine module logbook.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM-D1655 JET A</td>
<td>AIR 3405C Grade F35</td>
<td>DERD 2494 Issue 9</td>
<td>F35 without additive</td>
</tr>
<tr>
<td>ASTM-D1655 JET A1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM-D1655 JET B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIL-DTL-5624 Grade JP-4</td>
<td>AIR 3407B</td>
<td>DERD 2454 Issue 4 Amdt 1</td>
<td>F40 with additive</td>
</tr>
<tr>
<td>MIL-DTL-5624 Grade JP-5</td>
<td>AIR 3404C Grade F44</td>
<td>DERD 2452 Issue 2 Amdt 1</td>
<td>F44 with additive when utilization</td>
</tr>
<tr>
<td>MIL-DTL-83133 Grade JP-8</td>
<td>AIR 3405C Grade F34</td>
<td>DERD 2453 Issue 4 Amdt 1</td>
<td>F34 with additive S748</td>
</tr>
<tr>
<td></td>
<td>AIR 3404C Grade F43</td>
<td>DERD 2498 Issue 7</td>
<td>F43 without additive</td>
</tr>
</tbody>
</table>

Figure 2.3.2 - RECOMMENDED FUEL TYPES
(Reference: Service Bulletin P & W C. No. 14004)
PROPELLER

Number of propellers : 1

Propeller manufacturer : HARTZELL

Propeller model number : HC-E5N-3C / NC8834K

Propeller diameter :
- Minimum : 90 inches (2.286 m)
- Maximum : 91 inches (2.311 m)

Propeller blade setting at 30 inches station :
- Low pitch : 19.5°
- Feathering : 85°
- Maximum reverse : - 9°
2.4 - STARTER OPERATION LIMITS

Starter operation sequence is limited as follows:

if \(\text{Ng} \leq 30\% \) ... 30 seconds

if \(\text{Ng} > 30\% \) ... 60 seconds

Should several sequences be necessary, respect following spacing:

1st sequence

wait ... 1 minute

2nd sequence

wait ... 5 minutes

3rd sequence

wait ... 30 minutes

4th sequence
2.5 - WEIGHT AND C.G. LIMITS

WEIGHT LIMITS

Maximum ramp weight (MRW) : 7430 lbs (3370 kg)
Maximum takeoff weight (MTOW) : 7394 lbs (3354 kg)
Maximum landing weight (MLW) : 7024 lbs (3186 kg)
Maximum zero fuel weight (MZFW) : 6032 lbs (2736 kg)

Maximum baggage weight:
- in FWD compartment (non pressurized) : 110 lbs (50 kg)

With 6-seat accommodation
- in rear part of pressurized cabin : 220 lbs (100 kg)

With 4-seat accommodation
- in rear part of pressurized cabin : 396 lbs (180 kg), with small or large net (see sketch below)

![Baggage limits diagram](image-url)

Figure 2.5.1 - Baggage limits
C.G. LIMITS - see Figure 6.4.2

Center of gravity range with landing gear down and flaps up, attitude 0°:

Forward limits:
- 181.3 inches (4.604 m) aft of datum at 4409 lbs (2000 kg) or less (14% of m.a.c)
- 183.6 inches (4.664 m) aft of datum at 6250 lbs (2835 kg) (18% of m.a.c)
- 185.3 inches (4.707 m) aft of datum at 6579 lbs (2984 kg) (20.85% of m.a.c)
- 187 inches (4.752 m) aft of datum at all weights above 7024 lbs (3186 kg) (23.8% of m.a.c)

Aft limits:
- 193.65 inches (4.921 m) aft of datum at 7394 lbs (3354 kg) (35% of m.a.c)
- 194 inches (4.928 m) aft of datum at 6986 lbs (3169 kg) (35.5% of m.a.c)

Reference datum: 118.1 inches (3 m) in front of the firewall front face.

Straight line variation between points.

Leveling point: Cabin floor rails.

NOTE

It is the responsibility of the pilot to insure that the airplane is properly loaded. See Section 6 "Weight and Balance" for proper loading instructions.

Figure 2.5.2 - C.G. limits
2.6 - OPERATION LIMITS

MANEUVER LIMITS

This airplane is certified in the normal category.

The normal category is applicable to airplanes intended for non-aerobatic operations.

Non-aerobatic operations include any maneuvers incidental to normal flying, stalls (except whip stalls), lazy eights, chandelles, and steep turns in which the angle of bank is no more than 60°.

Aerobatic maneuvers, including spins, are not approved.

TEMPERATURE LIMITS

Minimum temperature at start and takeoff : - 40°C (-40°F)

Maximum temperature at start and takeoff :
ISA + 37°C (+67°F) from 0 to 8000 ft pressure altitude

Maximum temperature in flight :
ISA + 37°C (+67°F) from 0 to 8000 ft pressure altitude
ISA + 30°C (+54°F) above 8000 ft pressure altitude

FLIGHT LOAD FACTOR LIMITS

Flaps up

Weight below 6579 lbs (2984 kg) :
- 1.5 ≤ n ≤ +3.8 g

Weight above 6579 lbs (2984 kg) :
- 1.5 ≤ n ≤ +3.5 g

Flaps down

- 0 ≤ n ≤ +2.0 g

CAUTION

INTENTIONAL NEGATIVE LOAD FACTORS PROHIBITED

GENERATOR LIMITS

Generator load has to be below 200 amps when the airplane is on the ground.
GFC 700 AUTOPILOT LIMITS

- During autopilot operation, a pilot with seat belt fastened must be seated at the left or right position.
- The autopilot and yaw damper must be OFF during takeoff and landing.
- Do not engage autopilot below 1000 ft (300 m) above ground level in cruise or climb.
- Do not use autopilot in approach under 200 ft (60 m).
- Do not use autopilot for airspeeds below 85 KIAS.

NOTE

Do not use the autopilot in descent below 2000 ft (600 m) AGL with a vertical speed in excess of 2000 ft/mn.

G1000 GNSS (GPS/SBAS) NAVIGATION EQUIPMENT APPROVALS

The Garmin GNSS navigation system installed in this airplane is a GPS system with a Satellite Based Augmentation System (SBAS) comprised of two TSO-C145a Class 3 approved Garmin GIA 63Ws, TSO-C146a Class 3 approved Garmin GDU 1XXX Display Units, Garmin GA36 and GA37 antennas, and GPS software version 3.2 or later approved version. The Garmin GNSS navigation system in this airplane is installed in accordance with AC 20-138A

The Garmin GNSS navigation system as installed in this airplane complies with the requirements of AC 20-138A and AMC 20-28, is approved for navigation using GPS and SBAS (within the coverage of a Satellite Based Augmentation System complying with ICAO Annex 10) for IFR en route, terminal area, and non-precision approach operations (including those approaches titled “GPS”, “or GPS”, and “RNAV (GPS)” approaches). The Garmin GNSS navigation system installed in this airplane is approved for approach procedures with vertical guidance including “LPV” (within the coverage of a Satellite Based Augmentation System complying with ICAO Annex 10) and “LNAV/VNAV”, within the U.S. National Airspace System.

The airplane is approved for Enroute and Terminal operations including RNAV5 / BRNAV and RNAV1 / PRNAV in accordance with JAA TGL--10, provided the FMS is receiving usable navigation information from one or more GPS receivers.

G1000 GNSS (GPS/SBAS) NAVIGATION SYSTEM LIMITATIONS

NOTE

Limitations are in bolded text for this section only.

The pilot must confirm at system initialization that the Navigation database is current.

Navigation database is expected to be current for the duration of the flight.

If the AIRAC cycle will change during flight, the pilot must ensure the accuracy of navigation data, including suitability of navigation facilities used to define the routes and procedures for flight. If an amended chart affecting navigation data is published for the procedure, the database must not be used to conduct the procedure.

GPS/SBAS based IFR enroute, oceanic, and terminal navigation is prohibited unless the pilot verifies and uses a valid, compatible, and current Navigation database or verifies each waypoint for accuracy by reference to current approved data.

Discrepancies that invalidate a procedure must be reported to Garmin International. The affected procedure is prohibited from being flown using data from the Navigation database until a new Navigation database is installed in the airplane and verified that the discrepancy has been corrected.

Contact information to report Navigation database discrepancies can be found at www.Garmin.com>Support>Contact Garmin Support>Aviation. Pilots and operators can view navigation data base alerts at www.Garmin.com > In the Air> NavData Alerts.
For flight planning purposes, in areas where SBAS coverage is not available, the pilot must check RAIM availability.

Within the United States, RAIM availability can be determined using the G1000 WFDE Prediction program, part number 006-A0154-01 (010-G1000-00) or later approved version with GARMIN GA36 and GA37 antennas selected, or the FAA’s en route and terminal RAIM prediction website: www.raimprediction.net, or by contacting a Flight Service Station.

Within Europe, RAIM availability can be determined using the G1000 WFDE Prediction program or Europe’s AUGER GPS RAIM Prediction Tool at http://augur.ecacnav.com/augur/app/home.

For other areas, use the G1000 WFDE Prediction program.

This requirement is not necessary if SBAS coverage is confirmed to be available along the entire route of flight.

The route planning and WFDE prediction program may be downloaded from the GARMIN G1000 website on the internet. For information on using the WFDE Prediction Program, refer to GARMIN WAAS FDE Prediction Program, part number 190-00643-01, `WFDE Prediction Program Instructions’.

For flight planning purposes, operations within the U.S. National Airspace System on RNP and RNAV procedures when SBAS signals are not available, the availability of GPS integrity RAIM shall be confirmed for the intended route of flight.

In the event of a predicted continuous loss of RAIM of more than five minutes for any part of the intended route of flight, the flight should be delayed, cancelled, or re-routed on a track where RAIM requirements can be met.

For flight planning purposes for operations within European B-RNAV and P-RNAV airspace, if more than one satellite is scheduled to be out of service, then the availability of GPS integrity RAIM shall be confirmed for the intended flight (route and time).

In the event of a predicted continuous loss of RAIM of more than five minutes for any part of the intended flight, the flight should be delayed, cancelled, or re-routed on a track where RAIM requirements can be met.

For flight planning purposes, operations where the route requires Class II navigation the airplane’s operator or pilot-in-command must use the G1000 WFDE Prediction program to demonstrate that there are no outages on the specified route that would prevent the G1000 to provide primary means of Class II navigation in oceanic and remote areas of operation that requires (RNP-10 or RNP-4) capability.

If the G1000 WFDE Prediction program indicates fault exclusion (FDE) availability will exceed 34 minutes in accordance with FAA Order 8400.12A for RNP-10 requirements, or 25 minutes in accordance with FAA Order 8400.33 for RNP-4 requirements, then the operation must be rescheduled when FDE is available.

Both GPS navigation receivers must be operating and providing GPS navigation guidance to their respective PFD for operations requiring RNP-4 performance.

North Atlantic (NAT) Minimum Navigational Performance Specifications (MNPS) Airspace operations per AC 91-49 and AC 120-33 require both GPS/SBAS receivers to be operating and receiving usable signals except for routes requiring only one Long Range Navigation sensor. Each display computes an independent navigation solution based on the on-side GPS sensor. However, either display will automatically revert to the cross-side sensor if the on-side sensor fails or if the cross-side sensor is determined to be more accurate. A "BOTH ON GPS1" or "BOTH ON GPS2" message does not necessarily mean that one GPS has failed. Refer to the MFD AUX-GPS STATUS page to determine the state of the unused GPS.

Manual entry of waypoints using latitude/longitude or place/bearing is prohibited.

Whenever possible, RNP and RNAV routes including Standard Instrument Departures (SIDs) and Obstacle Departure Procedures (ODPs), Standard Terminal Arrival (STAR), and enroute RNAV “Q” and RNAV “T” routes should be loaded into the flight plan from the database in their entirety, rather than loading route waypoints from the database into the flight plan individually. Selecting and inserting individual named fixes from the database is permitted, provided all fixes along the published route to be flown are inserted.
"GPS", "or GPS", and "RNAV (GPS)" instrument approaches using the G1000 System are prohibited unless the pilot verifies and uses the current Navigation database. GPS based instrument approaches must be flown in accordance with an approved instrument approach procedure that is loaded from the Navigation database.

LNAV+V feature is a standard LNAV approach with advisory vertical guidance provided for assistance in maintaining a constant vertical glideslope similar to an ILS glideslope on approach. This guidance is displayed on the G1000 PFD in the same location as the ILS glideslope using a magenta diamond. In all cases where LNAV+V is indicated by the system during an approach, LNAV minima are used.

Not all published Instrument Approach Procedures (IAP) are in the Navigation database.

Pilots planning on flying an RNAV instrument approach must ensure that the Navigation database contains the planned RNAV Instrument Approach Procedure and that approach procedure must be loaded from the Navigation database into the FMS flight plan by its name.

IFR non-precision approach approval using the GPS/SBAS sensor is limited to published approaches within the U.S. National Airspace System. Approaches to airports in other airspace are not approved unless authorized by the appropriate governing authority.

The navigation equipment required to join and fly an instrument approach procedure is indicated by the title of the procedure and notes on the IAP chart.

Use of the GARMIN G1000 GPS/SBAS receivers to provide navigation guidance during the final approach segment of an ILS, LOC, LOC-BC, LDA, SDF, MLS or any other type of approach not approved for "or GPS" navigation is prohibited. When using the G1000 VOR/LOC/GS receivers to fly the final approach segment, VOR/LOC/GS navigation data must be selected and presented on the CDI of the pilot flying.

Navigation information is referenced to WGS-84 reference system, and should only be used where the Aeronautical Information Publication (including electronic data and aeronautical charts) conform to WGS-84 or equivalent.

SID/STAR

The use of SIDs and STARs stored in GPS data base is only authorized, if the pilot has checked that GPS procedure corresponds to the one given in the official documentation (coordinates of various points and paths between points).

Instrument approach (Non precision approach)

Use of the GPS to perform an instrument approach is possible, as long as this use is approved by the air navigation local authority for the approach in question.

Instrument approaches performed with the GPS must be executed according to approved approach procedures given in the GPS data base. The data base must be kept up to date and base data accuracy checked with regard to the official documentation, preferably before the flight.

1) GPS/RNAV instrument approaches must be performed in GPS approach mode and the RAIM must be available at the final approach fix (FAF).

2) Precision approaches (ILS, LOC, LOC-BC, MLS ...) must not be performed with the GPS.

Instrument approaches can only be performed, as long as used point coordinates are referenced with regard to WGS 84 system or an equivalent system.
ICING CONDITIONS

In any case of icing conditions, first refer to particular procedures described in Chapter 4.5 (normal procedures) and in case of unforeseen icing conditions, refer in addition to the emergency procedure described in Chapter 3.13.

SEVERE ICING CONDITIONS

WARNING

SEVERE ICING MAY RESULT FROM ENVIRONMENTAL CONDITIONS OUTSIDE OF THOSE FOR WHICH THE AIRPLANE IS CERTIFICATED. FLIGHT IN FREEZING RAIN, FREEZING DRIZZLE, OR MIXED ICING CONDITIONS (SUPERCOOLED LIQUID WATER AND ICE CRYSTALS) MAY RESULT IN ICE BUILD-UP ON PROTECTED SURFACES EXCEEDING THE CAPABILITY OF THE ICE PROTECTION SYSTEM, OR MAY RESULT IN ICE FORMING AFT OF THE PROTECTED SURFACES. THIS ICE MAY NOT BE SHED USING THE ICE PROTECTION SYSTEMS, AND MAY SERIOUSLY DEGRADE THE PERFORMANCE AND CONTROLLABILITY OF THE AIRPLANE

During flight, severe icing conditions that exceed those for which the airplane is certificated shall be determined by the following visual cues. If one or more of these visual cues exists, immediately request priority handling from Air Traffic Control to facilitate a route or an altitude change to exit the icing conditions.

- Unusually extensive ice accumulation on the airframe and windshield in areas not normally observed to collect ice.
- Accumulation of ice on the upper surface of the wing aft of the protected area.

Since the autopilot, when operating, may mask tactile cues that indicate adverse changes in handling characteristics, use of the autopilot is prohibited when any of the visual cues specified above exist, or when unusual lateral trim requirements or autopilot trim warnings are encountered while the airplane is in icing conditions.

Refer to the list of "Equipment required depending on type of operation" in this same chapter.

Refer to particular procedures described in Chapter 4.5 (normal procedures) and in case of unforeseen icing conditions, refer in addition to the emergency procedure described in Chapter 3.13.

FLAP OPERATING ENVELOPE

The use of flaps is not authorized above 15 000 ft.

REVERSE UTILIZATION

The use of control reverse BETA (β) range is prohibited:

- during flight,
- on ground, if the engine is not running.

WEATHER RADAR GWX 70

On ground, the radar radiation is inhibited, when the landing gear shock absorbers are compressed. However, it is important to obey the following restrictions:

- Do not operate the radar during refueling operations or in the vicinity of trucks or containers containing flammables or explosives.
- Do not allow personnel within 12 feet of area being scanned by antenna when system is transmitting.
EQUIPMENT REQUIRED DEPENDING ON TYPE OF OPERATION

The airplane is approved for day & night VFR and day & night IFR operations when appropriate equipment is installed and operating correctly.

The type certification for each use requires the following equipment. The equipment must be installed and operate perfectly according to the indicated type of use.

CAUTION

IT IS THE PILOT'S RESPONSIBILITY TO CHECK THAT THE FOLLOWING EQUIPMENT LISTS ARE IN ACCORDANCE WITH THE SPECIFIC NATIONAL OPERATION RULES OF THE AIRPLANE REGISTRATION COUNTRY DEPENDING ON THE TYPE OF OPERATION.

CAUTION

SYSTEMS AND EQUIPMENT MENTIONED HEREAFTER DO NOT INCLUDE SPECIFIC FLIGHT AND RADIO-Navigation INSTRUMENTS REQUIRED BY DECREE CONCERNING OPERATION CONDITIONS FOR CIVIL AIRPLANES IN GENERAL AVIATION OR OTHER FOREIGN REGULATIONS (FOR EXAMPLE FAR PART 91 AND 135).

Day VFR

1) Pilot instruments
 - Airspeed indicator
 - Sensitive and adjustable altimeter
 - Magnetic compass with built-in compensator

2) CAS warning and caution messages
 - Oil pressure
 - Low fuel pressure
 - Fuel selector OFF
 - Fuel auxiliary pump ON
 - L.H. and R.H fuel tank low level
 - Non functioning of fuel timer
 - Battery overheat
 - Battery stop
 - Main generator OFF
 - Low voltage
 - Ground power unit connected
 - Inertial separator
 - Starter
 - Ignition
 - Flaps
 - Landing gears and doors

3) Aural warning
 - V_{MO} warning
 - Landing gear warning
 - Stall warning
4) Engine instruments
 - Torquemeter
 - Propeller tachometer
 - Interturbine temperature indicator (ITT)
 - Gas generator tachometer (Ng)
 - Oil pressure indicator
 - Oil temperature indicator

5) Various indicators
 - Fuel gauge indicators (2)
 - Voltmeter
 - Ammeter
 - Outside air temperature

6) Installations
 - Fuel mechanical pump (main)
 - Fuel electrical pump (auxiliary)
 - Fuel shut-off valve
 - Fuel timer
 - Starter generator
 - Inertial separator
 - Stall warning
 - Electrical aileron trim
 - Electrical rudder trim
 - Manual elevator pitch trim
 - Engine ignition
 - Landing gear electro-hydraulic unit
 - Landing gear emergency hydraulic pump (manual)
 - Flaps
 - Overspeed regulator
 - Electrical feathering
 - Battery

7) Miscellaneous
 - Seats (each occupant)
 - Belts (each occupant)
 - Straps (each occupant)
 - Pilot's operating handbook
Night VFR
1) All equipment required for day VFR
2) Attitude display indicator
3) Instrument lighting
4) Instrument panel lighting
5) Emergency lighting
6) Vertical speed indicator
7) Navigation lights (4)
8) Anticollision lights (2)
9) Landing light

IFR
1) All equipment required for day VFR
2) All equipment required for night VFR (if flight is performed during night)
3) Taxi light (if flight is performed during night)
4) Clock
5) 2nd altimeter
6) Emergency static source
7) Pitot static tube deicing

Pressurized flight
1) Cabin altimeter
2) Cabin vertical speed indication
3) Cabin differential pressure indication
4) Pressurization control valve
5) Safety valve
6) Pressurization control
7) Maximum cabin altitude and pressure warning light
Flight into icing conditions

1) All equipment required for IFR flight
2) Propeller deicing
3) L.H. windshield deicing
4) Airframe, stabilizer and elevator horn deicing
5) Wing leading edge inspection light (if night flight)
6) Stall warning deicing
7) Inertial separator
8) Garmin annunciation “Airspeed, Airspeed”

ALTITUDE OPERATING LIMITS

Maximum altitude : 31000 ft (9449 m)
Maximum differential pressure : 6.2 psi

Operation in RVSM area

This airplane is approved for operations in Reduced Vertical Separation Minimum (RVSM) airspace when required equipment (refer to Section "List of equipment", § "List of critical RVSM equipment") is maintained in accordance with the airplane Maintenance Manual.

This does not constitute operational approval. Individual airplane and operational approval must be obtained in accordance with applicable operating rules.

Each operator must ensure compliance with required crew training and operating practices and procedures.

Moreover, the following equipment must be installed and operating normally upon entering RVSM airspace :
- Pilot and R.H. station primary altimeters
- Autopilot
- Altitude Alerter
- ATC transponder

NOTE

Any changes to the pitot / static, air data computer, autopilot, altitude alerting and / or transponder systems, or other changes that affect operation of these systems must be evaluated for impact on the RVSM approval.

The standby altimeter is not approved for RVSM operations.

IN-FLIGHT CIRCUIT BREAKER USE LIMITS

A tripped circuit breaker should not be reset in flight unless deemed necessary for continued safe flight and landing. Only one reset should be attempted.
ENHANCED MODE S

The installed Mode S system satisfies the data requirements of ICAO Doc 7030/4, Regional Supplementary Procedures for SSR Mode S Enhanced Surveillance in designated European airspace. The capability to transmit data parameters is shown in column 2:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Available (A) / Not Available (NA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Heading</td>
<td>A</td>
</tr>
<tr>
<td>Indicated Airspeed</td>
<td>A</td>
</tr>
<tr>
<td>Mach No</td>
<td>A</td>
</tr>
<tr>
<td>Vertical Rate</td>
<td>A</td>
</tr>
<tr>
<td>Roll Angle</td>
<td>A</td>
</tr>
<tr>
<td>True Airspeed</td>
<td>A</td>
</tr>
<tr>
<td>True Track Angle</td>
<td>A</td>
</tr>
<tr>
<td>Groundspeed</td>
<td>A</td>
</tr>
<tr>
<td>Selected Altitude</td>
<td>A</td>
</tr>
<tr>
<td>Barometric Pressure Setting</td>
<td>A</td>
</tr>
</tbody>
</table>

CHARTVIEW SYSTEM OPERATING LIMITATIONS

The geographic-referenced airplane symbol on some charts must not be used for navigation.

NOTE

The airplane symbol displayed on some charts provides supplemental airplane situational awareness information. It is not intended as a means for navigation or flight guidance. The airplane symbol is not to be used for conducting instrument approaches or departures, and it should not be relied upon during low visibility taxi operations. Position accuracy, orientation, and related guidance must be assured by other means of required navigation.

Operators must have back-up charts available to the flight crew.

Database currency must be verified prior to use via database effectivity page.

The flight crew is responsible for verifying availability of charts for the planned flight.
2.7 - MISCELLANEOUS LIMITS

SEATING LIMITS C.G.
- 2 front seats at 178.5 in. (4.534 m)

With 4-seat accommodation or 6-seat accommodation
- 2 intermediate seats at 224.8 in. (5.710 m)

With 6-seat accommodation
- Rear bench (2 seats) at 267.1 in. (6.785 m)

BAGGAGE LIMITS
- Baggage in pressurized cabin at 303 inches (7.695 m)
- Baggage in non pressurized forward section at 128 inches (3.250 m)

MINIMUM CREW
- One pilot

MAXIMUM OCCUPANCY
The number of persons on board is limited by approved seating configuration installed but must not exceed six, including the pilot.

The number of persons must be less than or equal to the number of seats.

USE OF DOORS
Flight with door open or ajar is prohibited.

CHEMICAL TOILET CABINET (if installed)
The cabinet must be stowed during take-off and landing. No baggage on the top of the cabinet for the whole flight.

CARGO NET INSTALLATION LIMITS
Small cargo net : maximum loading height = 28 in (710 mm)
Large cargo net : maximum loading height = 22 in (565 mm) (in cabin, out of baggage compartment).

CAUTION
NO ITEM MAY EXTEND FORWARD OF THE CARGO NET SYSTEM TO PROTECT DOOR FROM OBSTRUCTION
2.8 - MARKINGS

INDICATED AIRSPEED

Indicated airspeed markings and their color code significance are shown in Figure 2.8.1.

<table>
<thead>
<tr>
<th>MARKING</th>
<th>KIAS (Value or range)</th>
<th>SIGNIFICANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red line</td>
<td>Below 65</td>
<td>/</td>
</tr>
<tr>
<td>White line</td>
<td>65 - 122</td>
<td>Full Flap Operating Range</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower limit is maximum weight VSO in landing configuration.</td>
</tr>
<tr>
<td>Green line</td>
<td>Above 122</td>
<td>Normal operating airspeed range</td>
</tr>
<tr>
<td>Hatched (Red & White) Sector</td>
<td>Above 266</td>
<td>266 = VMO</td>
</tr>
</tbody>
</table>

Figure 2.8.1 - IAS AWARENESS BAR CUES

PRESSURIZATION

<table>
<thead>
<tr>
<th>MARKING</th>
<th>VALUE</th>
<th>SIGNIFICANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red line</td>
<td>6.2 psi</td>
<td>Cabin ΔP limit</td>
</tr>
</tbody>
</table>

Figure 2.8.2 - PRESSURIZATION MARKING
ENGINE INSTRUMENTS

Engine instrument markings and their color code significance are shown in Figure 2.8.3.

<table>
<thead>
<tr>
<th>INDICATION</th>
<th>Red Line or Arc</th>
<th>Yellow Line or Arc</th>
<th>Green Line or Arc</th>
<th>Red Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Limit</td>
<td>Caution Range</td>
<td>Normal Operating</td>
<td>Maximum Limit</td>
<td></td>
</tr>
<tr>
<td>Oil temperature</td>
<td>- 40 °C (- 40 °F)</td>
<td>- 40 to 0 °C (- 40 to 32 °F)</td>
<td>0 to 104 °C (32 to 219.2 °F)</td>
<td>110 °C (230 °F)</td>
</tr>
<tr>
<td>Oil pressure</td>
<td>60 psi</td>
<td>60 to 105 psi</td>
<td>105 to 135 psi</td>
<td></td>
</tr>
<tr>
<td>Generator RPM (Ng)</td>
<td>---</td>
<td>---</td>
<td>51 to 104 %</td>
<td>104 %</td>
</tr>
<tr>
<td>Propeller RPM (Np)</td>
<td>---</td>
<td>450 to 1000 RPM</td>
<td>1950 to 2050 RPM</td>
<td>2050 RPM</td>
</tr>
<tr>
<td>Engine start or off</td>
<td>---</td>
<td>840 to 1090 °C (1544 to 1994 °F)</td>
<td>400 to 840 °C (752 to 1544 °F)</td>
<td>840 °C (1544 °F) normal limit</td>
</tr>
<tr>
<td>Engine running</td>
<td>---</td>
<td>400 to 840 °C (752 to 1544 °F)</td>
<td>840 °C (1544 °F) normal limit</td>
<td></td>
</tr>
<tr>
<td>Torque (TRQ)</td>
<td>---</td>
<td>100 %</td>
<td>0 to 100 %</td>
<td>101 %</td>
</tr>
</tbody>
</table>

Figure 2.8.3 - ENGINE INSTRUMENT MARKINGS
2.9 - PLACARDS

(1) Under L.H. front side window

(2) Calibration chart on compass and on windshield post

(3) On pressurized baggage compartment partition wall

WARNING

TURN WINDSHIELD DEICE OFF BEFORE COMPASS READING

FLIGHT CONDITIONS:

DAY AND NIGHT VISIBILIT Y

<table>
<thead>
<tr>
<th>FLIGHT CONDITIONS</th>
<th>DAY AND NIGHT VISIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFR</td>
<td>Day and night visibility</td>
</tr>
<tr>
<td>IFR</td>
<td>Day and night visibility</td>
</tr>
</tbody>
</table>

MANEUVERING SPEED

<table>
<thead>
<tr>
<th>MANEUVERING SPEED V*</th>
<th>150 KIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM OPERATING SPEED Vn</td>
<td>260 KIAS</td>
</tr>
</tbody>
</table>

LANDING CONDITIONS ALLOWED

<table>
<thead>
<tr>
<th>LANDING CONDITIONS</th>
<th>ALLOWED</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAKEOFF CONFIGURATION</td>
<td>170 KIAS</td>
</tr>
<tr>
<td>LANDING CONFIGURATION</td>
<td>170 KIAS</td>
</tr>
<tr>
<td>MAXIMUM OPERATING SPEED Vn</td>
<td>178 KIAS</td>
</tr>
<tr>
<td>LANDING GEAR OPERATING MAXIMUM SPEED Vg</td>
<td>150 KIAS</td>
</tr>
</tbody>
</table>

DATE: RADIO ON

WARNING

TURN WINDSHIELD DEICE OFF BEFORE COMPASS READING

FOR LOADING INSTRUCTIONS

SEE "WEIGHT AND BALANCE DATA" IN PILOT’S OPERATING HANDBOOK
(3)a For the small cargo net, on frame C13bis

For loading instructions refer to weight and balance section of pilot’s operating handbook.

50 kg - 110 lbs MAXIMUM

FOR LOADING INSTRUCTIONS SEE ”WEIGHT AND BALANCE DATA” IN PILOT’S OPERATING HANDBOOK

(3)b For the large cargo net, on R.H. side upholstery panel, in the rear baggage compartment

All

(3)c On FWD baggage compartment door frame (non pressurized)
(4) Under GCU 475 control unit on pedestal console

(5) On fuel selector

(6) Near fuel tank caps
(7) On internal face of L.H. engine cowling

Oil system capacity
12 l
12.7 qt

(8) On landing gear emergency control access door

LDG GEAR EMERGENCY ACCESS PULL

(9) Under window, at L.H. Intermediate seat

(10) On rear passenger's table casing

TABLE MUST BE STOWED DURING TAKEOFF AND LANDING

(11) Under R.H. control wheel
(12) On nose gear door

![Diagram of nose gear door limitation]

WHEN TOWING A VEHICLE DO NOT EXCEED THE NOSE GEAR TURNING ANGLE. (28° MAX!)

(13) On nose gear leg

NOSE LANDING GEAR

TIRE PRESSURE: 6.5 bar
94 psi

(14) On main gear leg

MAIN LANDING GEAR

TIRE PRESSURE: 8.96 bar
130 psi

(15) On engine cowling, in front of compartment door

EXTERNAL POWER

28 VOLTS D.C. NOMINAL
800 AMPS
STARTING CAPACITY MIN
DO NOT EXCEED 1000 AMPS
(16) On "pilot" door - External side (if installed)

(17) On access door - External side

(18) On outer fuselage skin aft of access door and in the cabin forward of access door
(19) On access door - Internal side

(20) On "pilot" door - Internal side (if installed)

(21) On emergency exit handle

Marking on cover Marking on handle
(22) On last step of stairs

STAIRS MAX LOAD : ONE PERSON

(23) On R.H. access door jamb

DO NOT USE
HAND RAIL
TO RETRACT
OR STOW
STAIRS

(24) On R.H. side at front seat level and on the first rear passengers masks container (R.H. side on the ceiling)

WARNING
GREASY SUBSTANCES ARE CAPABLE
OF SPONTANEOUS COMBUSTION
ON CONTACT WITH OXYGEN
DO NOT SMOKE WHILE OXYGEN IS IN USE

(25) On rear passengers masks containers

OXYGEN MASKS INSIDE
PULL MASKS FOR
OXYGEN SUPPLY
(26) On internal face of the oxygen cylinder service door

(27) On the oxygen service door

(28) On emergency locator transmitter inspection door

(29) On the potty seat curtain (if installed), on pilot's side

CURTAIN MUST BE STOWED FOR TAKE-OFF AND LANDING
SECTION 3

EMERGENCY PROCEDURES

<table>
<thead>
<tr>
<th>3.1</th>
<th>GENERAL</th>
<th>3.1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>FAILURES WITH IMMEDIATE ACTION REQUIRED AND RED CAS MESSAGES</td>
<td>3.2.1</td>
</tr>
</tbody>
</table>

3.2 - FAILURES WITH IMMEDIATE ACTION REQUIRED AND RED CAS MESSAGES

- ENGINE FIRE ON GROUND ... 3.2.1
- CABIN FIRE ON GROUND ... 3.2.2
- ENGINE FIRE IN FLIGHT .. 3.2.3
- CABIN ELECTRICAL FIRE OR SMOKE DURING FLIGHT .. 3.2.4
- ENGINE FAILURE AT TAKE OFF BEFORE ROTATION ... 3.2.5
- ENGINE FAILURE AT TAKE OFF AFTER ROTATION .. 3.2.6
- ENGINE FAILURE DURING FLIGHT ... 3.2.7
- AIR START ENVELOPE .. 3.2.8
- AIR START .. 3.2.8
- FORCED LANDING ... 3.2.9
- CRACK IN COCKPIT WINDOW OR WINDOW PANEL ... 3.2.10
- RUNAWAY OF TRIM ... 3.2.11
- EMERGENCY DESCENTS .. 3.2.12
 - MAXIMUM RATE DESCENT ... 3.2.12
 - MAXIMUM RANGE DESCENT .. 3.2.13
- EMERGENCY DESCENT PROFILES .. 3.2.15
- INADVERTENT SPINS .. 3.2.16
- STALL WARNING SOUND .. 3.2.16
- AP OFF, STALL WARNING .. 3.2.16
- LEFT PFD FAILURE ... 3.2.17
- TIRE BLOWOUT DURING LANDING .. 3.2.18
- SMOKE ELIMINATION ... 3.2.19
- TOTAL LOSS OF ELECTRICAL POWER .. 3.2.20
- RED WARNING CAS MESSAGE BLEED TEMP ... 3.2.21
- RED WARNING CAS MESSAGE CABIN ALTITUDE .. 3.2.22
- RED WARNING CAS MESSAGE CABIN ALTITUDE AND CABIN DIFF PRESS 3.2.23
- RED WARNING CAS MESSAGE CABIN ALTITUDE AND CABIN ALTITUDE AND CABIN DIFF PRESS 3.2.24
- RED WARNING CAS MESSAGE CABIN ALTITUDE AND CABIN ALTITUDE AND CABIN DIFF PRESS 3.2.24
- RED WARNING CAS MESSAGE EDM ... 3.2.25
- RED WARNING CAS MESSAGE DOOR .. 3.2.26
- RED WARNING CAS MESSAGE ELEC FEATH FAULT .. 3.2.27
- RED WARNING CAS MESSAGE FLAPS ASYM ... 3.2.28
- RED WARNING CAS MESSAGE FUEL PRESS .. 3.2.29
- RED WARNING CAS MESSAGE ITT ... 3.2.30
- RED WARNING CAS MESSAGE OIL PRESS ... 3.2.31
- AMBER WARNING CAS MESSAGE OIL PRESS ... 3.2.31
3.3 - AMBER CAS MESSAGES ... 3.3.1

AMBER WARNING CAS MESSAGE AUTO SEL 3.3.1
AMBER WARNING CAS MESSAGE AUX BOOST PMP ON 3.3.2
AMBER WARNING CAS MESSAGE BAT AMP ... 3.3.3
AMBER WARNING CAS MESSAGE BAT OFF ... 3.3.4
AMBER WARNING CAS MESSAGE BLEED OFF 3.3.5
AMBER WARNING CAS MESSAGE CHIP ... 3.3.6
AMBER WARNING CAS MESSAGE FRONT CARGO DOOR 3.3.7
AMBER WARNING CAS MESSAGE GPU DOOR 3.3.10
AMBER WARNING CAS MESSAGE IGNITION 3.3.11
AMBER WARNING CAS MESSAGE INERT SEP FAIL 3.3.12
AMBER WARNING CAS MESSAGE LOW LVL FAIL L-R 3.3.13
AMBER WARNING CAS MESSAGE LOW VOLTAGE 3.3.14
AMBER WARNING CAS MESSAGE MAIN GEN 3.3.15
AMBER WARNING CAS MESSAGE MAIN GEN AND LOW VOLTAGE 3.3.16
AMBER WARNING CAS MESSAGE OIL TEMP 3.3.17
AMBER WARNING CAS MESSAGE PITOT NO HT L-R 3.3.18
AMBER WARNING CAS MESSAGE PROP DEICE FAIL 3.3.19
AMBER WARNING CAS MESSAGE STALL NO HEAT 3.3.20
AMBER WARNING CAS MESSAGE VACUUM LOW 3.3.21

3.4 - ENGINE MISCELLANEOUS .. 3.4.1

ENGINE REGULATION DISCREPANCY, POWER LOSS, 3.4.1
THROTTLE CONTROL LOSS .. 3.4.1
GOVERNOR REGULATION CONTROL NOT OPERATING 3.4.3
EXCESSIVE PROPELLER ROTATION SPEED 3.4.4
ENGINE DOES NOT STOP ON GROUND .. 3.4.5

3.5 - GEAR AND FLAPS FAILURES .. 3.5.1

LANDING GEAR RETRACTION DISCREPANCY 3.5.1
LANDING GEAR EXTENSION DISCREPANCY 3.5.2
EMERGENCY GEAR EXTENSION ... 3.5.3
LANDING WITH UNLOCKED MAIN LANDING GEAR 3.5.4
LANDING WITH DEFECTIVE NOSE LANDING GEAR 3.5.5
(LONG UNLOCKED OR NOT DOWN) ... 3.5.6
LANDING WITH GEAR UP .. 3.5.7
FLAPS MALFUNCTION ... 3.5.8
LANDING WITH FLAPS MALFUNCTION .. 3.5.9

3.6 - ELECTRICAL SYSTEM ... 3.6.1

ESI-2000 FAILURES .. 3.6.1

3.7 - DEICING SYSTEM .. 3.7.1

LEADING EDGES DEICING FAILURE .. 3.7.1
WINDSHIELD DEICING FAILURE ... 3.7.2
WINDSHIELD MISTING OR INTERNAL ICING 3.7.4
<table>
<thead>
<tr>
<th>Section 3 - Emergency Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8 - Pressurization Miscellaneous</td>
</tr>
<tr>
<td>Cabin Not Depressurized After Landing</td>
</tr>
<tr>
<td>Defog Malfunction</td>
</tr>
<tr>
<td>3.9 - Miscellaneous</td>
</tr>
<tr>
<td>Ditching</td>
</tr>
<tr>
<td>Landing Without Elevator Control</td>
</tr>
<tr>
<td>Emergency Exit Use</td>
</tr>
<tr>
<td>Emergency Beacon (ELT) Use</td>
</tr>
<tr>
<td>Autopilot or Electric Pitch Trim Malfunction</td>
</tr>
<tr>
<td>Oxygen Use</td>
</tr>
<tr>
<td>Airspeed Indicating System Failure</td>
</tr>
<tr>
<td>Flight Into Severe Icing Conditions</td>
</tr>
<tr>
<td>Dual GPS/SBAS Failure (Amber "DR" or "LOI") on HSI</td>
</tr>
<tr>
<td>GPS Approach Alarm Limits Exceeded</td>
</tr>
<tr>
<td>AHRS Failure</td>
</tr>
<tr>
<td>ADC Failure</td>
</tr>
<tr>
<td>3.10 - Annex</td>
</tr>
<tr>
<td>Air Start Envelope</td>
</tr>
<tr>
<td>Air Start</td>
</tr>
<tr>
<td>Bus Bar</td>
</tr>
<tr>
<td>ESS Bus Bar</td>
</tr>
<tr>
<td>In-Flight Available Oxygen Quantity</td>
</tr>
<tr>
<td>Emergency Descent Profiles</td>
</tr>
<tr>
<td>Forced Landing</td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK
3.1 - GENERAL

The recommended procedures for different failures or emergency situations are provided in this Section.

Emergency procedures associated with optional or particular equipment which require pilot's operating handbook supplements are provided in Section 9 “Supplements”.

The pilot must know procedures given in this section and be prepared to take appropriate action should an emergency arise.

Some emergency procedures are a part of pilot basic training. Although these emergencies are discussed here, this information is not intended to replace such training, but only to provide a source of reference and review. This information also provides failure procedures which are not the same for all airplanes.

It is important for the pilot to be familiar with standard emergency procedures to be at the optimum efficacy if necessary.

Alarm system recall

Main failure or state modification of the different systems are provided by warning or caution messages appearing on CAS display.

The CAS includes red messages indicating failures which require an immediate action from the pilot, and amber messages indicating failures or discrepancies which require an action as soon as practical.

Red or amber failure warnings are coupled with the lighting of

- a flashing red indicator

 ![MASTER WARNING](image)

or

- a fixed amber indicator

 ![MASTER CAUTION](image)

Both indicators are located on the upper part of the L.H. instrument panel. When either one lights up, press it once to reactivate. It will go out and is ready to signal in the event of another failure. On the CAS display, the corresponding failure message remains ON as long as the failed condition exists.
3.2 - FAILURES WITH IMMEDIATE ACTION REQUIRED AND RED CAS MESSAGES

ENGINE FIRE ON GROUND

Symptoms: ITT increasing, red warning CAS message "ITT" ON, smoke, ...

1 - Throttle .. CUT OFF
2 - "BLEED" switch ... OFF/RST
3 - "A/C" switch .. OFF
4 - Brakes .. AS REQUIRED
5 - Tank selector .. OFF
6 - Warn ground assistance, if necessary
7 - Crash lever ... PULL DOWN
8 - EVACUATE as soon as possible
CABIN FIRE ON GROUND

1 - Throttle ... CUT OFF

2 - Brakes ... AS REQUIRED

3 - Warn for ground assistance, if necessary

4 - Crash lever .. PULL DOWN

5 - Cabin extinguisher .. AS REQUIRED

6 - EVACUATE as soon as possible
ENGINE FIRE IN FLIGHT
Symptoms: ITT increasing, red warning CAS message "ITT" ON, smoke, ...

FLY THE AIRPLANE

1 - Throttle ... CUT OFF
2 - "AUX BP" fuel switch .. OFF
3 - Tank selector ... OFF
4 - "BLEED" switch ... OFF/RST
5 - "A/C" switch .. OFF
6 - If necessary, ... Set oxygen mask
7 - If necessary, ... EMERGENCY DESCENT
8 - Perform a ... FORCED LANDING (ENGINE CUT OFF)

WARNING
AFTER ENGINE FIRE, DO NOT ATTEMPT AN AIR START
CABIN ELECTRICAL FIRE

OR

SMOKE DURING FLIGHT

FLY THE AIRPLANE

1 - OXYGEN and GOGGLES .. USE AS REQUIRED

If the origin is known:

2 - CIRCUIT BREAKER (Defective equipment) PULL

3 - Using the on board EXTINGUISHER, .. extinguish fire

If the origin is unknown:

2 - “A/C” switch ... OFF

3 - Not necessary equipment .. OFF

EMERGENCY DESCENT at 10000 ft

4 - If necessary ... SMOKE ELIMINATION

5 - LAND as soon as possible
ENGINE FAILURE AT TAKE OFF

FLY THE AIRPLANE

BEFORE ROTATION

1 - Throttle ... Flight IDLE
2 - Braking ... AS REQUIRED

If the airplane cannot be stopped on the remaining runway :

3 - Throttle ... CUT OFF
4 - Tank selector .. OFF
5 - Crash lever ... PULL DOWN
ENGINE FAILURE AT TAKE OFF

FLY THE AIRPLANE

AFTER ROTATION

1. "MAN OVRD" control .. FULL FORWARD

If successful

Fly the airplane using the "MAN OVRD" control for power, set throttle to Flight IDLE and land as soon as possible

If unsuccessful

"MAN OVRD" control .. FULL BACKWARD

If HEIGHT does not allow to choose a favourable runway or field:

Land straight ahead without changing landing gear position.

1. Flaps ... TO

Maintain IAS > 100 KIAS

2. Throttle ... CUT OFF

3. Tank selector ... OFF

4. Just before touch down:

 Flaps ... LDG

5. Crash lever ... PULL DOWN

If HEIGHT allows to reach a favourable runway:

1. Landing gear control .. DN

2. Flaps ... AS REQUIRED

3. Maintain:

 | Flaps UP | IAS > 105 KIAS |
 | Flaps TO | IAS > 100 KIAS |
 | Flaps LDG | IAS > 85 KIAS |

4. Throttle ... CUT OFF

5. Tank selector ... OFF

6. Crash lever ... PULL DOWN
ENGINE FAILURE DURING FLIGHT

FLY THE AIRPLANE

1 - AUTOPILOT ... DISCONNECT
2 - Throttle ... CUT OFF
3 - Remaining fuel ... CHECK
4 - Tank selector ... SWITCH TANKS
5 - “AUX BP” switch .. CHECK / CORRECT
6 - Air start ENVELOPE ... CHECKED

AIR START ENVELOPE

Air start may be attempted outside of the envelope. However, above 20000 ft or at lower speeds, ITT tends to increase during start and prudence is recommended.

Figure 3.2.1 - AIR START ENVELOPE
AIR START

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION</td>
<td>THE STARTER CANNOT OPERATE IF THE "GENERATOR" SELECTOR IS ON "ST-BY"</td>
</tr>
<tr>
<td>1</td>
<td>“BLEED” switch OFF/RST</td>
</tr>
<tr>
<td>CAUTION</td>
<td>"BLEED" SWITCH SET TO "AUTO" MAY CAUSE OVERTEMPERATURE OR ABNORMAL ACCELERATION</td>
</tr>
<tr>
<td>2</td>
<td>“A/C” switch OFF</td>
</tr>
<tr>
<td>3</td>
<td>Electric consumption Reduce</td>
</tr>
<tr>
<td>4</td>
<td>Tank selector L or R checked</td>
</tr>
<tr>
<td>5</td>
<td>“AUX BP” fuel switch ON</td>
</tr>
<tr>
<td>6</td>
<td>“IGNITION” switch AUTO or ON</td>
</tr>
<tr>
<td>7</td>
<td>Verify throttle CUT OFF</td>
</tr>
<tr>
<td>8</td>
<td>“STARTER” switch ON, start timer</td>
</tr>
</tbody>
</table>

CAUTION
IF 5 SECONDS AFTER HAVING POSITIONED THE STARTER SWITCH IN "ON" POSITION THERE IS NO START, INTERRUPT STARTING ATTEMPT USING THE "ABORT" POSITION OF THE STARTER SWITCH

When Ng around 13%:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Throttle LO / IDLE</td>
</tr>
<tr>
<td>10</td>
<td>ITT and Ng Monitor</td>
</tr>
</tbody>
</table>

When Ng higher than 52%:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Check starter is OFF automatically</td>
</tr>
</tbody>
</table>

CAUTION
IF THE STARTER DOES NOT GO OFF AUTOMATICALLY, DO IT USING THE "ABORT" POSITION OF THE STARTER SWITCH

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Throttle FLIGHT IDLE</td>
</tr>
<tr>
<td>13</td>
<td>Throttle As required</td>
</tr>
<tr>
<td>14</td>
<td>Electrical equipment As required</td>
</tr>
<tr>
<td>15</td>
<td>“AUX BP” fuel switch AUTO</td>
</tr>
<tr>
<td>16</td>
<td>“BLEED” switch As required</td>
</tr>
<tr>
<td>17</td>
<td>If necessary, EMERGENCY DESCENT</td>
</tr>
</tbody>
</table>

If AIR START not successful FORCED LANDING
FORCED LANDING

1 - Throttle ... CUT OFF
2 - Tank selector .. OFF
3 - “AUX BP” fuel switch .. OFF
4 - “BLEED” switch ... OFF/RST
5 - “A/C” switch .. OFF
6 - “DUMP” switch ... ACTUATED
7 - Glide speed ... 120 KIAS maintained until favourable ground approach

If ground allows it:

8 - “ESS BUS TIE” switch .. NORM
 in order to have GEAR and FLAPS available
9 - Landing gear control ... DN

If night conditions:

10 - “OFF/TAXI/LDG” switch .. LDG

If ground does not allow it:

11 - Keep landing gear .. UP
12 - When chosen ground is assured FLAPS LDG
13 - Crash lever ... PULL DOWN
14 - Final approach ... IAS = 85 KIAS
15 - Land flaring out
16 - EVACUATE after stop
CRACK IN COCKPIT WINDOW OR WINDOW PANEL

FLY THE AIRPLANE

1 - DESCEND SLOWLY

2 - Reduce cabin ΔP by setting Landing Field Elevation to 10000 ft
RUNAWAY OF TRIM

FLY THE AIRPLANE

1. "AP / TRIMS DISC" push-button .. PRESS AND HELD

 The three trim tabs are disconnected and runaway stops

2. "AP / TRIMS" switch ... OFF

3. "AP / TRIMS DISC” push button ... RELEASED

4. Pitch trim may be used manually

5. Reduce airspeed if necessary to reduce control forces

If pitch trim runaway

6. "AP / TRIMS" switch ... AP OFF

The pitch trim may be used manually, the two other trim tabs may be used again electrically

If rudder or aileron trim runaway

6. PULL circuit breaker .. corresponding to the defective trim tab

7. "AP / TRIMS" switch ... ON

Two other trim tabs may be used again electrically
EMERGENCY DESCENTS

MAXIMUM RATE DESCENT

FLY THE AIRPLANE

1 - Throttle ... Flight IDLE
2 - OXYGEN ... USE if necessary
3 - DESCENT attitude from – 10° to – 20°

Procedure in smooth air:
4 - Flaps ... UP
5 - Landing gear control .. UP
6 - Speed ... VMO = 266 KIAS

Procedure in rough air or in case of structure problem:
7 - Reduce speed ... IAS ≤ 178 KIAS
8 - Landing gear control .. DN
9 - Flaps ... UP
10 - Maintain ... IAS ≤ 178 KIAS
EMERGENCY DESCENTS
MAXIMUM RANGE DESCENT

FLY THE AIRPLANE

1 - Throttle ... CUT OFF
2 - Flaps ... UP
3 - Landing gear control ... UP
4 - Speed ... IAS = 120 KIAS
5 - Oxygen .. USE if necessary

Check oxygen duration before reaching 12000 ft and check flow to passengers

6 - “DUMP” switch .. Actuated
7 - “RAM AIR” control knob .. PULLED

If conditions allow: VMC and non icing conditions

8 - “ESS BUS TIE” reverse switch Cover up then EMER position
9 - Prepare a forced landing .. Refer to Chapter 3.2

If conditions do not allow:

10 - “ESS BUS TIE” reverse switch NORMAL

11 - Manually disconnect ancillary systems as follows:

- "AIRFRAME DE ICE“ switch ... OFF
- "ICE LIGHT“ switch ... OFF
- "PROP DE ICE“ switch ... OFF
- "WINDSHIELD“ switch ... OFF
- "PITOT R & STALL HTR” switch OFF
- "OFF/LDG/TAXI“ light ”PULSE SYST“ switches OFF
- "STROBE“ switch ... OFF
- "BLEED” ”A/C“ switches .. OFF
- "AUX BP“ switch ... OFF
- "FUEL SEL“ switch .. MAN
- "AP / TRIMS“ switch .. OFF
- "PFD 2“ breaker ... PULL
- "ADC 2“ breaker ... PULL
- "CD" player ... OFF
- "INSTR / CABIN / ACCESS" controls OFF
- "XPDR 2" breaker ... PULL

If icing conditions:
- "PITOT L HTR" switch ... Checked ON
- "WINDSHIELD" switch ... ON
- Maintain minimum recommended speeds into known icing conditions.

<table>
<thead>
<tr>
<th>Flaps</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>135 KIAS</td>
</tr>
<tr>
<td>TO</td>
<td>110 KIAS</td>
</tr>
<tr>
<td>LDG</td>
<td>90 KIAS</td>
</tr>
</tbody>
</table>

If time permits:
- "PLUGS" breakers ... PULL
- "AIR COND" breaker ... PULL

12 - Prepare a forced landing Refer to Chapter 3.2
EMERGENCY DESCENT PROFILES

Altitude (feet)

30000
25000
20000
15000
10000
5000

Ground distances (Nautical miles)

0 10 20 30 40 50 60 70

Max. Rate Descent

V_{MO}

Max Range Descent

IAS = 120 KIAS

No wind - Smooth atmosphere

Figure 3.2.2 - EMERGENCY DESCENT PROFILES
INADVERTENT SPINS

(Voluntary spins are prohibited)

1 - CONTROL WHEEL ... NEUTRAL : PITCH ROLL

2 - RUDDER ... FULLY OPPOSED TO THE SPIN

3 - THROTTLE .. FLIGHT IDLE

4 - Flaps ... UP

When rotation is stopped

5 - Level the wings and ease out of the dive

6 - THEN :

FLY THE AIRPLANE

Pre-MOD70-0510-27

STALL WARNING SOUND

1 - AP/TRIMS switch .. PRESS twice

2 - Fly the aircraft, wings level and nose down until stall warning stops

3 - Power as required

4 - Return to the desired flight path

Post-MOD70-0510-27 and Pre-MOD70-0407-00C

STALL WARNING SOUND

NOTE : Shaker will vibrate simultaneously with stall warning sound.

1 - AP/TRIMS switch .. PRESS twice

2 - Fly the aircraft, wings level and nose down until stall warning stops

3 - Power as required

4 - Return to the desired flight path

Post-MOD70-0510-27 and Post-MOD70-0407-00C

AP OFF, STALL WARNING

NOTE : Shaker will vibrate simultaneously with stall warning sound.

1 - Fly the aircraft, wings level and nose down until stall warning stops

2 - Power as required

3 - Return to the desired flight path
LEFT PFD FAILURE

FLY THE AIRPLANE

AT TAKE OFF

1 - Fly the airplane manually using Stand-by Instruments

2 - "AP / TRIMS DISC" push-button PRESS (to mute aural tone)

IN FLIGHT

1 - Fly the airplane manually using Stand-by Instruments

2 - "AP / TRIMS DISC" push-button PRESS (to mute aural tone)

3 - "DISPLAY BACKUP" mode ENGAGED on "PFD2"

4 - "PFD 1" circuit breaker CHECKED "IN"

5 - "XFR" (on AFCS) .. PRESS / to right side

6 - Autopilot .. NORMAL USE

 Lost systems :
 - AUTOPilot (AP) and FLIGHT DIRECTOR (FD)
 - COM 1, NAV 1, DME 1, XPDR 1

7 - Land as soon as possible

8 - USE ... COM 2, NAV 2, DME 2, XPDR 2

 SELECT .. COM 2 MIC

CAUTION

1 - IN CASE OF ILS APPROACH, DON’T FORGET TO SELECT "LOC2" ON CDI SOURCE
 (ON RIGHT PFD)

2 - USE OF REVERSIONARY MODE WILL REPORT LEFT PFD INFORMATION ON MFD
 AND DISABLE SUPPLEMENTARY FUNCTIONS AS STORMSCOPE,…

3 - IN REVERSIONARY MODE, THE WEATHER RADAR SYSTEM AUTOMATICALLY
 SWITCHES TO STANDBY MODE. THE SYSTEM REMAINS IN STANDBY MODE UNTIL
 BOTH DISPLAYS ARE RESTORED.
 IN REVERSIONARY MODE, THE WEATHER RADAR SYSTEM CANNOT BE CONTROLLED
SECTION 3
EMERGENCY PROCEDURES
EASA Approved

PILOT'S OPERATING HANDBOOK

TIRE BLOWOUT DURING LANDING

1 - Control direction .. with brakes and nose wheel steering

2 - REVERSE .. AS REQUIRED

3 - Stop airplane .. to minimize damages

4 - Perform .. ENGINE SHUT-DOWN
SMOKE ELIMINATION

1 - Smoke origin ... IDENTIFY
2 - Oxygen and goggles .. USE AS REQUIRED
3 - If smoke persists, undertake an EMERGENCY DESCENT

FLY THE AIRPLANE

4 - "BLEED" switch ... OFF/RST
5 - "A/C" switch .. OFF
6 - "DUMP" switch ... ACTUATE

Wait until the differential pressure drops

7 - "EMERGENCY RAM AIR" control knob PULL
 If smoke increases .. PUSH

8 - LAND as soon as possible
TOTAL LOSS OF ELECTRICAL POWER

1 - Maintain airplane control.

2 - PRESS ANY KEY on ESI-2000 .. within 5 minutes
 (FOR BATTERY POWER)

3 - Use the ESI-2000 for .. attitude, airspeed and/or altitude

FLY THE AIRPLANE

4 - Land as soon as possible.

NOTE: Aircraft power is provided to the ESI-2000 display for normal operation. Operation of the basic ESI system is automatic - the system is powered ON while airplane power is ON. The internal battery will provide power to the ESI-2000 if airplane power is lost. Press any key to allow the ESI-2000 to continue operation using the internal battery.

CAUTION
IF NO KEY IS PRESSED, THE ESI-2000 WILL SHUT DOWN AUTOMATICALLY WITHIN (5) MINUTES
BLEED TEMP

Indicates overheat of bleed air system. Normally this leads to BLEED cut off and to BLEED OFF amber warning CAS message appearance.

FLY THE AIRPLANE

Should automatic cut off occur or not:

1 - If possible ... REDUCE POWER
2 - "HOT AIR FLOW" distributor ... turn to the right
3 - "CONTROL" selector .. COCKPIT
4 - "TEMP/C" selector ... MINI
5 - "BLEED" switch ... OFF/RST
6 - "BLEED" switch ... AUTO

If BLEED TEMP and BLEED OFF warnings still ON:

7 - If necessary .. EMERGENCY DESCENT
8 - Continue ... FLY THE AIRPLANE ... at an ALTITUDE < 10000 ft

If BLEED TEMP ON (No "BLEED OFF"):

9 - Shorten the flight
10 - Inform maintenance department
Post-MOD70-0529-21

BLEED TEMP

Indicates overheating of bleed air system. Normally this leads to BLEED cut off and to BLEED OFF amber warning CAS message appearance.

FLY THE AIRPLANE

Should automatic cut off occur or not:

1. If possible, REDUCE POWER
2. "HOT AIR FLOW" distributor, turn to the right
3. "A/C" switch
4. "TEMP" selector, MINI
5. "BLEED" switch, OFF/RST
6. "BLEED" switch, AUTO

If BLEED TEMP and BLEED OFF warnings still ON:

7. If necessary, EMERGENCY DESCENT
8. Continue, FLY THE AIRPLANE ... at an ALTITUDE < 10000 ft

If BLEED TEMP ON (No "BLEED OFF"):

9. Shorten the flight
10. Inform maintenance department
CABIN ALTITUDE

Indicates a cabin altitude over 10000 ft ± 500 ft.

1 - Pressurization indicator .. CHECK

If cabin altitude > 10000 ft ± 500 ft:

2 - OXYGEN ... USE, if necessary

FLY THE AIRPLANE

3 - “BLEED” switch ... CHECK AUTO

4 - “DUMP” switch .. CHECK UNDER GUARD

5 - “EMERGENCY RAM AIR” control knob CHECK PUSHED

6 - Limit flight altitude to maintain cabin altitude < 10000 ft

7 - If necessary .. EMERGENCY DESCENT

CABIN DIFF PRESS

Indicates a cabin pressure differential over 6.4 PSI ± 0.2 PSI.

1 - Pressurization indicator .. CHECK

If ∆P > 6.4 PSI ± 0.2 PSI:

2 - “BLEED” switch ... OFF/RST

3 - OXYGEN ... USE, if necessary

FLY THE AIRPLANE

4 - If necessary (no oxygen available) EMERGENCY DESCENT
CABIN ALTITUDE and USE OXYGEN MASK

NOTE: CABIN ALTITUDE warning CAS message is followed by USE OXYGEN MASK amber CAS message and 3 voice messages “USE OXYGEN MASK / USE OXYGEN MASK”.

Indicates a cabin altitude over 10000 ft ± 500 ft.

1 - Pressurization indicator .. CHECK

2 - OXYGEN ... USE, if necessary

FLY THE AIRPLANE

3 - “BLEED” switch ... CHECK AUTO

4 - “DUMP” switch ... CHECK UNDER GUARD

5 - “EMERGENCY RAM AIR” control knob CHECK PUSHED

6 - Limit flight altitude to maintain cabin altitude < 10000 ft

7 - If necessary .. EMERGENCY DESCENT

CABIN DIFF PRESS

Indicates a cabin pressure differential over 6.4 PSI ± 0.2 PSI.

1 - Pressurization indicator .. CHECK

If ΔP > 6.4 PSI ± 0.2 PSI :

2 - “BLEED” switch ... OFF/RST

3 - OXYGEN ... USE, if necessary

FLY THE AIRPLANE

4 - If necessary (no oxygen available) EMERGENCY DESCENT
CABIN ALTITUDE and USE OXYGEN MASK and EDM

NOTE: CABIN ALTITUDE warning CAS message is followed by USE OXYGEN MASK amber CAS message and 3 voice messages “USE OXYGEN MASK / USE OXYGEN MASK”.

Indicates a cabin altitude over 10000 ft ± 500 ft.

1 - Pressurization indicator .. CHECK

If cabin altitude > 10000 ft ± 500 ft:

2 - OXYGEN ... USE, if necessary

FLY THE AIRPLANE

3 - “BLEED” switch ... CHECK AUTO

4 - “DUMP” switch .. CHECK UNDER GUARD

5 - “EMERGENCY RAM AIR” control knob CHECK PUSHED

6 - If necessary ... EMERGENCY DESCENT

NOTE:
- EDM makes a 90°left heading change and descent to 15000 ft.
- EDM override is possible by pressing twice the “AP/TRIMS DISC” switch and other AP modes are usable.
- Power reduction to speed up the descent is recommended.

CABIN DIFF PRESS

Indicates a cabin pressure differential over 6.4 PSI ± 0.2 PSI.

1 - Pressurization indicator .. CHECK

If ∆P > 6.4 PSI ± 0.2 PSI:

2 - “BLEED” switch ... OFF/RST

3 - OXYGEN ... USE, if necessary

FLY THE AIRPLANE

4 - If necessary .. (no oxygen available) EMERGENCY DESCENT
All

DOOR

Indicates that one of the door latches of the access door or (if installed) of the "pilot" door is not correctly locked.

On ground:
- Check the correct locking, as well as the latches position of the access door and (if installed) of the pilot door
- **DO NOT TAKE OFF** if warning CAS message **DOOR** is **ON**

In flight:

FLY THE AIRPLANE

1 - **START a SLOW DESCENT**

2 - Decrease cabin pressure differential by selecting a higher cabin altitude and maximum cabin rate

If a real failure of one of the doors is noted:

3 - "BLEED" switch .. OFF/RST

4 - "DUMP" switch .. ACTUATED

5 - If necessary (no oxygen available) **EMERGENCY DESCENT**
ELEC FEATH FAULT

Indicates a propeller feathering system malfunction.

1 - “FEATHER” circuit breaker PULL

2 - LAND AS SOON AS POSSIBLE
FLAPS ASYM

FLY THE AIRPLANE

Indicates a dissymmetry of flap deflection. This immediately stops the flap motor and prevents further operation of the flaps.

1 - “FLAPS” .. circuit breaker .. PULL

2 - FLAPS .. control lever .. UP

3 - LAND as soon as possible .. maintaining AIRSPEED :
 - IAS ≤ 178 KIAS for deflections between “UP” and “TO” positions
 - IAS ≤ 122 KIAS for deflections greater than “TO” position

4 - FOR LANDING, refer to LANDING WITH FLAPS MALFUNCTION

BY FLYING THE AIRPLANE
FUEL PRESS

Indicates a fuel pressure drop at "HP" engine pump inlet

FLY THE AIRPLANE

1 - Remaining fuel CHECK
2 - Tank selector SWITCH TANKS
3 - "AUX BP" fuel switch AUTO

If FUEL PRESS alarm persists:

4 - "AUX BP" fuel switch ON
 Check Warning CAS message AUX BOOST PMP ON ON

If pressure is normal again and warning light is off, mechanical pump has failed.

5 - Maintain "AUX BP" fuel switch ON

LAND AS SOON AS PRACTICAL

If FUEL PRESS remains ON:

6 - Tank selector SWITCH TANKS

"FUEL PRESS" CAS message is OFF, a supply problem may have occurred from the tank selected first (air vent, fuel icing, etc ...).

If FUEL PRESS remains ON:

7 - Fullest tank SELECT
8 - AVOID HIGH POWER and RAPID MOVEMENTS of the throttle.
9 - DESCEND to an altitude below 18000 ft.
10 - LAND as soon as possible.

FLY THE AIRPLANE
ITT

A - During engine start:

1 - STOP the STARTING procedure.

Indicates:

- ITT > 1000°C
- 1000°C > ITT > 870°C for more than 5 seconds
- 870°C > ITT > 840°C for more than 20 seconds

2 - Record the engine parameters displayed and OAT conditions.

3 - Cancel the flight, inform maintenance department.

B - After engine start:

In flight: FLY THE AIRPLANE

1 - REDUCE POWER

If ITT remains higher than 840°C:

1 - REDUCE POWER to maintain ITT < 840°C

2 - LAND AS SOON AS POSSIBLE.

3 - Record the airplane and engine parameters displayed in case of overtemperature.

4 - Inform maintenance department at the end of the flight.
OIL PRESS

RED WARNING CAS MESSAGE OIL PRESS ON

Indicates that oil pressure is below 60 PSI.

1 - Oil pressure indicator ... CHECK

If the indicated pressure is in the green sector:

2 - Land as soon as possible

FLY THE AIRPLANE

3 - MONITOR

If the indicated pressure is below 60 PSI:

1 - Failure is confirmed

Due to the oil pressure drop, the propeller blade angle may go towards high pitch and therefore lead to a \(N_p \) propeller rotation speed decrease.

CAUTION

PREPARE FOR AN ENGINE STOP, SHORTLY; REDUCE POWER TO THE MINIMUM NECESSARY, LAND AS SOON AS PRACTICAL

If engine looses power:

2 - Throttle ... CUT OFF

Perform a FORCED LANDING

OIL PRESS

1 - Oil pressure indicator ... CHECK

If the indicated pressure is in the green sector:

2 - Land as soon as possible

FLY THE AIRPLANE

3 - MONITOR

If the indicated pressure is between 60 and 105 PSI:

1 - Failure is confirmed

2 - Torque ... Reduce to below 80 %

3 - Land as soon as possible
INTENTIONALLY LEFT BLANK
3.3 - AMBER CAS MESSAGES

AUTO SEL

Indicates that there is no more automatic control mode running.

FLY THE AIRPLANE

1 - "FUEL SEL" switch ... AUTO

If it is on "AUTO", failure is confirmed

2 - "FUEL SEL" switch ... MAN

3 - Select tanks manually as required

CAUTION

MAXIMUM UNBALANCE IS 15 USG
"AUX BOOST PMP ON"

Indication is normal if "AUX BP" fuel switch is in ON position

FLY THE AIRPLANE

If "AUX BP" fuel switch is in AUTO position:

1 - **RESET** to ... ON

2 - **THEN** to ... AUTO

If "AUX BOOST PMP ON" warning CAS message GOES OFF:

continue the flight normally

If "AUX BOOST PMP ON" warning CAS message remains ON, mechanical booster pump has failed

3 - "AUX BP" fuel switch ... ON

4 - **LAND AS SOON AS POSSIBLE**
"BAT AMP"

BATTERY current over 50A while on ground.

After starting the engine with airplane power, a battery charge above 50 amperes is normal.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO NOT TAKE OFF IF BATTERY CHARGE > 50 AMPERES</td>
</tr>
</tbody>
</table>

If this indication remains steady at a high value, it may be due to a battery or generation system failure.
"BAT OFF"

Indicates that:
- the "SOURCE" selector has been positioned on OFF or
- the battery plug is disconnected

FLY THE AIRPLANE

1 - "SOURCE" selector ... OFF
2 - "SOURCE" selector ... BAT
3 - If warning persists ... LAND AS SOON AS POSSIBLE
4 - Monitor airplane mains voltage
BLEED OFF

Possibly due to:

- system malfunction
- "BLEED" switch on "OFF/RST" position

1 - USE OXYGEN MASK

2 - CHECK "BLEED" switch position and CORRECT

3 - If possible, reduce power

FLY THE AIRPLANE

4 - "BLEED" switch OFF/RST

5 - "BLEED" switch AUTO

If in flight

6 - If warning BLEED OFF still displayed:

7 - If necessary, EMERGENCY DESCENT

8 - Continue flight

If on the ground

6 - "BLEED" switch OFF/RST

7 - Taxi back to the apron

8 - Normal engine shut-down

9 - Inform maintenance department
"CHIP"

Indicates an oil chip detection.

1 - LAND AS SOON AS PRACTICAL

FLY THE AIRPLANE

2 - Or DO NOT TAKE OFF .. airplane is grounded

3 - INFORM maintenance center
"FRONT CARGO DOOR"

FORWARD BAGGAGE DOOR OPEN

1 - On the ground .. CORRECT

2 - IN THE AIR

FLY THE AIRPLANE

• REDUCE to minimum speed available

• LAND AS SOON AS PRACTICAL.
"FUEL IMBALANCE"

Indicates fuel tanks imbalanced by more than 15 USG for more than 30 seconds.

If "FUEL SEL" on AUTO mode

SELECT the fullest Tank by pressing the "SHIFT" push-button

If "FUEL SEL" on MAN mode

SELECT the fullest Tank by Shifting the Tank Selector manually

FLY THE AIRPLANE

Manage the fuel by selecting the fullest tank until fuel imbalance is below 15 USG.
"FUEL LOW L-R"

Indicates a level drop in the corresponding tank.

1 - Corresponding gage ... CHECK

2 - Check the other tank ... has been automatically selected

If not:

3 - “FUEL SEL” switch ... MAN

4 - Select tank manually ... as required

FLY THE AIRPLANE

CHECK MINIMUM FUEL

TAKE DECISION, land as soon as practical if necessary
"GPU DOOR"

GPU DOOR OPEN

1 - On the ground ... CORRECT

2 - IN THE AIR

FLY THE AIRPLANE

- REDUCE to minimum speed available
- LAND AS SOON AS PRACTICAL.

Edition 1 - December 5, 2014
Rev. 0
"IGNITION"
IGNITION EXCITER IS RUNNING

1 - CHECK .. IGNITION switch position

2 - If weather permits correct by switching to AUTO

FLY THE AIRPLANE

IGNITION switch may be left ON for a long period.
"INERT SEP FAIL"

Symptoms:

- **Warning** "INERT SEP ON" does not appear within 50 seconds following "INERT SEP" switch setting ON.
- Inertial separator not retracted after 50 seconds following "INERT SEP" switch setting OFF.
- Circuit breaker "INERT DE ICE" triggered.

1. LEAVE icing conditions as soon as possible.

FLY THE AIRPLANE
"LOW LVL FAIL L-R"

FUEL LOW LEVEL SENSOR FAILURE

CHECK ... Fuel Remaining in Tanks

TAKE DECISION

If any doubt ... LAND AS SOON AS PRACTICAL

FLY THE AIRPLANE

On the ground ... contact Maintenance Center
LOW VOLTAGE

normal functioning on MAIN GEN

1 - Voltmeter voltages ... CHECK

2 - If voltages are < 26 Volts, monitor a possible drop or any indication of battery discharge

In that case:

FLY THE AIRPLANE

3 - Keep the following systems connected:

 - A/P system
 - Deicing systems except right windshield
 - STROBE and NAV lights
 - Cockpit emergency lights
 - VHF 1
 - NAV/GPS 1
 - BLEED
 - Landing lights on short final

This will allow keeping electrical consumption below maximum standby capacity.

All other not necessary equipment can be disconnected.

4 - “GENERATOR” selector (RESET if necessary) ST-BY

 Maintain ST-BY load below 100A
MAIN GEN

Indicates that “GENERATOR” selector has been positioned to OFF or ST-BY, or main generator is cut off

1 - If necessary .. CORRECT

2 - If warning persists ”MAIN GEN” switching confirmed

3 - “MAIN GENERATOR RESET” push-button .. PUSH

In case of failure: FLY THE AIRPLANE and

4 - Keep the following systems connected:

- A/P system
- Deicing systems except right windshield
- STROBE and NAV lights
- Cockpit emergency lights
- VHF 1
- NAV/GPS 1
- BLEED
- Landing lights on short final

This will allow keeping electrical consumption below maximum standby capacity.

All other not necessary equipment can be disconnected.

5 - “GENERATOR” selector (RESET if necessary) ST- BY

Maintain ST-BY loads below 100 A
"MAIN GEN" and "LOW VOLTAGE"

with GENERATOR selector on "ST-BY"

(after MAIN GEN failure) functioning on ST-BY GENERATOR

1 - "GENERATOR" selector ... MAIN

2 - "MAIN GENERATOR RESET" push-button PRESS

FLY THE AIRPLANE

If successful :

3 - Disconnect ancillary electrical systems not essential

4 - Monitor voltmeter and ammeter
 Prepare to LAND AS SOON AS POSSIBLE

If not successful :

5 - "GENERATOR" selector ... ST-BY

6 - "ST-BY GENERATOR RESET" push-button PRESS

If successful :

7 - Disconnect ancillary electrical systems not essential

8 - Monitor voltmeter and ammeter
 Prepare to LAND AS SOON AS POSSIBLE

If not successful, both generators failure is confirmed. If possible, return to VMC conditions

9 - "GENERATOR" selector ... OFF

If conditions allow : VMC and non icing conditions

10 - If altitude ≥ 10000 ft : "OXYGEN" switch ON

11 - "ESS BUS TIE" switch ... Cover up, then EMER position
 In this configuration, only both "ESS BUS" bars and "BUS BAT" bar are directly supplied by the battery

12 - LAND as soon as possible
 If necessary, it is always possible to use other ancillary systems by selecting :
 - "ESS BUS TIE" switch ... NORM
If conditions do not allow:

13 - Manually disconnect ancillary systems as follows:

- "AIRFRAME DE ICE" switch OFF
- "ICE LIGHT" switch OFF
- "PROP DE ICE" switch OFF
- "WINDSHIELD" switch OFF
- "PITOT R & STALL HTR" switch OFF
- "OFF/LDG/TAXI" light "PULSE SYST" switches OFF
- "STROBE" switch OFF
- "BLEED" "A/C" switches OFF
- "AUX BP" switch OFF
- "FUEL SEL" switch MAN
- "AP / TRIMS" switch OFF
- "PFD 2" breaker PULL
- "ADC 2" breaker PULL
- "TAS" breaker PULL
- "DATA LINK" breaker PULL
- "CD" player OFF
- "INSTR / CABIN / ACCESS" controls OFF
- "XPDR 2" breaker PULL

If icing conditions:

- "PITOT L HTR" switch Checked ON
- "WINDSHIELD" switch ON

- Maintain minimum recommended speeds into known icing conditions.

<table>
<thead>
<tr>
<th>Flaps UP</th>
<th>135 KIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flaps TO</td>
<td>110 KIAS</td>
</tr>
<tr>
<td>Flaps LDG</td>
<td>90 KIAS</td>
</tr>
</tbody>
</table>

If time permits:

- "PLUGS" breakers PULL
- "AIR COND" breaker PULL

14 - LAND as soon as possible
With or without:

RED WARNING CAS MESSAGE "OIL PRESS” ON

Indicates that oil temperature is below 0°C or above 104°C

1 - Oil temperature indicator .. CHECK

If the indicated temperature is in the green sector:

2 - Land as soon as possible

FLY THE AIRPLANE

3 - MONITOR

If the indicated temperature is not in the green sector:

4 - Failure is confirmed, you can expect an OIL PRESSURE failure shortly.

Due to the oil pressure drop, the propeller blade angle may go towards high pitch and therefore lead to a Np propeller rotation speed decrease.

CAUTION

PREPARE FOR AN ENGINE STOP, SHORTLY; REDUCE POWER TO THE MINIMUM NECESSARY, LAND AS SOON AS PRACTICAL

If engine looses power:

5 - Throttle ... CUT OFF

Perform a FORCED LANDING
"PITOT NO HT L-R"

Indicates a heating failure of the corresponding probe.

"PITOT NO HT L" LEFT

Icing conditions may alter L.H. airspeed indications

1 - AVOID icing conditions

FLY THE AIRPLANE

If it is not possible:

2 - Perform moderate descent or climb attitudes

\(V_{MO}\) overshoot and stall warning system are always operating

"PITOT NO HT R" RIGHT

\(V_{MO}\) overshoot warning may be altered by icing conditions

FLY THE AIRPLANE

Monitor maximum airspeed \(\leq 266\) KIAS
"PROP DEICE FAIL"

Symptoms:
- Propeller deicing green light is not lit
- Propeller vibrations

1 - REDUCE power

FLY THE AIRPLANE

2 - ACTUATE Throttle to vary RPM within operating range

3 - LEAVE icing conditions as soon as possible
"STALL NO HEAT"

Correct operation of the aural stall warning may be altered by severe or prolonged icing.

MONITOR and MAINTAIN minimum airspeed according to airplane configuration and icing conditions

FLY THE AIRPLANE
"VACUUM LOW"

Low vacuum may lead to malfunctioning of LEADING EDGE DEICING and PRESSURIZATION MONITOR.

If necessary, fly to an altitude ≤ 10000 ft and return to VMC conditions as soon as possible.

FLY THE AIRPLANE

"BLEED" switch OFF/RST
3.4 - ENGINE MISCELLANEOUS

ENGINE REGULATION DISCREPANCY, POWER LOSS, THROTTLE CONTROL LOSS (1/2)

1 - If circumstances allow:

 Throttle .. Flight IDLE

2 - Confirm engine still running

3 - Tank selector .. SWITCH TANKS

4 - Check that no parameter exceeds allowed values

5 - "MAN OVRD" control ... ACTUATED progressively forward

 (Adjust power necessary to continue flight)

If the available power is weak, extend the landing gear only on a glide path in final approach and extend full flaps only in short final.

Do not perform a go-around.

 CAUTION

 IN "MANUAL OVERRIDE" ENGINE IS NEITHER PROTECTED AGAINST SLAM
 ACCELERATIONS, NOR AGAINST MAXIMUM SPEED OVERSHOOTING. AVOID RAPID
 CONTROL MOVEMENTS AND MANAGE ENGINE PARAMETERS

 CAUTION

 IN SOME CASES, WHEN "MANUAL OVERRIDE" CONTROL IS USED, THE AVAILABLE
 POWER MAY NOT BE SUFFICIENT TO ENSURE A GO-AROUND IN LANDING
 CONFIGURATION, IN PARTICULAR IF THE WEIGHT IS NEAR THE MAXIMUM WEIGHT

6 - Continue flight, LAND AS SOON AS POSSIBLE

7 - Perform a normal landing WITHOUT REVERSE

8 - Braking ... AS REQUIRED
ENGINE REGULATION DISCREPANCY, POWER LOSS, THROTTLE CONTROL LOSS (2/2)

If minimum power obtained is excessive:

1 - Reduce airspeed by setting airplane in nose-up attitude at IAS < 178 KIAS

2 - "INERT SEP" switch ... ON

3 - If ITT > 840°C:
 "INERT SEP" switch ... OFF

4 - Landing gear control ... DN

5 - Flaps ... TO

6 - Establish a long final or an ILS approach respecting IAS < 178 KIAS

7 - When runway is assured:
 Fuel tank selector ... OFF

8 - Throttle ... FEATHER
 If available and necessary to extend trajectory

9 - Flaps ... LDG as required
 (at IAS < 122 KIAS)

10 - Land normally WITHOUT REVERSE

11 - Braking ... AS REQUIRED
GOVERNOR REGULATION CONTROL NOT OPERATING

May indicate a failure of the governor control.

1 - Continue the flight.

2 - If Np < 2000 RPM, do not perform a go-around and do not use the reverse.

In that case, the go-around performance and the reverse efficiency might be lower than expected. The airplane repair is mandatory before any other flight.
EXCESSIVE PROPELLER ROTATION SPEED

Indicates:

- a propeller governor failure
 In that case, the propeller overspeed limiter will limit initially the rotation speed to 2100 RPM approximately.

- or a propeller governor and overspeed limiter failure
 In that case, only the torque limiter operates to limit the power.
 However, the pilot intervention is necessary to maintain \(N_p \leq 2000 \) RPM.
 The propeller reducer is designed for a max. \(N_p \) of 2200 RPM.

1 - Reduce the power and the airplane speed to avoid propeller rotation speeds higher than 2000 RPM.

2 - Land as soon as possible.

3 - Do not perform a go-around.

A go-around would damage the engine reduction gearbox

The airplane repair is mandatory before any other flight.
ENGINE DOES NOT STOP ON GROUND

If the engine does not stop when the Throttle is set to CUT OFF, proceed as follows:

1. "AP / TRIMS" switch OFF
2. "INT LIGHTS" panel
 All switches OFF
3. "EXT LIGHTS" panel
 All switches OFF
4. "ECS" panel
 All switches OFF
5. Tank selector OFF
 Wait for engine stop due to lack of fuel in the pipes
6. "GENERATOR" selector OFF
7. "SOURCE" selector OFF
8. Crash lever PULL DOWN
9. Inform maintenance department
ENGINE DOES NOT STOP ON GROUND

If the engine does not stop when the Throttle is set to CUT OFF, proceed as follows:

1 - "AP / TRIMS" switch .. OFF

2 - "INT LIGHTS" panel
 All switches ... OFF

3 - "EXT LIGHTS" panel
 All switches ... OFF

4 - "A/C" and "PRESSURIZATION" panel
 All switches ... OFF

5 - Tank selector .. OFF
 Wait for engine stop due to lack of fuel in the pipes

6 - "GENERATOR" selector ... OFF

7 - "SOURCE" selector .. OFF

8 - Crash lever .. PULL DOWN

9 - Inform maintenance department
3.5 - GEAR AND FLAPS FAILURES

LANDING GEAR RETRACTION DISCREPANCY

NOTE: Symptoms have to be considered at the end of the sequence.

Symptoms:

“GEAR UNSAFE” CAS message and “GEAR UNSAFE” red warning light ON.

Or

Amber light flashing and 3 green lights OFF.

Actions:

Maintain IAS ≤ 150 KIAS.

1 - “LDG GEAR” circuit breaker PULL

 If the “GEAR UNSAFE” red warning light is off:

 The flight may be continued without any restriction.

 Before extending the landing gear, refer to “EMERGENCY GEAR EXTENSION”.

 If the “GEAR UNSAFE” red warning light is steady ON:

 “LDG GEAR” circuit breaker PUSH

 Refer to “EMERGENCY GEAR EXTENSION”.
LANDING GEAR EXTENSION DISCREPANCY

NOTE: Symptoms have to be considered at the end of the sequence.

Symptoms

"GEAR UNSAFE" CAS message and "GEAR UNSAFE" red warning light ON.

Or
Amber light flashing and 0 to 3 green light(s) OFF.

Actions
Maintain IAS ≤ 150 KIAS.

Refer to "EMERGENCY GEAR EXTENSION".
EMERGENCY GEAR EXTENSION (1/2)

NOTE: This procedure has to be followed in case of any doubt about the gear extension.

Maintain IAS ≤ 150 KIAS

1 - Landing gear control .. DN
2 - "LDG GEAR" circuit breaker ... PULL
3 - Floor hatch ... OPEN
4 - By-pass selector ... FULLY PULL / LOCKED

CAUTION
THE ENTIRE EXTENSION OF THE LANDING GEAR MAY TAKE UP TO 110 CYCLES. IT IS
MANDATORY TO HAVE A CLEAR HARDENING OF THE MANUAL CONTROL AT THE END
OF THE MANEUVER

5 - Hand pump ... ACTUATE with maximum amplitude

Press the CAS MASTER WARNING push-button to reset the "GEAR UNSAFE" CAS message.

If "GEAR UNSAFE" red warning light is not illuminated and 3 green lights are illuminated:

Continue flight if necessary at a speed BELOW 178 KIAS, exit and/or remain outside icing conditions.

Land.

CAUTION
DO NOT ENTER ICING CONDITIONS (THIS COULD ADVERSELY INCREASE DRAG AND
WEIGHT DUE TO ICE ACCUMULATION, AND LOCK WHEELS AND STRUTS).
CLIMB PERFORMANCE WILL BE DEGRADED BY 50%.
INDICATED CRUISE AIRSPEED WILL BE REDUCED COMPARED TO A CLEAN
AIRPLANE, BECAUSE OF THE DRAG.
THIS SHOULD BE TAKEN INTO ACCOUNT WHEN CALCULATING THE AIRPLANE
RANGE.
EMERGENCY GEAR EXTENSION (2/2)

If "GEAR UNSAFE" red warning light and "GEAR UNSAFE" CAS message and 0 to 3 green lights are illuminated:

6 - "LDG GEAR" circuit breaker ... PUSH

7 - "CHECK DOWN" switch ... ACTUATE

If the hardening of the manual lever is marked and if:

- the normal indicating shows 3 green indicator lights

or

- the "CHECK DOWN" indicating shows 3 green indicator lights flickering:

8 - LAND.

If manual extension bar remains soft or if one (or more) green indicator light(s) does(do) not illuminate upon pressing "CHECK DOWN", then a gear unlock condition is confirmed.

Recycle the landing gear as follows:

9 - By-pass selector ... UNLOCK / PUSH

10 - Wait one minute.

11 - Landing gear control (IAS ≤ 150 KIAS) ... UP

Perform landing gear extension attempts in the NORMAL mode while applying positive load factors during the maneuver as well as skidding.

In case of failure, refer to “LANDING WITH UNLOCKED MAIN LANDING GEAR”

or “LANDING WITH DEFECTIVE NOSE LANDING GEAR”.

Indication:
If one main landing gear leg is not in the down position, it is preferable to land with landing gear up (Refer to "LANDING WITH GEAR UP").
LANDING WITH UNLOCKED MAIN LANDING GEAR

1 - Ask control tower or another airplane to visually check landing gear position

| CAUTION |
| IF ONE MAIN LANDING GEAR IS NOT DOWN, IT IS BETTER TO LAND WITH GEAR UP. |

If defective gear is down but unlocked:

2 - “BLEED” switch ... OFF/RST

3 - “DUMP” switch ... ACTUATED

4 - Maintain tank selector on defective landing gear side to lighten corresponding wing [maximum fuel unbalance 15 USG (57 litres)]

5 - Choose a runway with headwind or crosswind blowing from defective gear side

6 - Align the airplane to land on the runway edge opposite to the defective landing gear

7 - Do a normal approach at 90 KIAS, flaps on LDG

8 - Land and set nose gear immediately on ground to assure lateral control

9 - Use full aileron during roll-out to lift the wing with the defective landing gear

10 - Preferably do not use reverse

11 - Complete taxiing with a slight turn toward defective landing gear

12 - Throttle ... CUT OFF

13 - Engine stop procedure ... COMPLETE

14 - EVACUATE

If landing gear drags during landing:

15 - Throttle ... CUT OFF

16 - Crash lever ... PULL DOWN

17 - Tank selector ... OFF

18 - EVACUATE after airplane comes to a stop
LANDING WITH DEFECTIVE NOSE LANDING GEAR
(DOWN UNLOCKED OR NOT DOWN)

1 - Transfer passengers to the rear, if necessary

2 - Approach .. Flaps LDG

\[
\text{IAS} = 90 \text{ KIAS}
\]

3 - Land with nose-up attitude, keep nose high

4 - Throttle .. CUT OFF

5 - Touch-down slowly with nose wheel and keep elevator at nose-up stop

6 - Moderate braking

7 - Crash lever .. PULL DOWN

8 - EVACUATE after airplane comes to a stop
LANDING WITH GEAR UP

1 - Final approach .. Standard
2 - Flaps ... LDG

IAS = 85 KIAS

3 - “BLEED” switch ... OFF/RST
4 - “DUMP” switch ... ACTUATED

When runway is assured :

5 - Throttle ... CUT OFF
6 - Tank selector .. OFF
7 - Flare out
8 - After touch-down, crash lever .. PULL DOWN
9 - EVACUATE after airplane comes to a stop
FLAPS MALFUNCTION

In case of blockage of flaps or inoperant flaps control lever between "UP" and "LDG" positions, with no flaps warning light illumination:

1 - "FLAPS" circuit breaker ... PULL

2 - Flap control lever .. UP

3 - LAND as soon as possible maintaining airspeeds:
 - IAS ≤ 178 KIAS for deflections between "UP" and "TO" positions
 - IAS ≤ 122 KIAS for deflections greater than "TO" position

4 - For landing, refer to "LANDING WITH FLAPS MALFUNCTION".
LANDING WITH FLAPS MALFUNCTION

For flaps deflections from "UP" to "TO" position:

Proceed as for a normal landing, maintaining approach airspeed:

\[IAS = 105 \text{ KIAS} \]

Provide for a landing distance increased up to about 60 %

For flaps deflections greater than "TO" position:

Proceed as for a normal landing, maintaining approach airspeed:

\[IAS = 100 \text{ KIAS} \]

Provide for a landing distance increased up to about 50 %
INTENTIONALLY LEFT BLANK
3.6 - ELECTRICAL SYSTEM

ESI-2000 FAILURES (1/2)

1 - Battery indicator symbol meaning

<table>
<thead>
<tr>
<th>BATTERY INDICATOR</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not shown</td>
<td>Normal operation - No information needs to be conveyed</td>
</tr>
<tr>
<td>Green</td>
<td>More than one hour of operation remains</td>
</tr>
<tr>
<td>Amber</td>
<td>Less than one hour of operation remains</td>
</tr>
<tr>
<td>Amber "X"</td>
<td>Battery is not available to power unit (over temperature or low battery voltage condition exists)</td>
</tr>
<tr>
<td>Red "X"</td>
<td>Battery has failed - Service is required</td>
</tr>
</tbody>
</table>

2 - ESI-2000 Attitude invalid in flight

- Maintain straight and level flight at a constant airspeed.
- Press the M button twice.
- Press the S button once.
- The ESI-2000 will initiate the alignment process.
- When a normal attitude display is available, resume normal flight.
- If attitude information remains unvalid, use attitude information from the primary attitude display.

3 - Internal Battery Failure (red X’d battery indicator) in flight

- Remain clear of IMC.
- If in visual meteorological conditions :
 - Cycle power on ESI-2000 (including internal power).
 - Maintain straight and level while unit aligns.
 - If red "X" reappears, remain clear of IMC.

4 - Internal Battery not available (amber X’d battery indicator) in flight (battery above 55°C)

- Reduce temperature of cockpit environment.
- Remain clear of IMC until amber "X" is removed from the display.

5 - Internal Battery state of charge low (amber battery symbol displayed) in flight

- Remain clear of IMC until amber battery symbol is removed from display signifying battery is charged sufficiently to have one hour of discharge ability.
ESI-2000 FAILURES (2/2)

6 - ESI-2000 in flight shutdown (Manual Procedure)

- Maintain control of the airplane using airplane primary instruments.
- Remove all airplane power to the ESI-2000 by opening the 3 Amps "STBY INSTR" circuit breaker.
- Press any key (button) as stated by the on screen message.
- Press the M (Menu) button repeatedly until Shutdown menu is shown.
- Press and hold the + (Hold) button until "SHUTTING DN" message is shown in the upper left corner of the screen.
3.7 - DEICING SYSTEM

LEADING EDGES DEICING FAILURE

Symptoms: Failure on one of the two pneumatic deicing pulses:
- Ice on wing outboard sections
- Or ice on wing inboard sections and stabilizers
- One of the two cycling green lights is not lit

1. LEAVE icing conditions as soon as possible

2. "AIRFRAME DE ICE" switch OFF
WINDSHIELD DEICING FAILURE

Symptoms:
- Windshield being covered uniformly by ice
- No perception of heat when touching deiced section
- Windshield deicing green light is not lit

Symptoms may result from overheat. In that case:

1. “WINDSHIELD” switch ... OFF / ON when necessary

In case of total failure:

1. “TEMP/°C” selector ... Maxi warm
2. “HOT AIR FLOW” distributor ... turn to the left

Before landing wait for a sufficient visibility
WINDSHIELD DEICING FAILURE

 Symptoms:

- Windshield being covered uniformly by ice
- No perception of heat when touching deiced section
- Windshield deicing green light is not lit

Symptoms may result from overheat. In that case:

1 - "WINDSHIELD" switch ... OFF / ON when necessary

In case of total failure:

1 - "TEMP" selector ... Maxi warm
2 - "HOT AIR FLOW" distributor ... turn to the left

Before landing wait for a sufficient visibility
WINDSHIELD MISTING OR INTERNAL ICING

Symptoms: - Mist or ice on windshield internal face

1 - "TEMP/C" selector .. Set to 12 o’clock position

2 - "HOT AIR FLOW" distributor ... turn to the left

3 - "WINDSHIELD" switch ... ON

If not successful, to gain sufficient visibility:

4 - "HOT AIR FLOW" distributor ... fully turn to the left

5 - Manually clean a sufficient visibility area.

6 - If necessary, clean L.H. side window and conduct a sideslip approach (rudder pedals to the right) in order to get sufficient landing visual references.

7 - For landing with flaps LDG, maintain:

IAS ≥ 95 KIAS

CAUTION

IN CASE OF SIDESLIP APPROACH WITH PEDAL ON THE RIGHT DURING A LONG PERIOD, SELECT R.H. FUEL TANK
Post-MOD70-0529-21

WINDSHIELD MISTING OR INTERNAL ICING

Symptoms: Mist or ice on windshield internal face

1 - "TEMP" selector ... Set to 12 o’clock position

2 - “HOT AIR FLOW” distributor ... turn to the left

3 - "WINDSHIELD" switch .. ON

If not successful, to gain sufficient visibility:

4 - “HOT AIR FLOW” distributor ... fully turn to the left

5 - Manually clean a sufficient visibility area.

6 - If necessary, clean L.H. side window and conduct a sideslip approach (rudder pedals to the right) in order to get sufficient landing visual references.

7 - For landing with flaps LDG, maintain:

IAS ≥ 95 KIAS

CAUTION

IN CASE OF SIDESLIP APPROACH WITH PEDAL ON THE RIGHT DURING A LONG PERIOD, SELECT R.H. FUEL TANK
INTENTIONALLY LEFT BLANK
3.8 - PRESSURIZATION MISCELLANEOUS

CABIN NOT DEPRESSURIZED AFTER LANDING

\[\Delta P_{\text{cabin}} > 0 \]

1 - "DUMP" switch .. ACTUATED
2 - "BLEED" switch .. OFF
3 - "EMERGENCY RAM AIR" control knob PULLED if necessary
4 - Wait for complete cabin depressurization before opening the door
DEFOG MALFUNCTION

If moisture starts to quickly cover the inside of the windscreen with the distributor already positioned on "DEFOG":

1 - “HOT AIR FLOW” distributor .. Set to around a 10 o'clock position

If moisture continues:

2 - “HOT AIR FLOW” distributor .. turn to the left

3 - “WINDSHIELD” switch ... ON

If there is no improvement and if the flight safety is engaged:

4 - Altitude .. ± 10000 ft

5 - “BLEED” switch .. OFF/RST

NOTE

If in flight, the cabin will quickly be depressurized. Therefore, the cabin vertical speed indicator and altimeter indications will rapidly meet those of respectively the airplane VSI and altimeter.
3.9 - MISCELLANEOUS

DITCHING

1 - Landing gear ... UP

In heavy swell with light wind, land parallel to the swell (rollers).

In heavy wind, land facing wind.

2 - Flaps ... LDG

3 - Maintain a descent rate as low as possible when approaching the water

4 - Airspeed:

IAS ≥ 85 KIAS

5 - “BLEED” switch .. OFF/RST

6 - “DUMP” switch .. ACTUATED

7 - Crash lever ... PULL DOWN

8 - Maintain attitude without rounding off until touch-down

9 - EVACUATE through EMERGENCY EXIT
LANDING WITHOUT ELEVATOR CONTROL

1 - Configuration ... LANDING GEAR DN - FLAPS LDG

2 - Airspeed .. Maintain IAS = 95 KIAS

3 - Power as necessary to maintain airspeed according to an easy approach slope = 300 ft/min

4 - Adjust elevator by using manual pitch trim wheel

5 - When ground approaches, decrease slope progressively

6 - Reduce power progressively
EMERGENCY EXIT USE

1 - Check that the anti-theft safety pin has been removed
2 - Lift up the opening handle
3 - Pull emergency exit assembly toward oneself to release it from its recess
4 - Put the emergency exit door inside fuselage or throw it away from the fuselage through the opening
5 - EVACUATE airplane
EMERGENCY BEACON (ELT) USE

Before a forced landing:

1 - On COM VHF 121.5 MHZ or on a known air traffic control frequency, transmit the "MAY DAY" signal if possible

After landing:

2 - "ELT" remote control switch ON (maintain it ON until aid arrives)
AUTOPILOT OR ELECTRIC PITCH TRIM MALFUNCTION

1 - “AP / TRIMS DISC” push-button PRESS and HELD
2 - “AP / TRIMS” switch .. OFF
3 - “AP / TRIMS DISC” push-button RELEASED
4 - If necessary, control wheel ... RETRIM

CAUTION
WHEN DISCONNECTING THE AUTOPILOT AFTER A PITCH TRIM MALFUNCTION, HOLD THE CONTROL WHEEL FIRMLY; UP TO 30 POUNDS OF FORCE ON THE CONTROL WHEEL MAY BE NECESSARY TO HOLD THE AIRPLANE LEVEL.
OXYGEN USE

WARNING

SMOKING IS STRICTLY PROHIBITED ANY TIME OXYGEN SYSTEM IS USED. BEFORE USING OXYGEN, REMOVE ANY TRACE OF OIL, GREASE, SOAP AND OTHER FATTY SUBSTANCES (INCLUDING LIPSTICK, MAKE UP, ETC...)

Front seats

1 - Take a mask on the opposite seat side (pilot : R.H. side ; R.H. Front passenger : L.H. side) : draw it out of the stowage cup and uncoil tube totally. Press on the red side vanes to inflate the harness. Put the mask on the face.

2 - No smokes :

3-position selector ... NORMAL (100 % as required)

3 - In case of smokes :

3-position selector ... EMERGENCY

Don the smoke goggles onto the face

4 - "PASSENGERS OXYGEN" switch ... ON

Passengers

1 - Take a mask.

2 - Uncoil tube totally.

3 - Pull on the lanyard cord to take out the lanyard pin.

4 - Put the mask on the face.

5 - Check the oxygen flow indicator for the front seats (the blinker is transparent) and for the rear passengers (the blinker is green).

6 - "MICRO/MASK" micro inverter ... MASK

7 - Perform an emergency descent to the "En route" minimum altitude and, if possible, below 10000 ft.
Post-MOD70-0407-00A

OXYGEN USE

NOTE: With or without amber CAS message “USE OXYGEN MASK”

WARNING

SMOKING IS STRICTLY PROHIBITED ANY TIME OXYGEN SYSTEM IS USED. BEFORE USING OXYGEN, REMOVE ANY TRACE OF OIL, GREASE, SOAP AND OTHER FATTY SUBSTANCES (INCLUDING LIPSTICK, MAKE UP, ETC...)

Front seats

1 - Take a mask on the opposite seat side (pilot : R.H. side ; R.H. Front passenger : L.H. side) : draw it out of the stowage cup and uncoil tube totally. Press on the red side vanes to inflate the harness. Put the mask on the face.

2 - No smokes :

 3-position selector .. NORMAL
 (100 % as required)

3 - In case of smokes :

 3-position selector .. EMERGENCY
 Don the smoke goggles onto the face

4 - "PASSENGERS OXYGEN“ switch ... DEPLOY

5 - Check the oxygen flow indicator for the front seats (the blinker is transparent) and for the rear passengers (the blinker is green).

6 - "MICRO/MASK“ micro inverter .. MASK

7 - Perform an emergency descent to the “En route” minimum altitude and, if possible, below 10000 ft.

Passengers

1 - Take a mask.

2 - Uncoil tube totally.

3 - Pull on the lanyard cord to take out the lanyard pin.

4 - Put the mask on the face.
AIRSPEED INDICATING SYSTEM FAILURE

Symptoms: erroneous indication in flight

1 - “PITOT L HTR” switch .. CHECK ON

2 - “PITOT R & STALL HTR” switch CHECK ON

If symptoms persist:

3 - “ALTERNATE STATIC” selector PULL THOROUGHLY

If symptoms persist, as well as on the electronic standby instrument ESI-2000 of the L.H instrument panel, carry out a precautionary approach maintaining an adequate speed.
FLIGHT INTO SEVERE ICING CONDITIONS

Severe icing conditions, particularly freezing rain and freezing drizzle, can be identified by:

- unusually extensive ice accumulation on the airframe and windshield in areas not normally observed to collect ice,
- accumulation of ice on the upper surface of the wing aft of the protected area.

Procedures for exiting freezing rain or freezing drizzle conditions:

1. Inform Air Traffic Control to exit severe icing conditions by changing the route or the altitude.
2. Avoid any sudden maneuver on flight controls.
3. Do not engage the autopilot.
4. If the autopilot is engaged, hold the control wheel firmly and disengage the autopilot.
5. If an unusual roll response or uncommanded roll control movement is observed, reduce the angle-of-attack.
6. Do not extend flaps when holding in icing conditions. Operation with flaps extended can result in a reduced wing angle-of-attack, with the possibility of ice forming on the upper surface further aft on the wing than normal, possibly aft of the protected area.
7. If the flaps are extended, do not retract them until the airframe is clear of ice.
DUAL GPS/SBAS FAILURE (AMBER "DR" OR "LOI") ON HSI (1/2)

LOSS OF GPS/SBAS NAVIGATION DATA

When both GPS/SBAS receivers are inoperative or GPS navigation information is not available or invalid, the G1000 system will enter one of two modes: Dead Reckoning mode (DR) or Loss Of Integrity mode (LOI). The mode is indicated on the HSI by an amber "DR" or "LOI".

Which mode is active depends on the distance from the destination airport in the active flight plan.

If the LOI annunciation is displayed, revert to an alternate means of navigation appropriate to the route and phase of flight.

In Dead Reckoning mode, the MAP – NAVIGATION MAP will continue to be displayed with a ghosted airplane icon in the center and an amber ‘DR’ overwriting the icon. Airplane position will be based upon the last valid GPS position, then estimated by Dead Reckoning methods. Changes in true airspeed, altitude, or winds aloft can affect the estimated position substantially. Dead Reckoning is only available in Enroute mode; Terminal and Approach modes do not support DR. Course deviation information will be displayed as an amber CDI on both PFDs and will remain for up to 20 minutes after GPS position data has been lost. The autopilot and/or flight director may be coupled in GPS mode while the system is in Dead Reckoning mode.

Refer to the G1000 Cockpit Reference Guide for further information.

Revert to an alternate means of navigation appropriate to the route and phase of flight.

If Alternate Navigation Sources (ILS, LOC, VOR, DME, ADF) are available:

1 - Navigation ... USE ALTERNATE SOURCES
If no Alternate Navigation Sources are available:

Dead Reckoning (DR) Mode - Active when the airplane is greater than 30 NM from the destination airport:

1. Navigation

USE THE AIRPLANE SYMBOL,
MAGENTA COURSE LINE ON THE MAP DISPLAY
AND THE AMBER CDI FOR COURSE INFORMATION

NOTE:
- All information normally derived from GPS turns amber. All of this information will become less accurate over time.
- TAWS is inoperative.
- DR mode uses heading, true airspeed, last known wind data, and the last known GPS position to estimate the airplane’s current position. DR information will be available for a maximum of 20 minutes.
- MAP – TRAFFIC MAP display is not dependent on GPS information. The position of displayed traffic relative to the airplane symbol on the map is still accurate.

Loss Of Integrity (LOI) Mode - Active when the airplane is within 30 NM or departure airport (as calculated from the previous GPS or DR position):

1. Navigation

FLY TOWARDS KNOWN VISUAL CONDITIONS,
USE ATC OR OTHER INFORMATION SOURCES AS POSSIBLE

NOTE:
- All information derived from GPS or DR will be removed from the displays.
- TAWS is inoperative.
- The airplane symbol is removed from all maps. The map will remain centered at the last known position. ‘NO GPS POSITION’ will be annunciated in the center of the map.
GPS APPROACH ALARM LIMITS EXCEEDED

During a GPS LPV, LNAV/VNAV, or LNAV+V approach, if the Horizontal or Vertical alarm limits are exceeded, the G1000 System will downgrade the approach. This will be annunciated in the ALERTS window and by an annunciation change on the HSI from LPV, L/VNAV, or LNAV+V to LNAV. GPS glide path vertical guidance will be removed from the PFD.

The approach may be continued using the LNAV only minimums.

During any GPS approach in which both precision and non-precision alarm limits are exceeded, the G1000 System will flag the lateral guidance and display a system message “ABORT APPROACH loss of navigation”.

Immediately upon viewing the message, the unit will revert to Terminal navigation mode alarm limits. If the position integrity is within these limits, lateral guidance will be restored and the GPS may be used to execute the missed approach, otherwise alternate means of navigation must be utilized.
AHRS FAILURE

Symptoms: Autopilot is disconnected

- On PFD(S): COMPARATOR WINDOW (WHITE ANNUNCIATION):
 - HDG NO COMP and/or PIT NO COMP and/or ROL NO COMP

- On PFD(S): REVERSIONARY SENSOR WINDOW (YELLOW ANNUNCIATION):
 - BOTH ON AHRS1 or BOTH ON AHRS2

Lost systems:
- AHRS1 or AHRS2
- AUTOPILOT (AP)

Systems still operative:
- FLIGHT DIRECTOR (FD), when engaged again

Actions: AUTOPILOT IS NOT OPERATIVE

1. AHRS1 and/or AHRS2 circuit breaker .. CHECKED “IN”

 A - If yellow annunciation BOTH ON AHRS1 or BOTH ON AHRS2 is associated to white annunciation
 HDG NO COMP and/or PIT NO COMP and/or ROL NO COMP:

 1 - Fly the airplane manually

 2 - AHRS1 and/or AHRS2 circuit breaker CHECKED "IN"

 If pilot wishes:

 3 - “FD” (default mode: “PITCH” and ROLL) ENGAGED

 4 - “FD” (specifics modes: “HDG”, “NAV”, “ALT”, ...) ENGAGED AS DESIRED

 5 - Fly the airplane manually to follow Command Bars

 If ALL white annunciations, (HDG NO COMP and/or PIT NO COMP and/or ROL NO COMP), go “OFF”, refer to following “B” procedure.

 B - If yellow annunciation BOTH ON AHRS1 or BOTH ON AHRS2 ONLY (not associated to white
 annunciation HDG NO COMP and/or PIT NO COMP and/or ROL NO COMP):

 1 - PFD1 and PFD2 “SENSOR” softkey’s ... PRESSED

 2 - AHRS1 on PFD1 and/or AHRS2 on PFD2 RESET

 3 - BOTH ON AHRS1 or BOTH ON AHRS2 announcement – OFF CHECKED

 4 - Autopilot .. NORMAL USE (as desired)
ADC FAILURE

Symptoms:
- On PFD(S) : COMPARATOR WINDOW (WHITE ANNUNCIATION):
 - IAS NO COMP and/or ALT NO COMP
- On PFD(S) : REVERSIONARY SENSOR WINDOW (YELLOW ANNUNCIATION):
 - BOTH ON ADC1 or BOTH ON ADC2

Lost systems:
- ADC1 or ADC2

Actions: AUTOPILOT IS STILL OPERATIVE

1 - ADC1 and/or ADC2 circuit breaker ... CHECKED "IN"

A - If yellow annunciation BOTH ON ADC1 or BOTH ON ADC2 is associated to white annunciation
 - IAS NO COMP and/or ALT NO COMP:
 1 - NO action required

If ALL white annunciations, (IAS NO COMP and/or ALT NO COMP), go "OFF", refer to following “B” procedure.

B - If yellow annunciation BOTH ON ADC1 or BOTH ON ADC2 ONLY (not associated to white
 annunciation IAS NO COMP and/or ALT NO COMP), pilot may do following actions:

1 - PFD1 and PFD2 "SENSOR" softkey’s .. PRESSED
2 - ADC1 on PFD1 and/or ADC2 on PFD2 .. RESET
3 - BOTH ON ADC1 or BOTH ON ADC2 annunciation – OFF CHECKED
3.10 - ANNEX

AIR START ENVELOPE

Air start may be attempted outside of the envelope. However, above 20000 ft, ITT tends to increase during start and prudence is recommended.

Figure 3.10.1 - AIR START ENVELOPE
AIR START

CAUTION

THE STARTER CANNOT OPERATE IF THE “GENERATOR” SELECTOR IS ON “ST-BY”

1. **“BLEED” switch**
 - **OFF/RST**

CAUTION

“BLEED” SWITCH SET TO “AUTO” MAY CAUSE OVERTEMPERATURE OR ABNORMAL ACCELERATION

2. **“A/C” switch**
 - **OFF**

3. Electric consumption
 - **Reduce**

4. Tank selector
 - **L or R checked**

5. **“AUX BP” fuel switch**
 - **ON**

6. **“IGNITION” switch**
 - **AUTO or ON**

7. Verify throttle
 - **CUT OFF**

8. **“STARTER” switch**
 - **ON, start timer**

CAUTION

IF 5 SECONDS AFTER HAVING POSITIONED THE STARTER SWITCH IN “ON” POSITION THERE IS NO START, INTERRUPT STARTING ATTEMPT USING THE “ABORT” POSITION OF THE STARTER SWITCH

When Ng around 13%:

9. Throttle
 - **LO / IDLE**

10. ITT and Ng
 - **Monitor**

When Ng higher than 52%:

11. Check starter is
 - **OFF automatically**

CAUTION

IF THE STARTER DOES NOT GO OFF AUTOMATICALLY, DO IT USING THE “ABORT” POSITION OF THE STARTER SWITCH

12. Throttle
 - **FLIGHT IDLE**

13. Throttle
 - **As required**

14. Electrical equipment
 - **As required**

15. **“AUX BP” fuel switch**
 - **AUTO**

16. **“BLEED” switch**
 - **As required**

17. If necessary,
 - **EMERGENCY DESCENT**

If AIR START not successful,
- **FORCED LANDING**
BUS BAR

<table>
<thead>
<tr>
<th>BUS 1</th>
<th>BUS 2</th>
<th>BUS 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRFRAME DE ICE</td>
<td>PROG DE ICE</td>
<td>OXYGEN PRESS</td>
</tr>
<tr>
<td>INERT DE ICE</td>
<td>ICE LIGHT</td>
<td>L WS DE ICE</td>
</tr>
<tr>
<td>R WS DE ICE</td>
<td>FLAPS SIG</td>
<td>PITOT R & STALL</td>
</tr>
<tr>
<td>PITOT L</td>
<td>CAB BLEED</td>
<td>FUEL SEL</td>
</tr>
<tr>
<td></td>
<td>AIR COND</td>
<td>AUX BP</td>
</tr>
<tr>
<td></td>
<td>CABIN DOORS</td>
<td>XPDR 2 (if installed)</td>
</tr>
<tr>
<td></td>
<td>NAV RECOG LIGHT</td>
<td>DME (if installed)</td>
</tr>
<tr>
<td></td>
<td>PLUGS (28VDC)</td>
<td>RADIO ALTI (if installed)</td>
</tr>
<tr>
<td></td>
<td>PLUGS (USB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MFD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADF (if installed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PULSE SYST (if installed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LH LDG LIGHT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RH LDG LIGHT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TAXI LIGHT</td>
</tr>
</tbody>
</table>

Figure 3.10.2 (1/5) - ELECTRICAL DISTRIBUTION OF BUS BARS
BUS BAR

BUS 1
- AP CTRL
- PFD 2
- COM 2
- GPS/NAV 2
- ADC 2
- XPDR 2 (if installed)
- AIRFRAME DE ICE
- INERT DE ICE
- R WS DE ICE
- PITOT L
- AUDIO 2
- AHRS 2
- STORM (if installed)
- STROBE LIGHT
- AP SERVOS
- FLAPS
- AIL TRIM
- RUD TRIM
- STICK SHAKER (POST-MOD70-0510-27)

BUS 2
- PROP DE ICE
- ICE LIGHT
- FLAPS SIG
- CAB BLEED
- AIR COND
- CABIN DOORS
- NAV RECOG LIGHT
- MFD
- CABIN
- PANEL LIGHT
- TAS (if installed)
- WXR
- PLUGS (28VDC)
- PLUGS (USB)
- DATA LINK (if installed)
- LDG CONT
- SATCOM (if installed)
- SATCOM HEATER (if installed)
- LDG GEAR

BUS 3
- OXYGEN PRESS
- L WS DE ICE
- PITOT R & STALL
- AoA
- RADIO ALTI (if installed)
- DME (if installed)
- FUEL SEL
- AUX BP
- ADF (if installed)
- TAXI LIGHT
- LH LDG LIGHT
- RH LDG LIGHT
- PULSE SYST (if installed)

Figure 3.10.2 (2/5) - ELECTRICAL DISTRIBUTION OF BUS BARS
BUS BAR

NOTE: CIRCUIT BREAKERS ON C13 BIS FRAME

Figure 3.10.2 (3/5) - ELECTRICAL DISTRIBUTION OF BUS BARS
ESS BUS BAR

ESS BUS 1
- ESS BUS 1
- PFD 1
- COM 1
- GPS/NAV 1
- ADC 1
- ENGINE AIRFRAME 1
- ENGINE AIRFRAME 2
- FUEL GAGE 1
- FUEL GAGE 2

ESS BUS 2
- ESS BUS 2
- PASS MASKS
- ELT
- KEYPAD
- AUDIO 1
- AHRS 1
- XPD 1
- LDG SIG
- AURAL WARN (PRE-MOD70-0407-00D)
- FEATHER
- TORQUE
- IGNITION
- NP/NG
- STBY INSTR

BATT BUS
- EMER LIGHT
- GND CLR
- ACCESS (driving geared motor)
- EPS

Figure 3.10.2 (4/5) - ELECTRICAL DISTRIBUTION OF BUS BARS
ESS BUS BAR

Figure 3.10.2 (5/5) - ELECTRICAL DISTRIBUTION OF BUS BARS
BUS BARS SUPPLY CONFIGURATIONS

<table>
<thead>
<tr>
<th>CRASH LEVER</th>
<th>SOURCE</th>
<th>GENERATOR</th>
<th>ESS BUS TIE</th>
<th>BAT BUS</th>
<th>ESS BUS 1</th>
<th>ESS BUS 2</th>
<th>BUS 1 TO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>BAT</td>
<td>OFF</td>
<td>NORM</td>
<td>Battery</td>
<td>Battery</td>
<td>Battery</td>
<td>Battery</td>
</tr>
<tr>
<td>UP</td>
<td>BAT</td>
<td>MAIN</td>
<td>NORM</td>
<td>Battery & MAIN</td>
<td>Battery & MAIN</td>
<td>Battery & MAIN</td>
<td>Battery & MAIN</td>
</tr>
<tr>
<td>UP</td>
<td>BAT</td>
<td>ST/BY</td>
<td>NORM</td>
<td>Battery & ST/BY</td>
<td>Battery & ST/BY</td>
<td>Battery & ST/BY</td>
<td>Battery & ST/BY</td>
</tr>
<tr>
<td>UP</td>
<td>OFF</td>
<td>MAIN</td>
<td>NORM</td>
<td>MAIN</td>
<td>MAIN</td>
<td>MAIN</td>
<td>MAIN</td>
</tr>
<tr>
<td>UP</td>
<td>OFF</td>
<td>ST/BY</td>
<td>NORM</td>
<td>ST/BY</td>
<td>ST/BY</td>
<td>ST/BY</td>
<td>ST/BY</td>
</tr>
<tr>
<td>UP</td>
<td>BAT</td>
<td>OFF</td>
<td>EMER</td>
<td>Battery</td>
<td>Battery</td>
<td>Battery</td>
<td>None</td>
</tr>
</tbody>
</table>

(*) **NOTE**: In that case, power is done by MAIN or ST/BY and battery is used as a floated battery.

Figure 3.10.3 - BUS BARS SUPPLY CONFIGURATIONS
IN-FLIGHT AVAILABLE OXYGEN QUANTITY

Oxygen pressure ... Read
Outside air temperature (OAT) .. Read

1 - Determine the usable oxygen percent using the chart Figure 3.10.4.

Figure 3.10.4 - USABLE OXYGEN

2 - Determine the oxygen duration in minutes by multiplying the values read on table Figure 3.10.5 by the percent obtained with the chart Figure 3.10.4.

<table>
<thead>
<tr>
<th>Number of passengers</th>
<th>Duration : Passengers, plus 1 pilot</th>
<th>Duration : Passengers, plus 2 pilots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>226</td>
<td>113</td>
</tr>
<tr>
<td>1</td>
<td>162</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>127</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>104</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
<td>65</td>
</tr>
</tbody>
</table>

Figure 3.10.5 - OXYGEN DURATION
EMERGENCY DESCENT PROFILES

No wind - Smooth atmosphere

Figure 3.10.6 - EMERGENCY DESCENT PROFILES
FORCED LANDING

1 - Throttle ... CUT OFF
2 - Tank selector .. OFF
3 - “AUX BP” fuel switch ... OFF
4 - “BLEED” switch ... OFF/RST
5 - “A/C” switch ... OFF
6 - “DUMP” switch ... ACTUATED
7 - Glide speed ... 120 KIAS maintained until favourable ground approach

If ground allows it:

8 - “ESS BUS TIE” switch ... NORM
 in order to have GEAR and FLAPS available
9 - Landing gear control ... DN

If night conditions:

10 - “OFF/TAXI/LDG” switch .. LDG

If ground does not allow it:

11 - Keep landing gear .. UP
12 - When chosen ground is assured FLAPS LDG
13 - Crash lever ... PULL DOWN
14 - Final approach ... IAS = 85 KIAS
15 - Land flaring out
16 - EVACUATE after stop
INTENTIONALLY LEFT BLANK
SECTION 4

NORMAL PROCEDURES

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>GENERAL</td>
<td>4.1.1</td>
</tr>
<tr>
<td>4.2</td>
<td>AIRSPEEDS FOR NORMAL OPERATION</td>
<td>4.2.1</td>
</tr>
<tr>
<td>4.3</td>
<td>CHECK-LIST PROCEDURES</td>
<td>4.3.1</td>
</tr>
<tr>
<td></td>
<td>PREFLIGHT INSPECTION</td>
<td>4.3.1</td>
</tr>
<tr>
<td></td>
<td>BEFORE STARTING ENGINE</td>
<td>4.3.11</td>
</tr>
<tr>
<td></td>
<td>STARTING ENGINE</td>
<td>4.3.13</td>
</tr>
<tr>
<td></td>
<td>MOTORING</td>
<td>4.3.15</td>
</tr>
<tr>
<td></td>
<td>MOTORING FOLLOWED BY AN ENGINE START</td>
<td>4.3.16</td>
</tr>
<tr>
<td></td>
<td>AFTER STARTING ENGINE</td>
<td>4.3.18</td>
</tr>
<tr>
<td></td>
<td>TAXING</td>
<td>4.3.20</td>
</tr>
<tr>
<td></td>
<td>BEFORE TAKEOFF</td>
<td>4.3.21</td>
</tr>
<tr>
<td></td>
<td>TAKEOFF</td>
<td>4.3.23</td>
</tr>
<tr>
<td></td>
<td>CLIMB</td>
<td>4.3.24</td>
</tr>
<tr>
<td></td>
<td>CRUISE</td>
<td>4.3.25</td>
</tr>
<tr>
<td></td>
<td>DESCENT</td>
<td>4.3.26</td>
</tr>
<tr>
<td></td>
<td>BEFORE LANDING</td>
<td>4.3.27</td>
</tr>
<tr>
<td></td>
<td>LANDING</td>
<td>4.3.28</td>
</tr>
<tr>
<td></td>
<td>GO-AROUND</td>
<td>4.3.29</td>
</tr>
<tr>
<td></td>
<td>TOUCH AND GO</td>
<td>4.3.30</td>
</tr>
<tr>
<td></td>
<td>AFTER LANDING</td>
<td>4.3.31</td>
</tr>
<tr>
<td></td>
<td>SHUT-DOWN</td>
<td>4.3.32</td>
</tr>
<tr>
<td>4.4</td>
<td>AMPLIFIED PROCEDURES</td>
<td>4.4.1</td>
</tr>
<tr>
<td></td>
<td>PREFLIGHT INSPECTION</td>
<td>4.4.1</td>
</tr>
<tr>
<td></td>
<td>BEFORE STARTING ENGINE</td>
<td>4.4.11</td>
</tr>
<tr>
<td></td>
<td>STARTING ENGINE</td>
<td>4.4.15</td>
</tr>
<tr>
<td></td>
<td>MOTORING</td>
<td>4.4.17</td>
</tr>
<tr>
<td></td>
<td>MOTORING FOLLOWED BY AN ENGINE START</td>
<td>4.4.19</td>
</tr>
<tr>
<td></td>
<td>AFTER STARTING ENGINE</td>
<td>4.4.21</td>
</tr>
<tr>
<td></td>
<td>IN-FLIGHT AVAILABLE OXYGEN QUANTITY</td>
<td>4.4.25</td>
</tr>
<tr>
<td></td>
<td>TAXING</td>
<td>4.4.26</td>
</tr>
<tr>
<td></td>
<td>BEFORE TAKEOFF</td>
<td>4.4.27</td>
</tr>
<tr>
<td></td>
<td>TAKEOFF</td>
<td>4.4.30</td>
</tr>
<tr>
<td></td>
<td>CLIMB</td>
<td>4.4.32</td>
</tr>
<tr>
<td></td>
<td>CRUISE</td>
<td>4.4.33</td>
</tr>
<tr>
<td></td>
<td>DESCENT</td>
<td>4.4.34</td>
</tr>
<tr>
<td></td>
<td>BEFORE LANDING</td>
<td>4.4.35</td>
</tr>
<tr>
<td></td>
<td>LANDING</td>
<td>4.4.37</td>
</tr>
<tr>
<td></td>
<td>GO-AROUND</td>
<td>4.4.38</td>
</tr>
<tr>
<td></td>
<td>TOUCH AND GO</td>
<td>4.4.39</td>
</tr>
<tr>
<td></td>
<td>AFTER LANDING</td>
<td>4.4.40</td>
</tr>
<tr>
<td></td>
<td>SHUT-DOWN</td>
<td>4.4.41</td>
</tr>
</tbody>
</table>
4.5 - PARTICULAR PROCEDURES ... 4.5.1

FLIGHT INTO KNOWN ICING CONDITIONS .. 4.5.1
FLIGHT INTO SEVERE ICING CONDITIONS .. 4.5.4
FLIGHT UNDER HEAVY PRECIPITATIONS .. 4.5.5
UTILIZATION ON RUNWAYS COVERED WITH WATER 4.5.5
UTILIZATION ON RUNWAYS COVERED WITH MELTING OR NOT TAMPED SNOW 4.5.6
UTILIZATION ON ICY OR COVERED WITH TAMPED SNOW RUNWAYS 4.5.8
UTILIZATION BY COLD WEATHER (- 0°C TO - 25°C) AND VERY COLD WEATHER (- 25°C TO - 40°C) ... 4.5.10
LANDING PROCEDURE WITH STRONG HEADWIND OR CROSSWIND 4.5.19
UTILIZATION ON GRASS RUNWAY ... 4.5.20
GPS NAVIGATION ... 4.5.21
4.1 - GENERAL

This Section provides procedures for the conduct of normal operation of TBM 900 airplane.

The first part of this Section lists the normal procedures required as a check list.

The amplified procedures are developed in the second part of the Section.

The normal procedures for optional systems are given in Section 9, “Supplements” of the Pilot's Operating Handbook.
4.2 - AIRSPEEDS FOR NORMAL OPERATION

<table>
<thead>
<tr>
<th>CONDITIONS</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takeoff weight</td>
<td>7394 lbs (3354 kg)</td>
</tr>
<tr>
<td>Landing weight</td>
<td>7024 lbs (3186 kg)</td>
</tr>
</tbody>
</table>

1. Rotation airspeed (V_R)
 - Flaps TO | 90 KIAS |

2. Best rate of climb speed (V_Y)
 - Landing gear UP, flaps UP | 124 KIAS |

3. Best angle of climb speed (V_x) | 100 KIAS |

4. Maximum speed:
 - Flaps TO | 178 KIAS |
 - Flaps LDG | 122 KIAS |

5. Maximum speed with landing gear down | 178 KIAS |

6. Maximum landing gear operating speed
 - Extension | 178 KIAS |
 - Retraction | 150 KIAS |

7. Approach speed
 - Flaps LDG | 85 KIAS |

8. Maximum operating speed (V_{MO}) | 266 KIAS |

9. Glide speed (maximum L / D ratio)
 - Landing gear UP, flaps UP | 120 KIAS |
INTENTIONALLY LEFT BLANK
4.3 - CHECK-LIST PROCEDURES

PREFLIGHT INSPECTION (1/10) (See Figure 4.3.1)

IMPORTANT:

* During outside inspection, visually check inspection doors and airplane general condition.
* In cold weather, remove even small accumulations of frost, ice or snow from wing, tail and control surfaces.
* In case of night flight, check good operation of all navigation lights, landing lights, strobe lights and make sure that an emergency lamp is on board.
* If icing conditions are foreseen, particularly check good functioning of all electrical and pneumatic ice protection systems.
* Check that type and quantity of fuel used for refueling are correct.
* Remove covers on:
 - pitots (2)
 - static ports (3)
 - engine air inlet and propeller locking (1).
* Remove tie-downs.
* Refer to Section 8 for quantities, products and specifications of products and materials currently used.
Figure 4.3.1 - PREFLIGHT INSPECTION
PREFLIGHT INSPECTION (3/10)

INSIDE INSPECTIONS

Cockpit ①

CAUTION

WHEN ENGINE IS SHUTDOWN, DO NOT SET THE “PROP DE ICE” SWITCH TO ON, DAMAGE TO THE PROPELLER BLADES COULD RESULT

1 - DE ICE SYSTEM panel
 - All switches .. OFF

2 - ELT ... ARM/OFF

3 - “MICRO/MASK” micro inverter MICRO

4 - Flight control lock ... Removed / Stowed

5 - Flight controls ... Deflections checked

6 - Park brake ... ON

7 - Landing gear control .. DN

8 - Engine controls
 - ”MAN OVRD” control Backward

CAUTION

WHEN THE ENGINE IS SHUTDOWN, THE THROTTLE MUST NOT BE MOVED INTO THE REVERSE AREA.

 - Throttle .. CUT OFF

9 - Flaps control ... UP

10 - Fuel tank selector ... L or R

11 - Landing gear emergency control
 - Lever .. Pulled down
 - By-pass selector Fully depressed
 - Door .. In place
PREFLIGHT INSPECTION (4/10)

Pre-MOD70-0529-21

12 - ECS panel
- "BLEED" switch ... OFF/RST
- "A/C" switch .. OFF
- "DUMP" switch ... Guarded
- "PRES MODE" switch ... AUTO

Post-MOD70-0529-21

12 - "A/C" and "PRESSURIZATION" panel
- "BLEED" switch ... OFF/RST
- "A/C" switch .. OFF
- "DUMP" switch ... Guarded
- "MODE" pressurization switch AUTO

All

13 - “ALTERNATE STATIC” selector .. Pushed
14 - “EMERGENCY RAM AIR” control knob Pushed

15 - Breakers panel
- All breakers .. Checked

16 - “AP / TRIMS” switch .. OFF

17 - Fuel
- "FUEL SEL" selector ... MAN
- "AUX BP” switch .. OFF

18 - ENGINE START panel
- "IGNITION" switch .. AUTO or OFF
- "STARTER" switch .. OFF

19 - ELECTRIC POWER panel
- Crash lever .. UP
- "GENERATOR” selector ... MAIN
- "SOURCE" selector .. OFF
PREFLIGHT INSPECTION (5/10)

20 - Access lighting ... Checked
21 - INT LIGHTS panel .. OFF
22 - EXT LIGHTS panel
 - All switches ... OFF
23 - Pilot's "OXYGEN" switch .. OFF

Pre-MOD70-0485-11A
24 - "PASSENGERS OXYGEN" switch OFF

Post-MOD70-0485-11A
24 - "PASSENGERS OXYGEN" switch STBY

All
25 - Emergency lighting ... Checked

CAUTION
BEFORE SELECTING SOURCE, CHECK

26 - "IGNITION" switch .. AUTO or OFF
27 - "STARTER" switch .. OFF
28 - Landing gear control ... DN
29 - "SOURCE" selector .. BATT or GPU
30 - ESI-2000 battery indicator symbol Not displayed
31 - Voltage .. Checked
 - If BATT source ... ≥ 24.5 Volts
 - If GPU source ... ≈ 28 Volts

CAUTION
LOW VOLTAGE (AROUND 24.5 V) MAY INDICATE THAT ONLY THE BATTERY IS POWERING THE AIRPLANE AND NOT THE PAIR GPU + BATTERY.
MAKE SURE THAT A GPU IS CONNECTED AND POWERING THE AIRPLANE.
SECTION 4
NORMAL PROCEDURES
EASA Approved

PILOT’S OPERATING HANDBOOK

PREFLIGHT INSPECTION (6/10)

32 - EXT LIGHTS panel
 - "OFF/TAXI/LDG" switch ... OFF
 - "STROBE" ... ON
 - "NAV" ... ON

From outside the airplane, check operation of all lights and the stall warning horn

Reentering the airplane

33 - EXT LIGHTS panel ... All switches OFF

34 - DE ICE SYSTEM panel
 - All switches ... OFF
 - "ICE LIGHT" ... ON

35 - CAS display ... Checked

36 - Left and right fuel quantities .. Checked

37 - Flaps control ... LDG

38 - Landing gear panel ... Warning lights : 3 GREEN ON
 Light Test : all lights (red & green) FLASHING

39 - DE ICE SYSTEM panel
 - "PITOT L HTR" switch ... ON
 - "PITOT R & STALL HTR" switch .. ON
 - "PITOT L HTR" switch ... OFF
 - "PITOT R & STALL HTR" switch .. OFF

WARNING

DO NOT TOUCH PITOTS NOR STALL WARNING VANE. THEY COULD BE HOT ENOUGH TO BURN SKIN.

40 - Crash lever ... Down

Cabin II

1 - Cabin fire extinguisher ... Checked
 (Pressure / Attachment)

2 - Seats / belts ... Checked

3 - Windows ... Checked
 (General condition / No crack)

Page 4.3.6

Edition 1 - December 5, 2014
Rev. 2
PREFLIGHT INSPECTION (7/10)

4 - Emergency exit ... Closed / Locked
 - Anti-theft safety ... Removed / Stowed

5 - Baggage compartment ... Straps in place

6 - Partition net (if 6-seat accommodation) In place
 Check general condition

7 - Large net or small net (if 4-seat accommodation
 and if baggage transportation) In place
 Check general condition

8 - Doors operation .. Checked

9 - Stairs condition .. Checked
 (Condition / Play)

AIRPLANE OUTSIDE

L.H. wing (III)

1 - Flap ... Checked
 (Condition / Play)

2 - Aileron and trim / Spoiler Checked
 (Condition / Free movement / Deflection)

3 - Trailing edge static discharger Checked
 (Condition / Attachment)

4 - Winglet / nav. lights / strobe / landing light /
 recognition light / taxi light Condition - Checked

5 - OAT probe .. Condition - Checked

6 - Fuel tank .. Cap Closed / Locked

7 - Fuel tank air vent .. Unobstructed - Checked

8 - Left pitot ... Condition - Checked

9 - Wing lower surface .. Checked
 (No leak)

10 - Wing deicer boots .. Checked
 (Condition / Attachment)

11 - Fuel tank drain (two on each wing) Drained
 (Fuel free of water and contamination)

12 - L.H. main landing gear
 - Shock absorber / doors / tire / wheel well Checked
PREFLIGHT INSPECTION (8/10)

Fuselage forward section (IV)

1 - Forward compartment
 - Inside ... Checked
 - Door ... Closed / Locked

2 - GPU door .. Closed
 (If not used)

3 - Fuel circuit drain Drained
 (Fuel free of water and contamination)
 - Filter contamination indicator Checked

4 - L.H. exhaust stub ... Checked
 (Condition / No cracks)

5 - Upper engine cowls OPEN

 For the first flight of the day:
 - Oil cap ... Closed / Locked
 - Engine oil level ... Checked
 - Fuel pipes ... Checked
 (No leak, deterioration, wear)

6 - Engine cowls .. Condition - Checked
 Closed / Locked

7 - Air inlets
 - Main ... No cracks - Unobstructed
 - Lateral / upper .. Unobstructed

8 - Propeller and spinner Checked
 (No nicks, cracks or oil leaks / Attachment)

9 - Nose gear
 - Shock absorber / doors / tire / wheel well Checked

10 - R.H. exhaust stub ... Checked
 (Condition / No cracks)

R.H. wing (V)

1 - Fuel tank drain (two on each wing) Drained
 (Fuel free of water and contamination)

2 - Main landing gear
 - Shock absorber / doors / tire / wheel well Checked
PREFLIGHT INSPECTION (9/10)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Check Status</th>
<th>Condition / Attachment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Wing deicer boots</td>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Stall warning</td>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Wing lower surface</td>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Fuel tank</td>
<td>Cap Closed / Locked</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Fuel tank air vent</td>
<td>Unobstructed - Checked</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Right pitot</td>
<td>Condition - Checked</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Winglet / nav. light / strobe / landing light / recognition light / taxi light</td>
<td>Condition - Checked</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Trailing edge static discharger</td>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Aileron / spoiler</td>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Flap</td>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Rear R.H. karman</td>
<td>Oxygen cylinder</td>
<td>OPEN</td>
</tr>
<tr>
<td></td>
<td>- Oxygen cylinder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Oxygen quantity</td>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Oxygen pressure</td>
<td>Checked</td>
<td></td>
</tr>
</tbody>
</table>

Fuselage rear section / Empennages

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Check Status</th>
<th>Condition / Attachment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ELT</td>
<td>ARM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- ELT door</td>
<td>Closed / Locked</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Static pressure ports</td>
<td>Clean - Checked</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ventral fins</td>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- static pressure ports</td>
<td>Clean - Checked</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Inspection door under fuselage</td>
<td>Closed - Checked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Inspection door under fuselage</td>
<td>Closed - Checked</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Horizontal stabilizer deicer boots (R.H. side)</td>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Horizontal stabilizer deicer boots (R.H. side)</td>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Elevator and trim</td>
<td>Checked</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Elevator and trim</td>
<td>Checked</td>
<td></td>
</tr>
</tbody>
</table>
PREFLIGHT INSPECTION (10/10)

7 - Static dischargers ... Checked (Condition)

8 - Vertical stabilizer deicer boots ... Checked (Condition / Attachments)

9 - Rudder and trim ... Checked (Condition / Trim position)

10 - Static dischargers .. Checked (Condition)

11 - Tail cone / nav. lights / strobe .. Condition - Checked

12 - Static pressure ports ... Clean - Checked
BEFORE STARTING ENGINE (1/2)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Preflight inspection</td>
</tr>
<tr>
<td>2</td>
<td>Cabin access door</td>
</tr>
<tr>
<td>3</td>
<td>“Pilot” door (if installed)</td>
</tr>
<tr>
<td>4</td>
<td>Baggage</td>
</tr>
<tr>
<td>5</td>
<td>Pilot seat and R.H. front seat (if occupied)</td>
</tr>
</tbody>
</table>

CAUTION

IT IS MANDATORY TO ADJUST SEATS IN FORE-AFT MOVEMENT WHEN SEAT IS IN MAXIMUM HIGH PERMISSIBLE POSITION, TO AVOID INTERFERENCE BETWEEN SIDE UPHOLSTERY PANEL AND SEAT HOUSING IN LOW AND INTERMEDIATE POSITIONS.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>L.H and R.H. pedals</td>
</tr>
<tr>
<td>7</td>
<td>Belts and harnesses (Pilot and passengers)</td>
</tr>
<tr>
<td>8</td>
<td>Crash lever</td>
</tr>
<tr>
<td>9</td>
<td>ELT</td>
</tr>
<tr>
<td>10</td>
<td>“MICRO/MASK” micro inverter</td>
</tr>
<tr>
<td>11</td>
<td>De-ice systems</td>
</tr>
<tr>
<td>12</td>
<td>Park brake</td>
</tr>
<tr>
<td>13</td>
<td>Landing gear control</td>
</tr>
<tr>
<td>14</td>
<td>Pitch trim wheel</td>
</tr>
<tr>
<td>15</td>
<td>“MAN OVRD” control</td>
</tr>
</tbody>
</table>

CAUTION

MAKE SURE THAT "MAN OVRD” CONTROL IS BACKWARD TO AVOID OVERTEMPERATURE RISK AT START.

CAUTION

WHEN THE ENGINE IS SHUTDOWN, THE THROTTLE MUST NOT BE MOVED INTO THE REVERSE AREA.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Throttle</td>
</tr>
<tr>
<td>17</td>
<td>Flaps control</td>
</tr>
<tr>
<td>18</td>
<td>Fuel tank selector</td>
</tr>
<tr>
<td>19</td>
<td>“BLEED” switch</td>
</tr>
<tr>
<td>20</td>
<td>“DUMP” switch</td>
</tr>
<tr>
<td>21</td>
<td>“A/C” switch</td>
</tr>
<tr>
<td>22</td>
<td>“ALTERNATE STATIC” selector</td>
</tr>
</tbody>
</table>
BEFORE STARTING ENGINE (2/2)

23 - "EMERGENCY RAM AIR" control knob .. Pushed
24 - Circuit breakers ... All pushed
25 - "ESS BUS TIE" switch .. Guarded
26 - "AP / TRIMS" switch .. OFF
27 - "FUEL SEL" selector .. MAN
28 - "AUX BP" switch ... OFF
29 - "IGNITION" switch ... AUTO
30 - "STARTER" switch ... OFF
31 - "DIMMER" switch ... OFF
32 - "CABIN" switch ... OFF
33 - "ACCESS" switch ... OFF
34 - "PANEL" rheostat ... Fully turned to the left
35 - All lights ... OFF
36 - Crash lever ... UP
37 - "SOURCE" selector .. BATT (battery start)
 GPU (GPU start)
38 - Battery voltage .. Checked
39 - "GENERATOR" selector .. MAIN
40 - Park Brake ... ON

Pre-MOD70-0485-11A
41 - "PASSENGERS OXYGEN" switch .. OFF

Post-MOD70-0485-11A
41 - "PASSENGERS OXYGEN" switch ... STBY

All

42 - Pilot's "OXYGEN" switch ... ON
43 - Front oxygen masks ... Checked
44 - Fuel ... Checked
45 - Engine parameters ... Checked
STARTING ENGINE (1/2)

1. Strobes
 - Strobes: ON
2. G1000
 - G1000: Composite mode
3. "AUX BP" switch
 - "AUX BP" switch: ON
4. Propeller area
 - Propeller area: Clear
5. "STARTER" switch
 - "STARTER" switch: ON, start timer

CAUTION

IF 5 SECONDS AFTER HAVING POSITIONED STARTER SWITCH TO "ON" POSITION THERE IS NO START, INTERRUPT STARTING ATTEMPT BY USING THE "ABORT" POSITION OF THE STARTER SWITCH.

THE UTILISATION OF THE STARTER IS BOUND BY LIMITATIONS MENTIONED IN CHAPTER 2.4 "STARTER OPERATING LIMITS".

When \(Ng = \approx 13 \% \) and ITT below 150°C and time below 20 s:

6. Throttle
 - Throttle: LO / IDLE

When \(Ng = 52 \% (\pm 2 \%) \)

7. Check Starter is automatically OFF

CAUTION

IF THE STARTER DOES NOT GO OFF AUTOMATICALLY, DISENGAGE IT USING THE "ABORT" POSITION OF THE STARTER SWITCH.

8. Engine parameters
 - Engine parameters: Checked

If GPU start,

9. "SOURCE" selector
 - "SOURCE" selector: BATT
10. Electrical network
 - Electrical network: Checked
11. GPU disconnection done by ground team

When Ground team is cleared from propeller,

12. Throttle
 - Throttle: Flight IDLE
13. Engine parameters
 - Engine parameters: Checked
14. "AUX BP" switch
 - "AUX BP" switch: AUTO
CAUTION: IF
- NO IGNITION 10 SECONDS AFTER HAVING POSITIONED THROTTLE TO LO/IDLE,
- OVER TEMPERATURE INDICATION APPEARS (MAX. ITT < 870°C FOR MORE THAN 20 SECONDS, < 1000°C FOR MORE THAN 5 SECONDS),
- NG < 30% AFTER 30 SECONDS OF STARTER USE,
- NG < 50% AFTER 60 SECONDS OF STARTER USE,

ABORT STARTING PROCEDURE:
- THROTTLE ... CUT OFF
- "IGNITION" SWITCH ... OFF or AUTO

WHEN ITT < 850°C:
- "STARTER" SWITCH ... ABORT
MOTORING

CAUTION
AFTER ANY STARTING INTERRUPT PROCEDURE:
- WAIT FOR ENGINE TOTAL SHUT-DOWN,
- WAIT AT LEAST 30 SECONDS BEFORE INITIATING A MOTORING.

1 - Engine controls
 - "MAN OVRD" control Backward
 CAUTION
 WHEN THE ENGINE IS SHUTDOWN, THE THROTTLE MUST NOT BE MOVED INTO THE REVERSE AREA.
 - Throttle ... CUT OFF

2 - Fuel
 - Tank selector L or R
 - "AUX BP" switch ON

3 - "IGNITION" switch OFF

To clear fuel and vapor internally trapped:
4 - "STARTER" switch ON, motor for max 15 seconds
5 - "STARTER" switch ABORT

To cool engine following shut-down in high temperature environment:
4 - "STARTER" switch ON, motor for max 30 seconds
5 - "STARTER" switch ABORT

6 - FUEL panel
 - “AUX BP” switch OFF
MOTORING FOLLOWED BY AN ENGINE START (1/2)

Within starter operating limits (continuous max. 1 minute), it is possible to initiate a starting procedure from a motoring procedure.

1 - Engine controls
 - "MAN OVRD" control ... Backward

 CAUTION
 WHEN THE ENGINE IS SHUTDOWN, THE THROTTLE MUST NOT BE MOVED INTO THE REVERSE AREA.
 - Throttle ... CUT OFF

2 - Fuel
 - Tank selector .. L or R
 - "AUX BP" switch .. ON

3 - "IGNITION" switch .. OFF

4 - "STARTER" switch ... ON, start timer

5 - After 20 seconds and ITT < 150°C :
 - "IGNITION" switch .. AUTO
 - Ng ... Check > 13 %
 - Throttle ... LO / IDLE

6 - Monitor increase of :
 - ITT ... (max. ITT : ≤ 870°C for 20 seconds max. ≤ 1000°C for 5 seconds max.)
 - Ng
 - Oil pressure

When Ng = 52 % (± 2 %)

7 - Check Starter is automatically OFF

 CAUTION
 IF THE STARTER DOES NOT GO OFF AUTOMATICALLY, DISSINGAGE IT USING THE "ABORT" POSITION OF THE STARTER SWITCH.

8 - Engine instruments ... CHECK : Ng > 52 %
 (Oil pressure / ITT = green sector)

9 - Throttle ... Flight IDLE
MOTORING FOLLOWED BY AN ENGINE START (2/2)

10 - Engine instruments ... Check : \(\text{Ng} \approx 70\% \pm 2\% \)
 (Oil pressure / Oil temperature / ITT = green sector)

11 - FUEL panel
 - "AUX BP" switch ... AUTO

12 - Generator ... RESET if necessary
 - Generator and battery ammeters .. Charge checked
 - BAT and ESS voltmeters ... Voltage checked
 \((V \approx 28 \text{ Volts}) \)
AFTER STARTING ENGINE (1/2)

CAUTION

GENERATOR LOAD < 200 AMPS

1 - PFD 1, MFD and PFD 2 .. NORMAL mode

2 - "GENERATOR" selector
 - On "MAIN" .. Voltage and current checked

When MAIN LOAD ≤ 80 amps :
 - on "ST-BY" .. Voltage and current checked (reset if necessary)
 - then again on "MAIN"

3 - "AP / TRIMS" switch .. ON

4 - Oxygen supply .. Available for the planned flight
 (see tables of paragraph "IN-FLIGHT AVAILABLE OXYGEN QUANTITY" in Chapter 4.4 and Chapter 7.10 for a FAR 135 type operation)

5 - PFD 1, MFD and PFD 2
 - Brightness .. Adjust if necessary
 - DISPLAY BACKUP button .. Check
 then return to NORMAL mode

6 - Radar Mode Softkey .. STANDBY

7 - ECS panel
 - "BLEED" switch .. AUTO
 - "A/C" switch .. AUTO
 - PRES MODE .. AUTO
 - "CONTROL" selector .. As required
 - "TEMP/°C" selectors .. Adjust
 - "HOT AIR FLOW" distributor .. As required
AFTER STARTING ENGINE (2/2)

Post-MOD70-0529-21

7 - "A/C" and "PRESSURIZATION" panel
 - "BLEED" switch ... AUTO
 - "A/C" switch ... As required
 - "MODE" pressurization switch ... As required
 - "TEMP" selectors ... Adjust
 - "HOT AIR FLOW" distributor ... As required

All

8 - Stand-by instruments .. Checked

9 - Flight prepared on PFD, MFD

10 - LFE selection ... Done

11 - Altimeter setting .. Checked

12 - AP / TRIMS ... Checked / Set

13 - DE ICE SYSTEM panel .. Checked

14 - "INERT SEP" switch ... ON
CAUTION

GENERATOR LOAD < 200 AMPS

1 - "TAXI" light ... ON
2 - Passenger briefing ... As required
3 - Park brake ... OFF
4 - L.H. brakes ... Checked
5 - Nose wheel steering .. Checked
6 - Throttle ... As required

CAUTION

AVOID USING REVERSE DURING TAXIING.

7 - Flight instruments ... Check
8 - CAS ... Checked
9 - LFE ... Checked
BEFORE TAKEOFF (1/2)

CAUTION

GENERATOR LOAD < 200 AMPS

1 - Park brake ... ON
2 - Throttle .. Flight IDLE
 [Ng : 69 % (±2 %)]
3 - Throttle .. Feather twice
4 - Flaps .. TO
5 - DE ICE SYSTEM panel .. As required
 - "INERT SEP" switch ... As required
 - "PITOT L HTR“ switch ON
 - "PITOT R & STALL HTR“ switch ON
6 - Flight controls .. Deflections checked
7 - Trims ... SET
8 - Pilot's / Passengers' belts Check
 - Passengers' table .. Stowed
9 - "STROBE“ switch .. ON
10 - CAS display .. Check
11 - Fuel
 - Gages : quantity, symmetry Checked
 - "FUEL SEL" switch .. Check AUTO
 - "AUX BP“ fuel switch .. Check AUTO
12 - Flight instruments ... Check
 - Altimeter setting ... Adjusted/Checked
 - "LFE“ ... Adjusted/Checked
13 - Takeoff distances ... Check
 See "Takeoff distances“ Chapter 5.9
14 - Rotation speed (VR) .. Check

![Diagram]

Edition 1 - December 5, 2014
Rev. 2
BEFORE TAKEOFF (2/2)

15 - Engine instruments .. Check

16 - Battery charge ... < 50 Amperes

CAUTION

DO NOT TAKE OFF IF BATTERY CHARGE > 50 Amperes (± 4 Amperes)

(CAS MESSAGE BAT AMP ON)

17 - Park brake ... OFF
TAKEOFF
WHEN LINED UP

CAUTION
IF HEAVY PRECIPITATION, TURN IGNITION AND INERT SEP ON.
IF ICING CONDITIONS ARE FORESEEN, REFER TO CHAPTER 4.5, PARAGRAPH "FLIGHT INTO KNOWN ICING CONDITIONS"

1 - Horizon ... Check attitude $\alpha + 2^\circ$
2 - Heading - HSI - Stand-by compass ... Check
 - Altimeter setting .. Check
3 - Lights
 - "OFF/TAXI/LDG" switch ... LDG
4 - Engine instruments ... CHECK
 (ITT = green sector)
5 - CAS display ... Check
 All messages OFF, except INERT SEP ON if used
 except IGNITION if used
6 - Apply brakes and increase power up to RPM in green range.
7 - Brakes ... Released
8 - Throttle ... TRQ = 100 %
9 - Takeoff attitudes
 - Normal takeoff ... Attitude : 10°
 - Short takeoff
 . Weight < 6579 lbs (2984 kg) ... Attitude : 15°
 . Weight ≥ 6579 lbs (2984 kg) ... Attitude : 12.5°
10 - Vertical speed indicator ... Positive
11 - Brakes ... Apply (Briefly)
12 - Landing gear control (IAS < 150 KIAS) ... UP
 At sequence end, check : All warning lights OFF
13 - Initial climb speed ... 115 KIAS
14 - Flaps ... UP
CLIMB

Only when flaps are confirmed UP:

1 - Climb speed (recommended) ... 124 KIAS
 - Trims (Pitch, Roll and Yaw) .. Adjusted
2 - “YAW DAMPER” push-button .. ON
3 - Lights
 - "OFF/TAXI/LDG" switch ... As required
4 - Throttle .. Adjust

 CAUTION
 OBSERVE TRQ / Ng / Np / ITT / T° AND OIL PRESSURE LIMITATIONS.
 USE OPTIMUM TORQUE AND / OR REFER TO TABLES IN CHAPTER 5.8.

5 - Climb speed ... As required

Pre-MOD70-0529-21

6 - ECS panel
 - "TEMP°C" selectors ... Adjust

Post-MOD70-0529-21

6 - “A/C” and "PRESSURIZATION" panel
 - "TEMP" selectors .. Adjust

All

7 - Fuel tank gages .. Check / correct
 (Quantity / Symmetry)

8 - Radar Mode Softkey .. As required

9 - DE ICE SYSTEM .. As required

Refer to Chapter 4.5 "PARTICULAR PROCEDURES"

 CAUTION
 IF HEAVY PRECIPITATION, TURN IGNITION AND INERT SEP ON.
CRUISE

1 - Throttle ... Adjust

CAUTION

OBSERVE TRQ / Ng / Np / ITT / T° AND OIL PRESSURE LIMITATIONS.

USE OPTIMUM TORQUE AND / OR REFER TO TABLES IN CHAPTER 5.8.

2 - Pressurization ... Check

3 - Fuel
 - Gages ... Check

 REGULARLY CHECK:
 . consumption
 . expected fuel at destination
 . tank automatic change (every 5 minutes)
 . symmetry [max. dissymmetry 15 USG (57 Litres)]

4 - Cruise parameters / engine data Check / Record

5 - DE ICE SYSTEM ... As required
 Refer to Chapter 4.5 "PARTICULAR PROCEDURES"

CAUTION

IF HEAVY PRECIPITATION, TURN IGNITION AND INERT SEP ON.
DESCENT

1 - Altimeter settings ... Done

2 - DE ICE SYSTEM ... As required

Refer to Chapter 4.5 "PARTICULAR PROCEDURES"

CAUTION

IF HEAVY PRECIPITATION, TURN IGNITION AND INERT SEP ON.

3 - Windshield misting protection system As required

4 - Fuel

- Gages ... (Check (Quantity / Symmetry)

- Fullest tank .. Select

5 - Passengers briefing .. As required

6 - Seats, belts and harnesses .. Locked

7 - Passengers’ table ... Stowed
BEFORE LANDING

Long final

1 - Altimeters ... Check

2 - Fuel
 - Gages .. (Check
 Quantity / Symmetry)
 - Fullest tank .. Select

3 - "INERT SEP" switch .. ON

4 - Landing gear control (IAS ≤ 178 KIAS) DN
 then 3 green lights

5 - Flaps (IAS ≤ 178 KIAS) .. TO

6 - Lights
 - "OFF/TAXI/LDG" switch .. LDG

7 - Radar Mode Softkey .. STANDBY

Stabilized approach

8 - Flaps (IAS ≤ 122 KIAS) .. LDG

9 - Approach speed (Flaps LDG)
 - Without AP engaged : ... 85 KIAS
 - With AP engaged : .. ≥ 85 KIAS

10 - Autopilot (> 200 ft) .. Disconnect

11 - "YAW DAMPER" push-button OFF
LANDING

1 - Throttle ... Flight IDLE

WARNING

QUICKLY REDUCING THE POWER TO IDLE DURING THE FLARE MAY INDUCE A
PRONOUNCED DECELERATION, WHICH MAY LEAD TO A DROP DOWN OF THE
AIRCRAFT. REDUCE POWER SMOOTHLY.

After wheels touch

2 - Reverse ... As required

(Reverse may be applied as soon as the wheels touch the ground.)

To avoid ingestion of foreign objects, come out of the reverse range as speed reduces and use the brakes if
necessary for further deceleration.

CAUTION

ON SNOWY OR DIRTY RUNWAY, IT IS BETTER NOT TO USE REVERSE BELOW 40 KIAS.

3 - Brakes ... As required
GO-AROUND

1 - GO AROUND push-button ... Pushed

2 - Simultaneously
 - Throttle ... T/O power
 - Attitude ... 10°

3 - Flaps ... TO

Weight below 6579 lbs (2984 kg)

When the vertical speed is positive and when IAS is at or above 85 KIAS :

4 - Landing gear control ... UP
 All warning lights OFF

When IAS is at or above 110 KIAS :

5 - Flaps ... UP

6 - Climb speed ... As required

Weight above 6579 lbs (2984 kg)

When the vertical speed is positive and when IAS is at or above 90 KIAS :

7 - Landing gear control ... UP
 All warning lights OFF

When IAS is at or above 115 KIAS :

8 - Flaps ... UP

9 - Climb speed ... As required

10 - Power ... As required
TOUCH AND GO

Before wheels touch

WARNING

QUICKLY REDUCING THE POWER TO IDLE DURING THE FLARE MAY INDUCE A PRONOUNCED DECELERATION, WHICH MAY LEAD TO A DROP DOWN OF THE AIRCRAFT. REDUCE POWER SMOOTHLY.

1 - Takeoff distances

 Checked

 See "Takeoff distances" Chapter 5.9

2 - Rotation speed \(V_R \)

 Checked

After wheels touch

1 - Flaps

 TO

2 - Elevator trim

 Green sector

3 - Throttle

 T/O power

4 - Takeoff attitudes

 - Normal takeoff

 ATTITUDE : 10°

 - Short takeoff

 Weight < 6579 lbs (2984 kg)

 ATTITUDE : 15°

 Weight ≥ 6579 lbs (2984 kg)

 ATTITUDE : 12°5
AFTER LANDING

CAUTION

GENERATOR LOAD < 200 AMPS

RUNWAY CLEAR - AIRPLANE STOPPED

1 - DE ICE SYSTEM panel
 - "AIRFRAME DE ICE” switch .. OFF
 - "PROP DE ICE” switch .. OFF
 - "INERT SEP” switch ... Checked ON
 - "WINDSHIELD” switch ... As required
 - "PITOT L HTR” switch ... OFF
 - "PITOT R & STALL HTR” switch ... OFF

2 - Radar ... Checked Standby

3 - Transponder ... Checked Standby

4 - Flaps ... UP

5 - “STROBE” switch ... OFF

6 - Lights
 - "OFF/TAXI/LDG” switch .. TAXI

7 - Trims ... TAKEOFF position
SHUT-DOWN (1/2)

1 - Park brake ... ON

Pre-MOD70-0529-21

2 - ECS panel
 - "BLEED" switch .. OFF/RST
 - Check for cabin depressurization
 - "A/C" switch ... OFF

Post-MOD70-0529-21

2 - "A/C" and "PRESSURIZATION" panel
 - "BLEED" switch .. OFF/RST
 - Check for cabin depressurization
 - "A/C" switch ... OFF

All

3 - Throttle .. Flight IDLE for 2 minutes

4 - "TAXI" light ... OFF

5 - "AP / TRIMS" switch ... OFF

6 - Throttle .. LO / IDLE for 15 seconds

7 - Throttle .. CUT OFF

8 - "INERT SEP" switch .. OFF

9 - EXT LIGHTS panel
 - All switches ... OFF

10 - INT LIGHTS panel
 - All switches ... OFF

11 - Radar Mode Softkey ... OFF

12 - Fuel
 - "AUX BP" switch ... OFF
 - "FUEL SEL" switch .. MAN
 - Tank selector .. OFF

13 - "OXYGEN" switch ... OFF

14 - "GENERATOR" selector ... OFF
SHUT-DOWN (2/2)

15 - "SOURCE" selector .. OFF

16 - Crash lever ... Pulled down

17 - Park brake ... As required

CAUTION

IN CASE OF HIGH OAT [ABOVE 35°C (95°F)], IT IS REQUIRED TO PERFORM 30 SECONDS DRY MOTORING RUN AFTER SHUT-DOWN TO IMPROVE COOLING OF THE BEARING CAVITIES AND MINIMIZE OIL COKING (REFER TO PARAGRAPH "MOTORING").

- ESI-2000 - NORMAL PROCEDURE
 No pilot action required for normal shutdown. The ESI-2000 will shut down within 5 minutes.

- ESI-2000 - MANUAL PROCEDURE
 The ESI-2000 can be manually shut down when in the discharge mode to conserve battery power:

 - Remove all airplane power from the ESI.
 - Press any key (button) as stated by the on screen message.
 - Press the M (Menu) button repeatedly until shutdown menu is shown.
 - Press and hold the + (Hold) button until "SHUTTING DN" message is shown in the upper left corner of the screen.
4.4 - AMPLIFIED PROCEDURES

PREFLIGHT INSPECTION (1/10)

INSIDE INSPECTIONS

Cockpit

CAUTION

WHEN ENGINE IS SHUTDOWN, DO NOT SET THE “PROP DE ICE” SWITCH TO ON, DAMAGE TO THE PROPELLER BLADES COULD RESULT

1 - DE ICE SYSTEM panel
 - All switches ... OFF

2 - ELT ... ARM/OFF

3 - “MICRO/MASK” micro inverter .. MICRO

4 - Flight control lock ... Removed / Stowed
 The flight control lock is normally stowed in the front cargo compartment with the towing bar and the blanking covers.

5 - Flight controls ... Deflections checked

6 - Park brake ... ON

7 - Landing gear control ... DN

8 - Engine controls
 - "MAN OVRD" control ... Backward

CAUTION

WHEN THE ENGINE IS SHUTDOWN, THE THROTTLE MUST NOT BE MOVED INTO THE REVERSE AREA.

When engine is shut-off, a lack of hydraulic pressure prevents movement into reverse range. Trying to force the mechanism will cause damage.

 - Throttle ... CUT OFF

9 - Flaps control ... UP

10 - Fuel tank selector ... L or R
SECTION 4
NORMAL PROCEDURES
EASA Approved

PILOT’S OPERATING HANDBOOK

PREFLIGHT INSPECTION (2/10)

11 - Landing gear emergency control

Open door of emergency landing compartment :

- Lever .. Pulled down
- By-pass selector Fully depressed
- Door .. In place

By-pass selector must be pushed at its maximum stop, so as to have the door in place.

Pre-MOD70-0529-21

12 - ECS panel

- “BLEED” switch ... OFF/RST
- “A/C” switch ... OFF
- “DUMP” switch .. Guarded
- “PRES MODE” switch Auto

Post-MOD70-0529-21

12 - “A/C” and “PRESSURIZATION” panel

- “BLEED” switch ... OFF/RST
- “A/C” switch ... OFF
- “DUMP” switch .. Guarded
- “MODE” pressurization switch As required

All

13 - “ALTERNATE STATIC” selector Pushed
14 - “EMERGENCY RAM AIR” control knob Pushed

15 - Breakers panel

- All breakers ... Checked

16 - “AP / TRIMS” switch OFF

17 - Fuel

- “FUEL SEL” selector MAN
- “AUX BP” switch OFF
PREFLIGHT INSPECTION (3/10)

18 - ENGINE START panel
 - "IGNITION" switch ... AUTO or OFF
 The "IGNITION" switch is normally selected to AUTO. This ensures ignition, whenever the "STARTER" switch is set to ON.
 - "STARTER" switch .. OFF
 If not, starter is going to operate as soon as "SOURCE" selector is moved to BATT or GPU (if connected).

19 - ELECTRIC POWER panel
 - Crash lever ... UP
 - "GENERATOR" selector .. MAIN
 - "SOURCE" selector ... OFF

20 - Access lighting ... Checked
 This check allows to ensure that the fuse of the "BATT BUS" operates correctly.

21 - INT LIGHTS panel ... OFF

22 - EXT LIGHTS panel
 - All switches ... OFF

23 - Pilot's "OXYGEN" switch .. OFF

Pre-MOD70-0485-11A

24 - "PASSENGERS OXYGEN" switch OFF

Post-MOD70-0485-11A

24 - "PASSENGERS OXYGEN" switch STBY

All

25 - Emergency lighting ... Checked

CAUTION
BEFORE SELECTING SOURCE, CHECK

26 - "IGNITION" switch ... AUTO or OFF

27 - "STARTER" switch ... OFF

28 - Landing gear control ... DN

29 - "SOURCE" selector ... BATT or GPU
PREFLIGHT INSPECTION (4/10)

30 - ESI-2000 battery indicator symbol ... Not displayed

If a battery symbol appears on the ESI-2000 display, airplane take-off is not allowed until the situation is resolved. Refer to the battery details in the ESI-2000 Pilot's guide for further information.

31 - Voltage ... Checked
 - If BATT source ... ≥ 24.5 Volts
 If not, use a GPU or charge battery. This minimum voltage is not an absolute guarantee for a correctly charged battery. It is recommended to use a GPU in cold weather, when airplane has been stopped more than 3 hours at a temperature below -10°C (+14°F).
 - If GPU source ... ≈ 28 Volts

If using a GPU, ensure that it provides a 28-volt regulated voltage, with negative on earth, as well as it supplies 800 amperes minimum and 1000 amperes maximum. See placard located near ground power receptacle door.

CAUTION

LOW VOLTAGE (AROUND 24.5 V) MAY INDICATE THAT ONLY THE BATTERY IS POWERING THE AIRPLANE AND NOT THE PAIR GPU + BATTERY.

MAKE SURE THAT A GPU IS CONNECTED AND POWERING THE AIRPLANE.

32 - EXT LIGHTS panel
 - "OFF/TAXI/LDG" switch ... OFF
 - "STROBE" ... ON
 - "NAV" ... ON

From outside the airplane, check operation of all lights and the stall warning horn

Reentering the airplane

33 - EXT LIGHTS panel ... All switches OFF

34 - DE ICE SYSTEM panel
 - All switches ... OFF
 - "ICE LIGHT" ... ON

35 - CAS display ... Checked

36 - Left and right fuel quantities ... Checked

37 - Flaps control ... LDG

38 - Landing gear panel ... Warning lights : 3 GREEN ON
 Light Test : all lights (red & green) FLASHING
PREFLIGHT INSPECTION (5/10)

39 - DE ICE SYSTEM panel

- "PITOT L HTR" switch ... ON

 WARNING CAS MESSAGE PITOT HT ON L ON

- "PITOT R & STALL HTR" switch .. ON

 Correct operation of pitot (PITOT L and R) tube heating elements and of stall aural warning system (STALL HTR) is indicated by display of corresponding CAS message, when control switches are ON.

 WARNING CAS MESSAGE PITOT HT ON L-R ON

 WARNING CAS MESSAGE STALL HEAT ON ON

- "PITOT L HTR" switch ... OFF

- "PITOT R & STALL HTR" switch .. OFF

 WARNING

 DO NOT TOUCH PITOTS NOR STALL WARNING VANE. THEY COULD BE HOT ENOUGH TO BURN SKIN.

40 - Crash lever ... Down

Cabin II

1 - Cabin fire extinguisher ... Checked
 (Pressure / Attachment)

2 - Seats / belts ... Checked

3 - Windows ... Checked
 (General condition / No crack)

4 - Emergency exit ... Closed / Locked

 - Anti-theft safety ... Removed / Stowed

5 - Baggage compartment .. Straps in place

6 - Partition net (if 6-seat accommodation) In place
 Check general condition

7 - Large net or small net (if 4-seat accommodation and if baggage transportation) In place
 Check general condition

8 - Doors operation ... Checked

9 - Stairs condition ... Checked
 (Condition / Play)
PILOT'S OPERATING HANDBOOK
SECTION 4
NORMAL PROCEDURES
EASA Approved

PREFLIGHT INSPECTION (6/10)

AIRPLANE OUTSIDE

The preflight inspection described in Figure 4.3.1 is recommended before each flight.

NOTE

If a preflight inspection is performed, just after the engine shut-off, be careful because the leading edge of engine air inlet, as well as exhaust stubs may be very hot.

If the airplane was in long term storage or if it has undergone major maintenance or if it has been used from emergency airfields, a thorough outside inspection is recommended.

When the airplane is stored outside, the use of the flight control lock and blanking covers is recommended. Propeller should be tied down to prevent rotation without oil pressure.

When the airplane is stored for extended periods of time, a thorough preflight inspection is recommended. Particular attention should be paid to possible blockages in airspeed sensing lines, foreign objects in engine intake and exhaust stubs and water contamination of the fuel system.

L.H. wing

1 - Flap .. Checked
 (Condition / Play)
 Also inspect the lower surface, as well as flap fairing, where pebbles (and even ice in case of slush on the runway) may have accumulated.

2 - Aileron and trim / Spoiler Checked
 (Condition / Free movement / Deflection)
 Ensure there are no foreign objects in the spoiler recess. When ailerons are in the neutral position, it is normal that spoilers are lightly extended at upper surface.

3 - Trailing edge static discharger Checked
 (Condition / Attachment)

4 - Winglet / nav. lights / strobe / landing light / recognition light / taxi light Condition - Checked

5 - OAT probe .. Condition - Checked

6 - Fuel tank .. Cap Closed / Locked
 Fuel tank caps must be tight (which is characterized by a consequent exertion to lock and unlock them) to avoid water infiltration in case of rain on ground, and to avoid fuel loss in flight.

7 - Fuel tank air vent .. Unobstructed - Checked
 Air vent is not likely to be obstructed by ice or water, as it is located in a wing lower surface recess.

8 - Left pitot .. Condition - Checked

9 - Wing lower surface ... Checked
 (No leak)
 - Check fuel tank access doors for leaks
 - Check for surface damage.
PREFLIGHT INSPECTION (7/10)

10 - Wing deicer boots .. Checked
 (Condition / Attachment)
 Care must be taken when refuelling the airplane to avoid damaging the wing deicer boots. A protective apron
 should be used if possible.

11 - Fuel tank drain (two on each wing) Drained
 (Fuel free of water and contamination)
 In case of water in fuel system, drain it carefully using the four drain valves of tank sumps, and the fuel filter
 drain valve, till every trace of water or deposit has disappeared.
 A long term storage of the airplane causes water accumulation in fuel, which absorbs additive. This
 phenomenon occurs when an excessive quantity of water accumulates in fuel tank sumps. Refer to Section 8
 for servicing operations relative to fuel additives.

12 - L.H. main landing gear
 - Shock absorber / doors / tire / wheel well Checked
 If airplane has been used from muddy airfields or in snow, check wheel wells to make sure they are clean
 and not obstructed.
 Check frequently all landing gear retraction mechanism components, shock-absorbers, tires and
 brakes. This is particularly important for airplanes used from hilly fields.
 Improperly serviced or worn shock-absorbers may result in excessive loads being transmitted to the
 airplane structure during ground operations. Without passengers and baggages on board, the unpainted
 surface of the main gear shock absorber tube must be visible about:
 - 55 mm (2.17 in.) of minimum height with half tank,
 - 40 mm (1.57 in.) of minimum height with full tanks.

Fuselage forward section IV

1 - Forward compartment
 - Inside .. Checked
 - Door .. Closed / Locked

2 - GPU door .. Closed
 (If not used)

3 - Fuel circuit drain .. Drained
 (Fuel free of water and contamination)
 - Filter contamination indicator Checked

4 - L.H. exhaust stub .. Checked
 (Condition / No cracks)
 Inspect if possible pressure port located inside exhaust stub. A missing port or a cracked port may hinder
 correct operation of continuous heating of air inlet lip.
PREFLIGHT INSPECTION (8/10)

5 - Upper engine cowls ... OPEN

For the first flight of the day:
- Oil cap ... Closed / Locked
- Engine oil level ... Checked
- Fuel pipes ... Checked (No leak, deterioration, wear)

6 - Engine cowls ... Condition - Checked Closed / Locked

7 - Air inlets
- Main ... No cracks - Unobstructed

Check for no cracks, which are sometimes put in evidence by traces of soot resulting from exhaust gases.
- Lateral / upper ... Unobstructed

Lateral air inlets, which supply air conditioning system and oil cooler, are provided with blanking covers. It is not the case for upper air inlets of RAM AIR system (circular grille located in front of R.H. windshield) and of vapor cycle cooling system (two rectangular grilles located forward of the circular grille).

8 - Propeller and spinner .. Checked (No nicks, cracks or oil leaks / Attachment)

In case of operation from contaminated runways, it is necessary to carefully examine propeller blades, where traces of abrasion may be found. Propeller damage may reduce blade life time and degrade performance. Any propeller damage should be referred to maintenance personnel.

9 - Nose gear
- Shock absorber / doors / tire / wheel well .. Checked

Without passengers and baggages on board, the unpainted surface of the nose gear shock absorber tube must be visible about:
- 57 mm (2.22 in) of minimum height with full tanks,
- 63 mm (2.46 in) of minimum height with half tank.

NOTE
Crush or relieve the shock absorber one time or twice before the inspection to remove possible sticking

In case of doubt, request a check of the shock absorber pressure.

10 - R.H. exhaust stub .. Checked (Condition / No cracks)
PREFLIGHT INSPECTION (9/10)

R.H. wing

Additional remarks are identical to those of L.H. wing.

1 - Fuel tank drain (two on each wing) .. Drained
(Fuel free of water and contamination)

2 - Main landing gear
 - Shock absorber / doors / tire / wheel well .. Checked

3 - Wing deicer boots ... Checked
(Condition / Attachment)

4 - Stall warning ... Checked
(Condition / Deflection)

5 - Wing lower surface .. Checked
(No leaks)

6 - Fuel tank Cap Closed / Locked

7 - Fuel tank air vent ... Unobstructed - Checked

8 - Right pitot ... Condition - Checked

9 - Winglet / nav. light / strobe / landing light / recognition light / taxi light Condition - Checked

10 - Trailing edge static discharger ... Checked
(Condition / Number / Attachment)

11 - Aileron / spoiler ... Checked
(Condition / Free movement / Deflection)

12 - Flap ... Checked
(Condition / Play)

13 - Rear R.H. karman
 - Oxygen cylinder ... OPEN
 - Oxygen quantity ... Checked

14 - Oxygen pressure ... Checked

Fuselage rear section / Empennages

Check that outside handle of emergency exit is flush with door skin.

1 - ELT ... ARM
 - ELT door ... Closed / Locked

 Access to ELT is possible through an inspection door located on R.H. side of fuselage rear section.

2 - Static pressure ports ... Clean - Checked
PREFLIGHT INSPECTION (10/10)

3 - Ventral fins ... Checked
 (Condition / Attachments)
 Ventral fins are made of two parts (one fixed part and one removable part with rear lower inspection door).
 Check that these two parts are connected by the locking roller.

4 - Inspection door under fuselage Closed - Checked
 (Attachments)

5 - Horizontal stabilizer deicer boots (R.H. side) Checked
 (Condition / Attachments)

6 - Elevator and trim .. Checked
 (Condition / Deflection free movement / Trim position)
 To check the deflection, hold the two half-elevators near fuselage, inside both elevator trims to avoid stresses.

7 - Static dischargers ... Checked
 (Condition)

8 - Vertical stabilizer deicer boots Checked
 (Condition / Attachments)

9 - Rudder and trim ... Checked
 (Condition / Trim position)

10 - Static dischargers .. Checked
 (Condition)

11 - Tail cone / nav. lights / strobe Condition - Checked

12 - Static pressure ports .. Clean - Checked
BEFORE STARTING ENGINE (1/4)

Check that the weight and balance are within the correct limits. Brief passengers about use of seat belts and the emergency oxygen system, as well as opening the access door and the emergency exit.

1 - Preflight inspection ... Completed
2 - Cabin access door ... Closed / Locked
3 - "Pilot" door (if installed) ... Closed / Locked
4 - Baggage .. Stowed
5 - Pilot seat and R.H. front seat (if occupied) Adjusted
 - Height adjustment ... Max. UP
 - Fore and aft adjustment ... Adjusted and check locking
 - Height adjustment ... Adjusted

CAUTION

IT IS MANDATORY TO ADJUST SEATS IN FORE-AFT MOVEMENT WHEN SEAT IS IN MAXIMUM HIGH PERMISSIBLE POSITION, TO AVOID INTERFERENCE BETWEEN SIDE UPHOLSTERY PANEL AND SEAT HOUSING IN LOW AND INTERMEDIATE POSITIONS.

Adjust pilot's and R.H. front station seats and harnesses, so as to permit access to flight controls. The pilot at L.H. station must be able to easily reach ECS panel.

6 - L.H and R.H. pedals ... Adjusted
7 - Belts and harnesses (Pilot and passengers) Fastened
 Check for pilot and passengers correct locking of belt buckles, as well as automatic locking of shoulder harness by exerting a rapid pull on the latter.

8 - Crash lever .. Down
9 - ELT ... ARM/OFF
10 - "MICRO/MASK" micro inverter .. MICRO
11 - De-ice systems ... All OFF
12 - Park brake .. ON
 "PARK BRAKE" CAS message appearance does not indicate that parking brake is set. For that, press on brake pedals before turning brake selector to the right.
13 - Landing gear control ... DN
14 - Pitch trim wheel .. Checked
BEFORE STARTING ENGINE (2/4)

15 - “MAN OVRD” control ... Backward

CAUTION

MAKE SURE THAT "MAN OVRD" CONTROL IS BACKWARD TO AVOID OVERTemperature RISks AT START.

CAUTION

WHEN THE ENGINE IS SHUTDOWN, THE THROTTLE MUST NOT BE MOVED INTO THE REVERSE AREA.

16 - Throttle ... CUT OFF

17 - Flaps control ... UP

18 - Fuel tank selector .. L or R

19 - “BLEED” switch ... OFF/RST

20 - “DUMP” switch ... Guarded

21 - “A/C” switch ... OFF

22 - “ALTERNATE STATIC” selector Pushed

23 - “EMERGENCY RAM AIR” control knob Pushed

24 - Circuit breakers .. All pushed

25 - “ESS BUS TIE” switch .. Guarded

26 - “AP / TRIMS” switch .. OFF

27 - “FUEL SEL” selector ... MAN

28 - “AUX BP” switch .. OFF

29 - “IGNITION” switch .. AUTO

The “IGNITION” switch is normally selected to AUTO. This ensures ignition, whenever the starter is activated.

30 - “STARTER” switch .. OFF

If not, starter is going to operate as soon as “SOURCE” selector is positioned on BATT or GPU.

31 - “DIMMER” switch ... OFF

32 - “CABIN” switch .. OFF

33 - “ACCESS” switch .. OFF

34 - “PANEL” rheostat ... Fully turned to the left

35 - All lights ... OFF

36 - Crash lever ... UP
BEFORE STARTING ENGINE (3/4)

37 - "SOURCE" selector ... BATT (battery start) GPU (GPU start)
Check "GPU DOOR" CAS message is illuminated if GPU use.
Check voltmeter 28 Volts ± 0.5 Volt if GPU use, higher than 24.5 Volts if Battery.

38 - Battery voltage ... Checked
If Batt voltage < 24.5V, ask for a GPU and be ready to a GPU start.

39 - "GENERATOR" selector ... MAIN
Check "MAIN GEN" CAS message is illuminated.

40 - Park Brake ... ON
Check "PARK BRAKE" CAS message is illuminated.
"PARK BRAKE" CAS message illuminated does not indicate that parking brake is set. For that, press on brake pedals before turning brake selector to the right.

41 - "PASSENGERS OXYGEN" switch .. OFF

42 - Pilot's "OXYGEN" switch ... ON
Set ON the pilot's "OXYGEN" switch after the "PASSENGERS Oxygen" switch position check to avoid passengers mask deployment.
Check the "OXYGEN" CAS message is off. If not, open isolation valve of the oxygen cylinder in R.H. Karman.

43 - Front oxygen masks ... Checked
Press push-button "PRESS TO TEST" : the blinker shall turn red momentarily, then turns transparent.

44 - Fuel ... Checked
- Quantity ... Checked
- Tank selector ... L or R
- "FUEL SEL" switch ... AUTO
Check "AUTO SEL" CAS message is off.
- "SHIFT" push-button ... Pressed
The selector changes tank. On ground, observe a tank change every 75 seconds

Edition 1 - December 5, 2014
Rev. 1
BEFORE STARTING ENGINE (4/4)

45 - Engine parameters ... Checked

A hot engine will have an ITT above 150°C, which will give a hot start up. Particular monitoring to ITT will have to be done, to stay within the ITT enveloppe.
STARTING ENGINE (1/2)

1 - Strobes ... ON

2 - G1000 .. Composite mode

If there is a loss of MFD during start up sequence, that sequence will be ended using the left PFD in composite mode.

3 - “AUX BP” switch ... ON

Check ”AUX BOOST PMP ON” CAS message is illuminated.
Check ”FUEL PRESS” CAS message is OFF.

4 - Propeller area ... Clear

5 - “STARTER” switch ... ON, start timer

Check ”STARTER” CAS message is illuminated.
Check ”MAIN GEN” CAS message is illuminated.

CAUTION

IF 5 SECONDS AFTER HAVING POSITIONED STARTER SWITCH TO ”ON” POSITION THERE IS NO START, INTERRUPT STARTING ATTEMPT BY USING THE ”ABORT” POSITION OF THE STARTER SWITCH.

THE UTILISATION OF THE STARTER IS BOUND BY LIMITATIONS MENTIONED IN CHAPTER 2.4 ”STARTER OPERATING LIMITS”.

When Ng ~13 % and ITT below 150°C and time below 20 s :

In case of starting with hot engine, an ITT decrease below 150°C (within starter operation limits), may allow to stay within the allowed ITT enveloppe.

6 - Throttle ... LO / IDLE

When throttle is positioned on LO / IDLE before having obtained 13 % of Ng, there is a risk of overtemperature further to an excessive accumulation of fuel inside the combustion chamber before ignition.

When Ng = 52 % (± 2 %)

7 - Check Starter is automatically OFF

Check ”STARTER” CAS message is OFF.

CAUTION

IF THE STARTER DOES NOT GO OFF AUTOMATICALLY, DISENGAGE IT USING THE ”ABORT” POSITION OF THE STARTER SWITCH.

8 - Engine parameters .. Checked

Check Ng ≥ 52 %, oil pressure and ITT in green sector.

If GPU start,

9 - ”SOURCE” selector .. BATT
STARTING ENGINE (2/2)

10 - Electrical network ... Checked

11 - GPU disconnection done by ground team

Check "GPU DOOR" CAS message is OFF.

When Ground team is cleared from propeller,

12 - Throttle ... Flight IDLE

13 - Engine parameters ... Checked

Check Ng = 70 % (± 2 %), oil pressure and ITT in green sector.

14 - "AUX BP" switch ... AUTO

15 - "GENERATOR" selector ... Checked MAIN

Check "MAIN GEN" CAS message is OFF. It normally goes out, as soon as the "STARTER" CAS message goes out.

If not, increase Ng over 70 % to start main generator.

- Generator & Battery Ammeter ... Charged Checked
- BAT & ESS Voltmeters .. Voltage around 28 VOLTS.

CAUTION : IF
- NO IGNITION 10 SECONDS AFTER HAVING POSITIONED THROTTLE TO LO / IDLE,
- OVER TEMPERATURE INDICATION APPEARS (MAX. ITT < 870°C FOR MORE THAN 20 SECONDS, < 1000°C FOR MORE THAN 5 SECONDS),
- NG < 30% AFTER 30 SECONDS OF STARTER USE,
- NG < 50% AFTER 60 SECONDS OF STARTER USE,

ABORT STARTING PROCEDURE :
- THROTTLE ... CUT OFF
- "IGNITION" SWITCH ... OFF or AUTO

WHEN ITT < 850°C :
- "STARTER" SWITCH ... ABORT
MOTORING (1/2)

To drain fuel accumulated inside the combustion chamber, a motoring procedure is required following an aborted start.

A 15-second dry motoring run is sufficient to clear any fuel pooled in the engine. The fuel is removed in liquid or vapor form, through an airflow intended to dry combustion chamber, turbines and exhaust nozzles.

To improve cooling of the bearing cavities and prevent oil coking after shut-down in high OAT [above 35°C (95°F)] environment, it is recommended to perform a 30-second dry motoring run.

It is possible that no trace of drainage be observed under engine, due to the drainage collector intended to prevent parking area from contamination.

<table>
<thead>
<tr>
<th>CAUTION</th>
<th>AFTER ANY STARTING INTERRUPT PROCEDURE :</th>
</tr>
</thead>
<tbody>
<tr>
<td>- WAIT FOR ENGINE TOTAL SHUT-DOWN,</td>
<td></td>
</tr>
<tr>
<td>- WAIT AT LEAST 30 SECONDS BEFORE INITIATING A MOTORING.</td>
<td></td>
</tr>
</tbody>
</table>

1 - Engine controls

- "MAN OVRD" control .. Backward

CAUTION

WHEN THE ENGINE IS SHUTDOWN, THE THROTTLE MUST NOT BE MOVED INTO THE REVERSE AREA.

- Throttle ... CUT OFF

2 - Fuel

- Tank selector ... L or R
- "AUX BP" switch .. ON

WARNING CAS MESSAGE "AUX BOOST PMP ON" ON

WARNING CAS MESSAGE "FUEL PRESS" OFF

Fuel pressure is necessary for lubrication of HP pump.

3 - "IGNITION" switch ... OFF

WARNING CAS MESSAGE "IGNITION" OFF

To clear fuel and vapor internally trapped :

4 - "STARTER" switch ... ON, motor for max 15 seconds

WARNING CAS MESSAGE "STARTER" ON

5 - "STARTER" switch .. ABORT

WARNING CAS MESSAGE "STARTER" OFF
MOTORING (2/2)

To cool engine following shut-down in high temperature environment:

4 - "STATER" switch ON, motor for max 30 seconds

WARNING CAS MESSAGE "STATER" ON

If ignition symptoms occur (ITT increasing), check that "IGNITION" switch is OFF, that throttle is on CUT OFF and continue motoring.

5 - "STATER" switch ... ABORT

WARNING CAS MESSAGE "STATER" OFF

6 - FUEL panel

- "AUX BP" switch .. OFF

WARNING CAS MESSAGE "AUX BOOST PMP ON" OFF

WARNING CAS MESSAGE "FUEL PRESS" ON
MOTORING FOLLOWED BY AN ENGINE START (1/2)

Amplified procedures stated in starting engine sequences using airplane power or with GPU are also to be applied to hereunder procedure.

Within starter operating limits (continuous max. 1 minute), it is possible to initiate a starting procedure from a motoring procedure.

This procedure will conserve the battery by taking advantage of first Ng acceleration.

1 - Engine controls
 - "MAN OVRD" control .. Backward

 CAUTION
 WHEN THE ENGINE IS SHUTDOWN, THE THROTTLE MUST NOT BE MOVED INTO THE REVERSE AREA.

 - Throttle ... CUT OFF

2 - Fuel
 - Tank selector ... L or R
 - "AUX BP" switch ... ON

 WARNING CAS MESSAGE "AUX BOOST PMP ON" ON
 WARNING CAS MESSAGE "FUEL PRESS" OFF

3 - "IGNITION" switch ... OFF

4 - "STARTER" switch .. ON, start timer

5 - After 20 seconds and ITT < 150°C :
 - "IGNITION" switch .. AUTO
 - Ng .. Check > 13 %
 - Throttle ... LO / IDLE

6 - Monitor increase of :
 - ITT ... (max. ITT \leq 870°C for 20 seconds max. \leq 1000°C for 5 seconds max.)
 - Ng
 - Oil pressure

 WARNING CAS MESSAGE "OIL PRESS" OFF

 NOTE
 No action is required for the following conditions :
 - ITT from 850 °C to 870 °C limited to 20 seconds,
 - ITT from 870 °C to 1000 °C limited to 5 seconds
MOTORING FOLLOWED BY AN ENGINE START (2/2)

When Ng = 52 % (± 2 %)

7 - Check Starter is automatically OFF
 Check "STARTER" CAS message is OFF.

CAUTION
 IF THE STARTER DOES NOT GO OFF AUTOMATICALLY, DISENGAGE IT USING THE "ABORT" POSITION OF THE STARTER SWITCH.

8 - Engine instruments ... CHECK : Ng > 52 %
 (Oil pressure / ITT = green sector)

9 - Throttle ... Flight IDLE

10 - Engine instruments ... Check : Ng ≥ 70 % (± 2 %)
 (Oil pressure / Oil temperature / ITT = green sector)

11 - FUEL panel
 - "AUX BP" switch .. AUTO

 WARNING CAS MESSAGE "AUX BOOST PMP ON" OFF

12 - Generator

 WARNING CAS MESSAGE "MAIN GEN" OFF
 "MAIN GEN" CAS message normally goes out, as soon as "STARTER" CAS message goes out.

 If not, increase Ng over 70 % to start main generator.

 - Generator and battery ammeters Charge checked
 - BAT and ESS voltmeters .. Voltage checked
 (V ≥ 28 Volts)
AFTER STARTING ENGINE (1/4)

CAUTION
GENERATOR LOAD < 200 AMPS

1 - PFD 1, MFD and PFD 2 .. NORMAL mode

2 - "GENERATOR" selector
 For these tests, "BLEED" switch must be left OFF, to unload the generator circuit.
 - On "MAIN" ... Voltage and current checked
 When MAIN LOAD ≤ 80 amps :
 - On "ST-BY" ... Voltage and current checked
 (reset if necessary)
 If the indicated voltage on the "ST-BY" generator is low (close to 27 volts), reset the "ST-BY" generator and recheck the voltage.
 The indicated voltage should be in the green range.
 - then again on "MAIN"

3 - "AP / TRIMS" switch ... ON

4 - Oxygen supply .. Available for the planned flight
 (see tables of paragraph "IN-FLIGHT AVAILABLE OXYGEN QUANTITY" in this Chapter
 and Chapter 7.10 for a FAR 135 type operation)

5 - PFD 1, MFD and PFD 2
 Detailed control procedures of G1000 avionics system are described in the "GARMIN" G1000 Integrated Flight Deck Cockpit Reference Guide for the Socata TBM 900.
 - Brightness .. Adjust if necessary
 - DISPLAY BACKUP button ... Check
 then return to NORMAL mode

6 - Radar Mode Softkey .. STANDBY
 (A one-minute warm up period is initiated. The count down is displayed on the screen)

Pre-MOD70-0529-21

7 - ECS panel
 - "BLEED" switch .. AUTO
 - "A/C" switch ... AUTO
 A cabin temperature good regulation will only be obtained, if "A/C" switch is set to AUTO.
 - "PRES MODE" ... AUTO
 - "CONTROL" selector ... As required
 - "TEMP/°C" selectors .. Adjust
AFTER STARTING ENGINE (2/4)

- "HOT AIR FLOW" distributor .. As required

Usually selected to CABIN. However, if canopy misting is evident, select DEFOG to increase demisting efficiency.

Post-MOD70-0529-21

7 - "A/C" and "PRESSURIZATION" panel

- "BLEED" switch ... AUTO
- "A/C" switch ... As required

A cabin temperature good regulation will only be obtained, if "A/C" switch is set to "PILOT" or "PLT + PAX".

- "MODE" pressurization switch .. As required
- "TEMPS" selectors .. Adjust
- "HOT AIR FLOW" distributor ... As required

Usually selected to CABIN. However, if canopy misting is evident, select DEFOG to increase demisting efficiency.

All

8 - Stand-by instruments ... Checked
9 - ADI/HSI on PFD1 / PFD2 .. Checked
10 - Altimeter setting ... Checked
11 - VHF/VOR/GPS ... Adjusted - Tested

- Radar ... Adjusted - Tested
- Stormscope/TAS/TAWS/Radio altimeter (if installed) Adjusted - Tested
12 - MFD flight management

- Weight computing .. Set/Checked
- FOB synchro ... Set
- FPL (if requested) .. Set

13 - LFE selection .. Done

Landing Field Elevation selection is done using:

- destination airport of the flight plan, pressing "SYSTEM" and then "FMS LFE" on the MFD.
- a manual entry, pressing "SYSTEM" then "MAN LFE" on the MFD.
AFTER STARTING ENGINE (3/4)

14 - AP / TRIMS

- "AP / TRIMS" operation ... Check

Detailed control procedures of autopilot and electrical pitch trim are described in the "GARMIN" G1000 Integrated Flight Deck Cockpit Reference Guide for the Socata TBM 900.

- Pitch trim ... UP / DN, then adjusted

Adjust the indicator in green range (graduated from 12 to 37 %).

- Yaw trim ... L / R, then adjusted

Adjust the indicator in green range TO (TAKEOFF).

- Roll trim ... L / R, then adjusted

Adjust the indicator first at neutral position (horizontal marker).

15 - DE ICE SYSTEM panel ... Checked

Flight into known icing conditions is authorized only when all ice protection equipment are operating correctly. This equipment may be activated before takeoff, even during taxiing, in case of icing conditions on ground. Refer to Chapter 4.5 "PARTICULAR PROCEDURES" of this Section.

- "PROP DE ICE" switch ... ON

Check illumination of the green light located above the switch

Illumination of the green light shows that power supplied to blade root electric resistors is between 8 and 10 amperes. It is advised to wait at least a whole half cycle (90 seconds) to check that both blade pairs are correctly deiced.

- "PROP DE ICE" switch ... OFF

- "WINDSHIELD" switch ... ON

Check illumination of the green lights located above the switch (except if hot conditions)

This light may remain OFF, if cabin temperature is very high, for example after a prolonged parking in hot conditions (see Chapter 7.13 for operational principle).

- "WINDSHIELD" switch ... OFF

Increase power so as to get Ng ≥ 80% to check AIRFRAME DE ICE.

Theoretically, necessary air bleed to inflate wing and empennage leading edges, as well as depression necessary to their deflation are sufficient when throttle is positioned on Flight IDLE. However, it is advised for check to choose a Ng power ≥ 80 % in order to obtain operation design pressure, which enables illuminating surely the two green lights and avoiding VACUUM LOW untimely alarms.

- "AIRFRAME DE ICE" switch ... ON

Visually check functioning of deicer boots during 1 total cycle and illumination of the two green lights located above the switch
AFTER STARTING ENGINE (4/4)

The cycle lasts 67 seconds. Check both inflation impulses, and illumination of each corresponding green light:

- the first impulse inflates the external and middle wing boots,
- the second impulse inflates the leading edge boots of empennages and inner wing.

- "AIRFRAME DE ICE" switch ... OFF
- "INERT SEP" switch .. ON

WARNING CAS MESSAGE INERT SEP ON ON
full deflection takes about 30 seconds

16 - "INERT SEP" switch is kept ON while taxiing in order to avoid ingestion of particles by the engine.
IN-FLIGHT AVAILABLE OXYGEN QUANTITY

Oxygen pressure ... Read
Outside air temperature (OAT) .. Read

1 - Determine the usable oxygen percent using the chart Figure 4.4.1.

2 - Determine the oxygen duration in minutes by multiplying the values read on table Figure 4.4.2 by the percent obtained with the chart Figure 4.4.1.

<table>
<thead>
<tr>
<th>Number of passengers</th>
<th>Duration: Passengers, plus 1 pilot</th>
<th>Duration: Passengers, plus 2 pilots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>226</td>
<td>113</td>
</tr>
<tr>
<td>1</td>
<td>162</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>127</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>104</td>
<td>71</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
<td>65</td>
</tr>
</tbody>
</table>

Figure 4.4.1 - USABLE OXYGEN

Figure 4.4.2 - OXYGEN DURATION
CAUTION

GENERATOR LOAD < 200 AMPS

1 - “TAXI” light ... ON

2 - Passenger briefing .. As required

3 - Park brake ... OFF

Make sure that chocks are removed (if used).

WARNING CAS MESSAGE PARK BRAKE OFF

4 - L.H. brakes ... Checked

5 - Nose wheel steering .. Checked

Check the control wheel move (roll) in the same direction as the rudder pedals due to the rudder / aileron interconnect.

6 - Throttle ... As required

After initial acceleration, throttle may be in the “TAXI RANGE” sector, avoiding excessive movements in order to keep a constant ground speed.

CAUTION

AVOID USING REVERSE DURING TAXIING.

Operation in the Beta (β) range / reverse is not restricted during ground operations. However, foreign particles (dust, sand, grass, gravel, etc...) may be blown into the air, ingested by the engine (above all if "INERT SEP" switch is turned OFF) and cause damage to the propeller.

7 - Flight instruments ... Check

Check navigation and communication systems before or during taxiing, check gyroscopic instruments on PFDs 1 / 2 and stand-by ADI during ground turns.

8 - CAS ... Checked

9 - LFE ... Checked
BEFORE TAKEOFF (1/3)

CAUTION

GENERATOR LOAD < 200 AMPS

1 - Park brake ... ON

WARNING CAS MESSAGE PARK BRAKE ON

2 - Throttle .. Flight IDLE

[Ng : 69 % (± 2 %)]

3 - Throttle ... Flight IDLE to HI / IDLE twice,

then Flight IDLE During this test, keep the time spent with the propeller RPM in the caution (yellow) range at a minimum.

4 - Flaps .. TO

5 - DE ICE SYSTEM panel ... As required

- "AIRFRAME DE ICE" switch As required

- "PROP DE ICE" switch .. As required

If runway is in good condition, without icing conditions :

- "INERT SEP" switch .. As required

WARNING CAS MESSAGE INERT SEP ON As required

CAS message goes out immediately, but it takes 30 seconds to retract the separator.

If there is standing water or other contamination on the runway :

- "INERT SEP" switch .. Leave ON

WARNING CAS MESSAGE INERT SEP ON ON

- "WINDSHIELD" switch .. As required

- "PITOT L HTR" switch .. ON

- "PITOT R & STALL HTR" switch ON

If icing conditions are foreseen, refer to Chapter 4.5 "PARTICULAR PROCEDURES" of this Section, Paragraph "Flight into known icing conditions".

6 - Flight controls .. Deflections checked
BEFORE TAKEOFF (2/3)

7 - Trims

- Pitch Adjusted
 Adjust inside green index sector, depending on the current balance condition.
- Yaw Adjusted
 Adjust abeam "TO" index.
- Roll Adjusted
 Adjust at neutral position.

8 - Pilot's / Passengers' belts

- Passengers' table Stowed

9 - "STROBE" switch

ON

10 - CAS display

All messages OFF, EXCEPT PARK BRAKE ON and, if used INERT SEP ONON

11 - Fuel

- Gages : quantity, symmetry Checked
- "FUEL SEL" switch Check AUTO
- "AUX BP" fuel switch Check AUTO

12 - Flight instruments

- Altimeter setting Adjusted/Checked
- "LFE" Adjusted/Checked

13 - Takeoff distances

See "Takeoff distances" Chapter 5.9

14 - Rotation speed (V_R)

Checked
BEFORE TAKEOFF (3/3)

15 - VHF/VOR/GPS/XPDR .. ADJUSTED/CHECKED

- Stormscope/TAS/TAWS/ADF (if installed) ADJUSTED/CHECKED
- Radar ... ADJUSTED/CHECKED

On ground, maintain radar on STANDBY in order not to generate radiations prejudicial to outside persons.

- Radio altimeter (if installed) ADJUSTED/CHECKED
- Transponder code ... ADJUSTED/CHECKED

16 - Engine instruments .. Check

All engine parameters must be in green range, except propeller RPM, which will be about 1000 RPM or more with throttle at Flight IDLE.

17 - Battery charge ... < 50 Amperes

CAUTION

DO NOT TAKE OFF IF BATTERY CHARGE > 50 Amperes (± 4 Amperes)

(CAS MESSAGE BAT AMP ON)

After starting engine with airplane power, a battery charge above 50 amperes is normal. If this indication remains steady at a high value, it may be then a battery or generation system failure. Do not take off in these conditions.

18 - Park brake ... OFF

WARNING CAS MESSAGE PARK BRAKE OFF
TAKEOFF (1/2)

WHEN LINED UP

CAUTION

IF HEAVY PRECIPITATION, TURN IGNITION AND INERT SEP ON.

IF ICING CONDITIONS ARE FORESEEN, REFER TO CHAPTER 4.5, PARAGRAPH "FLIGHT INTO KNOWN ICING CONDITIONS".

1 - Horizon ... Check attitude $\pm 2^\circ$
Horizon has been set so as to indicate a 2° nose up attitude, when airplane center of gravity is at a middle average.

2 - Heading - HSI - Stand-by compass ... Check
The indication of the stand-by compass is disturbed when windshield deice systems are activated.
 - Altimeter setting on PFDs 1/2 .. Check

3 - Lights
 - "OFF/TAXI/LDG" switch .. LDG

4 - Engine instruments .. (ITT = green sector)
CHECK

5 - CAS display ... Check
All messages OFF,
extcept INERT SEP ON if used
extcept IGNITION if used

6 - Apply brakes and increase power up to RPM in green range.

7 - Brakes ... Released
Torque will be about 40 % to 60 % before brake release. For a normal takeoff, maximum torque (100 %) will be applied after brake release. On short runway, maximum torque will be applied before brake release.

8 - Throttle ... TRQ = 100 %

9 - Takeoff attitudes
 - Normal takeoff .. Attitude : 10°
 - Short takeoff
 - Weight < 6579 lbs (2984 kg) .. Attitude : 15°
 - Weight \geq 6579 lbs (2984 kg) .. Attitude : 12°5

10 - Vertical speed indicator ... Positive

11 - Brakes ... Apply (Briefly)
TAKEOFF (2/2)

12 - Landing gear control (IAS < 150 KIAS) .. UP

 During the sequence :

 - The amber caution light flashes; it indicates that the landing gear pump is running. It goes off when the
 3 landing gears are up locked. “GEAR UNSAFE” red warning light ON and “GEAR UNSAFE” CAS
 message indicate an anomaly (refer to EMERGENCY PROCEDURES).

 - It is possible that the 3 landing gear position green indicator lights flash unevenly then go off at the end of
 the sequence.

 At sequence end, check : All warning lights OFF

13 - Initial climb speed ... 115 KIAS

 In case of initial climb at Vx,
 it is recommended not to retract flaps to UP before 500 ft AGL 100 KIAS

14 - Flaps ... UP
CLIMB

Only when flaps are confirmed UP :

1 - Climb speed (recommended) 124 KIAS
 - Trims (Pitch, Roll and Yaw) Adjusted
2 - “YAW DAMPER” push-button ON
3 - Lights
 - “OFF/TAXI/LDG” switch As required
4 - Throttle .. Adjust
 according to engine operation tables - Chapter 5.8
 or to MXCL indicator on the PFDs

CAUTION

OBSERVE TRQ / Ng / Np / ITT / T° AND OIL PRESSURE LIMITATIONS.

USE OPTIMUM TORQUE AND / OR REFER TO TABLES IN CHAPTER 5.8.

Torque setting during climb must be adjusted according to engine operation tables in Chapter 5.8. These tables give the max. climb power torque setting (MXCL). For each engine, when torque is reduced below 100 % at high altitude according to the tables, during the final climb, reaching the maximum permitted Ng (104 %) is possible and the ITT will be approximately constant, giving a particular value of ITT. For a simplified engine operation during climb, power may be set first of all by torque, using 100 %, then, when the ITT typical value for climb is reached, by indicated ITT, using this particular value. The margin between this indicated ITT and 790°C (recommended ITT limit during continuous operation) will gradually reduce as flight time is performed.

5 - Climb speed .. 124 KIAS
 Performance tables concerning climb at 124 and 170 KIAS / M 0.40 are given in Chapter 5.10.

Pre-MOD70-0529-21

6 - ECS panel
 - “TEMP/°C” selectors Adjust

Post-MOD70-0529-21

6 - “A/C” and “PRESSURIZATION” panel
 - “TEMP” selectors .. Adjust

All

7 - Fuel tank gages .. Check / correct
 (Quantity / Symmetry)

8 - Radar Mode Softkey .. As required

9 - DE ICE SYSTEM ... As required
 Refer to Chapter 4.5 “PARTICULAR PROCEDURES”

CAUTION

IF HEAVY PRECIPITATION, TURN IGNITION AND INERT SEP ON.
CRUISE

1 - Throttle

Adjust according to engine operation tables - Chapter 5.8 or to Cruise index on the PFDs

CAUTION

OBSERVE TRQ / Ng / Np / ITT / T° AND OIL PRESSURE LIMITATIONS.

USE OPTIMUM TORQUE AND / OR REFER TO TABLES IN CHAPTER 5.8.

Engine operation tables (Chapter 5.8) give torque to be applied according to OAT, in order not to exceed authorized maximum power.

When "INERT SEP" switch is OFF, a more accurate setting of power must then be performed according to cruise performance tables presented in Chapter 5.11.

2 - Pressurization

Check

3 - Fuel

- Gages

REGULARLY CHECK:
 - consumption
 - expected fuel at destination
 - tank automatic change (every 5 minutes)
 - symmetry [max. dissymmetry 15 USG (57 Litres)]

When the cruise parameters are stabilized (after 4 min minimum)

4 - Cruise parameters / engine data

Check / Record

5 - DE ICE SYSTEM

As required Refer to Chapter 4.5 "PARTICULAR PROCEDURES"

CAUTION

IF HEAVY PRECIPITATION, TURN IGNITION AND INERT SEP ON.
DESCENT

1 - Altimeter settings ... Done

2 - DE ICE SYSTEM ... As required

Refer to Chapter 4.5 "PARTICULAR PROCEDURES"

CAUTION
IF HEAVY PRECIPITATION, TURN IGNITION AND INERT SEP ON.

3 - Windshield misting protection system As required

Prior to descent in moist conditions, turn "HOT AIR FLOW" distributor to 12 o'clock position and set "WINDSHIELD" switch to ON to avoid canopy misting.
If misting continues, turn "HOT AIR FLOW" distributor to the left or refer to Chapter 3.12 Paragraph "WINDSHIELD MISTING OR INTERNAL ICING".

4 - Fuel

- Gages ... (Check (Quantity / Symmetry)

- Fullest tank .. Select

5 - Passengers briefing ... As required

6 - Seats, belts and harnesses ... Locked

7 - Passengers' table ... Stowed
BEFORE LANDING (1/2)

Long final

1 - Altimeters ... Check

2 - Fuel
 - Gages ... Check
 (Quantity / Symmetry)
 - Fullest tank ... Select

Maximum tolerated dissymmetry is 15 USG (57 Litres).

3 - "INERT SEP" switch .. ON

4 - Landing gear control (IAS ≤ 178 KIAS) DN
 - 3 green indicator lights ON
 - Red warning light ... OFF
 - "GEAR UNSAFE" CAS message OFF
 - Amber light ... OFF

During the sequence:

 - The amber light flashes; it indicates that the landing gear pump is running. It goes off when the 3 landing gears are down locked. "GEAR UNSAFE" red warning light ON and "GEAR UNSAFE" CAS message indicates an anomaly (refer to EMERGENCY PROCEDURES).

 - It is possible that the 3 landing gear position green indicator lights flash unevenly then come on at the end of the sequence.

5 - Flaps (IAS ≤ 178 KIAS) TO

6 - Lights
 - "OFF/TAXI/LDG" switch LDG

7 - Radar Mode Softkey STANDBY

Stabilized approach

8 - Flaps (IAS ≤ 122 KIAS) LDG

 However, when autopilot is engaged, in APR mode, with coupled GS, flaps must be extended in landing position before crossing the OUTER MARKER.

9 - Approach speed (Flaps LDG)
 - Without AP engaged : 85 KIAS
 - With AP engaged : ≥ 85 KIAS

This is to avoid any vertical deviation in case of late flaps extension to LDG position in short final.

To ensure positive and rapid engine response to throttle movement, it is recommended that a minimum of 10 % torque be maintained on final approach until landing is assured.
BEFORE LANDING (2/2)

10 - Autopilot (> 200 ft) Disconnect

11 - "YAW DAMPER" push-button OFF

The pilot effort required to use the rudder pedals is reduced if the yaw damper is turned off. This is particularly significant when landing in a crosswind.
LANDING

1 - Throttle ... Flight IDLE

Avoid three-point landings. Adopt a positive flight attitude in order to touch runway first with main landing gear.

WARNING

QUICKLY REDUCING THE POWER TO IDLE DURING THE FLARE MAY INDUCE A PRONOUNCED DECELERATION, WHICH MAY LEAD TO A DROP DOWN OF THE AIRCRAFT. REDUCE POWER SMOOTHLY.

After wheels touch

2 - Reverse ... As required

(Reverse may be applied as soon as the wheels touch the ground.)

To avoid ingestion of foreign objects, come out of the reverse range as speed reduces and use the brakes if necessary for further deceleration.

High power reverse at low speed can throw loose material into the air, and can cause control problems and decrease the comfort of crew and passengers. If permitted by the runway length, it is better to adopt a moderate reverse.

CAUTION

ON SNOWY OR DIRTY RUNWAY, IT IS BETTER NOT TO USE REVERSE BELOW 40 KIAS.

3 - Brakes ... As required

It is advised not to brake energetically, as long as speed has not reached 40 KIAS, as otherwise wheels may be locked.
GO-AROUND

1 - GO AROUND push-button ... Pushed
 It provides the moving up of the flight director to + 10°.

2 - Simultaneously
 - Throttle ... T/O power
 - Attitude ... 10°
 The airplane will tend to yaw to the left when power is applied. Right rudder pressure will be required to maintain coordinated straight flight until the rudder trim can be adjusted.

3 - Flaps ... TO

Weight below 6579 lbs (2984 kg)
If speed has been maintained at 80 KIAS or more and TRQ 100 %, select TO flaps as soon as the 10° attitude has been attained.
When the vertical speed is positive and when IAS is at or above 85 KIAS :

4 - Landing gear control ... UP
 All warning lights OFF

When IAS is at or above 110 KIAS :

5 - Flaps ... UP

6 - Climb speed ... As required

Weight above 6579 lbs (2984 kg)
If speed has been maintained at 85 KIAS or more and TRQ 100 %, select TO flaps as soon as the 10° attitude has been attained.
When the vertical speed is positive and when IAS is at or above 90 KIAS :

7 - Landing gear control ... UP
 All warning lights OFF

When IAS is at or above 115 KIAS :

8 - Flaps ... UP

9 - Climb speed ... As required

10 - Power ... As required
TOUCH AND GO

Before wheels touch

WARNING

QUICKLY REDUCING THE POWER TO IDLE DURING THE FLARE MAY INDUCE A PRONOUNCED DECELERATION, WHICH MAY LEAD TO A DROP DOWN OF THE AIRCRAFT. REDUCE POWER SMOOTHLY.

1 - Takeoff distances .. Checked
 See "Takeoff distances" Chapter 5.9

2 - Rotation speed (V_R) .. Checked

![Graph showing takeoff distances and rotation speed](image)

After wheels touch

1 - Flaps .. TO
 Check that flaps have well reached the TO position before increasing power. Do not increase power with full flaps, as airplane may lift off prematurely at low speed.

2 - Elevator trim .. Green sector
 To use elevator trim manual control is faster than to use electric control. Ensure that runway length is sufficient to complete this sequence.

3 - Throttle .. T/O power

4 - Takeoff attitudes
 - Normal takeoff .. ATTITUDE : 10°
 - Short takeoff
 - Weight < 6579 lbs (2984 kg) ATTITUDE : 15°
 - Weight ≥ 6579 lbs (2984 kg) ATTITUDE : 12°

However, the pilot's operating handbook does not supply distances concerning touch and go. These distances are let to pilot's initiative.
AFTER LANDING

CAUTION

GENERATOR LOAD < 200 AMPS

RUNWAY CLEAR - AIRPLANE STOPPED

1 - DE ICE SYSTEM panel
 - "AIRFRAME DE ICE" switch OFF
 - "PROP DE ICE" switch OFF
 - "INERT SEP" switch Checked ON
 - "WINDSHIELD" switch As required
 - "PITOT L HTR" switch OFF
 - "PITOT R & STALL HTR" switch OFF

2 - Radar .. Checked STANDBY
 Maintain radar on STANDBY in order not to generate radiations prejudicial to outside persons. The radar is automatically set to STANDBY after the touch-down.

3 - Transponder .. Checked SBY
 The transponder is automatically set to SBY after the touch-down.

4 - Flaps .. UP

5 - "STROBE" switch .. OFF

6 - Lights
 - "OFF/TAXI/LDG" switch TAXI

7 - Trims .. TAKEOFF position
SHUT-DOWN (1/2)

1 - Park brake .. ON

WARNING CAS MESSAGE PARK BRAKE ON

Pre-MOD70-0529-21

2 - ECS panel
 - "BLEED" switch .. OFF/RST
 - Check for cabin depressurization
 - "A/C" switch ... OFF

Post-MOD70-0529-21

2 - "A/C" and “PRESSURIZATION” panel
 - "BLEED" switch .. OFF/RST
 - Check for cabin depressurization
 - "A/C" switch ... OFF

All

3 - Throttle ... Flight IDLE for 2 minutes minimum

 This allows the engine to stabilize at minimum obtainable ITT in order to minimize the likelihood of oil coking in the #3 bearing area.

4 - "TAXI" light .. OFF

5 - "AP / TRIMS" switch ... OFF

6 - Throttle ... LO / IDLE for 15 seconds

 Keep throttle on LO / IDLE position for 15 seconds minimum before shutting down engine.

7 - Throttle ... CUT OFF

8 - "INERT SEP" switch .. OFF

9 - EXT LIGHTS panel
 - All switches .. OFF

10 - INT LIGHTS panel
 - All switches ... OFF

11 - Radar Mode Softkey .. OFF
SHUT-DOWN (2/2)

12 - Fuel

Wait for "AUX BP" operation.

- "AUX BP" switch OFF
- "FUEL SEL" switch MAN
- Tank selector OFF

13 - "OXYGEN" switch OFF

14 - "GENERATOR" selector OFF

15 - "SOURCE" selector OFF

16 - Crash lever Pulled down

17 - Park brake As required

CAUTION

IN CASE OF HIGH OAT [ABOVE 35°C (95°F)], IT IS REQUIRED TO PERFORM 30 SECONDS DRY MOTORING RUN AFTER SHUT-DOWN TO IMPROVE COOLING OF THE BEARING CAVITIES AND MINIMIZE OIL COKING (REFER TO PARAGRAPH "MOTORING").

- ESI-2000 - NORMAL PROCEDURE

 No pilot action required for normal shutdown. The ESI-2000 will shut down within 5 minutes.

- ESI-2000 - MANUAL PROCEDURE

 The ESI-2000 can be manually shut down when in the discharge mode to conserve battery power:
 - Remove all airplane power from the ESI.
 - Press any key (button) as stated by the on screen message.
 - Press the M (Menu) button repeatedly until shutdown menu is shown.
 - Press and hold the + (Hold) button until "SHUTTING DN" message is shown in the upper left corner of the screen.
4.5 - PARTICULAR PROCEDURES

REMARK : The procedures and procedure elements given in this Chapter "PARTICULAR PROCEDURES" supplement the normal procedures or complete certain elements of the normal procedures described in Chapter(s) 4.3 and/or 4.4.

FLIGHT INTO KNOWN ICING CONDITIONS (1/3)

CAUTION

THE AURAL STALL WARNING SYSTEM DOES NOT FUNCTION PROPERLY IN ICING CONDITIONS AND SHOULD NOT BE RELIED UPON TO PROVIDE ADEQUATE STALL WARNING IN ICING CONDITIONS AND AFTER LEAVING ICING CONDITIONS, IF ICE ACCRETION REMAINS ON THE AIRPLANE.

General

1 - Icing conditions exist when the OAT on the ground or in flight is +5°C or below, and visible moisture in any form is present (clouds, fog with visibility of one mile (1.6 km) or less, rain, snow, sleet or ice crystals).

2 - Icing conditions also exist when the OAT on the ground is +5°C or below and when operating on ramps, taxiways or runways where surface snow, ice, standing water or slush may be ingested by the engine or freeze on engine or cowlings.

NOTE

Refer to Figure 5.5.1 to convert OAT to SAT in flight.
SAT = OAT - 2°C on the ground.

3 - Flight into known icing conditions is authorized when all airplane equipment provided for ice protection is operating correctly. This includes :
- Pneumatic deice system for inboard and outboard wing, for stabilizers and for elevator horns.
- Propeller electrical deice system.
- Electrical heating system for both pitots and for the stall warning incidence sensor.
- Windshield electrical deice system.
- Inertial separator.

Description of deice systems is presented in Chapter 7.13.

Ice accumulation thickness is monitored by the pilot on the L.H. wing leading edge.

At night, a leading edge icing inspection light located on the fuselage L.H. side, activated by the "ICE LIGHT" switch, is provided.

Boots are automatically cycling at the optimum time to assure proper ice removal. Correct operation of the system can be checked observing the corresponding green advisory light illumination at each boot inflation impulse. If correct operation cannot be confirmed, do not enter or leave as soon as possible icing conditions.

Apply "LEADING EDGES DEICING FAILURE" emergency procedure.
FLIGHT INTO KNOWN ICING CONDITIONS (2/3)

Ice protection procedures

1. Prior to entering IMC, as a preventive:
 - If OAT $\leq 5^\circ C$:
 - "INERT SEP" SWITCH ... ON
 - "IGNITION" SWITCH ... ON
 - "PROP DE ICE" SWITCH .. ON
 - "AIRFRAME DE ICE" SWITCH ... ON
 - "WINDSHIELD DE ICE" SWITCH .. ON

2. When operating under IMC:
 - "INERT SEP" SWITCH ... ON
 - "IGNITION" SWITCH ... ON
 - "PROP DE ICE" SWITCH .. ON
 - "AIRFRAME DE ICE" SWITCH ... ON
 - "WINDSHIELD DE ICE" SWITCH .. ON

NOTE: When OAT is below -35°C, avoid operations of the "AIRFRAME DEICE SYSTEM" for a too long period because the boots could be damaged. The "INERT SEP" switch must be left ON while the airplane remains in icing conditions.

CAUTION

SHOULD CONDITIONS REQUIRE IT, APPLY THESE DIRECTIVES FROM BEGINNING OF TAXI ONWARDS.

IF AIRPLANE LEAVES ICING CONDITIONS, MAINTAIN "INERT SEP" ON AS LONG AS ICE THICKNESS ON NON-DEICED VISIBLE PARTS EXCEEDS 15 mm (OR $\frac{1}{2}$ INCH).

This will avoid ice fragments coming from propeller spinner and being ingested by engine.

NOTE

"IGNITION" switch may be left ON for a long period.

Standby compass indications are altered when windshield deicing system(s) operate(s).
FLIGHT INTO KNOWN ICING CONDITIONS (3/3)

3 - Procedures for holding, approach and landing in icing conditions:

- Minimum recommended speeds are:

<table>
<thead>
<tr>
<th>Weight</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6579 lbs (2984 kg)</td>
<td>> 6579 lbs (2984 kg)</td>
</tr>
<tr>
<td>Flaps UP</td>
<td>130 KIAS</td>
</tr>
<tr>
<td>Flaps TO</td>
<td>110 KIAS</td>
</tr>
<tr>
<td>Flaps LDG</td>
<td>90 KIAS</td>
</tr>
<tr>
<td></td>
<td>135 KIAS</td>
</tr>
<tr>
<td></td>
<td>110 KIAS</td>
</tr>
<tr>
<td></td>
<td>95 KIAS</td>
</tr>
</tbody>
</table>

- If there is ice on the unprotected surfaces of the airplane, during flight end phase, conduct holding with the flaps up. Use flaps as required for final approach and landing at minimum speeds noted above.

Ice accumulation effects

When ice has accumulated on the unprotected surfaces of the airplane, aerodynamic characteristics may be changed.

Particularly stall speeds may increase by up to:

- Flaps UP 20 KIAS
- Flaps TO 15 KIAS
- Flaps LDG 10 KIAS

In case of severe or prolonged icing, an ice concretion due to refreezing around the heated stall warning may appear. Above-recommended speeds take into account, on one side, the stall speed increase due to profile shape deterioration and, on the other side, the weight increase of the iced-up airplane (taking as a basis the airplane maximum weight when not iced-up).

Rate of climb values with ice accumulation on the unprotected surfaces are to be decreased by 10 %.

Cruise speeds may be decreased by 10 %, if cruise power is not changed, or more, if cruise power setting should be decreased due to the additional inertial separator limitations (ITT limitation).

Because of the higher landing speed, landing distances will be increased. In the landing configuration, using 90 KIAS approach speed increases landing distance by 20 % - refer to Chapter 5.14 "LANDING DISTANCES".
FLIGHT INTO SEVERE ICING CONDITIONS

THE FOLLOWING WEATHER CONDITIONS MAY BE CONDUCIVE TO SEVERE IN-FLIGHT ICING:

- Visible rain at temperatures below 0°C ambient air temperature,
- Droplets that splash or splatter on impact at temperatures below 0°C ambient air temperature.

Procedures for exiting the severe icing environment

REMARK: These procedures are applicable to all flight phases from takeoff to landing.

Monitor the ambient air temperature. While severe icing may form at temperatures as cold as -18°C, increased vigilance is warranted at temperatures around freezing with visible moisture present. If the visual cues specified in Section 2 “Limitations” for identifying severe icing conditions are observed, accomplish the following:

1 - Immediately request priority handling from Air Traffic Control to facilitate a route or an altitude change to exit the severe icing conditions in order to avoid extended exposure to flight conditions more severe than those for which the airplane has been certificated.

2 - Avoid abrupt and excessive maneuvering that may exacerbate control difficulties.

3 - Do not engage the autopilot.

4 - If the autopilot is engaged, hold the control wheel firmly and disengage the autopilot.

5 - If an unusual roll response or uncommanded roll control movement is observed, reduce the angle-of-attack.

6 - Do not extend flaps when holding in icing conditions. Operation with flaps extended can result in a reduced wing angle-of-attack, with the possibility of ice forming on the upper surface further aft on the wing than normal, possibly aft of the protected area.

7 - If the flaps are extended, do not retract them until the airframe is clear of ice.

8 - Report these weather conditions to Air Traffic Control.
FLIGHT UNDER HEAVY PRECIPITATIONS

1 - "IGNITION" switch ... ON

This action is intended, in highly improbable case of an engine flame-out further to an important ingestion, to ensure immediate restarting without action of the pilot.

2 - "INERT SEP" switch ... ON

UTILIZATION ON RUNWAYS COVERED WITH WATER

If takeoff or landing must be performed on a runway covered with water:

1 - "IGNITION" switch ... ON

2 - "INERT SEP" switch ... ON
UTILIZATION ON RUNWAYS COVERED WITH MELTING OR NOT TAMPED SNOW (1/2)

Refer if required to paragraph "UTILIZATION BY COLD WEATHER AND VERY COLD WEATHER".

CAUTION
WHEN ENGINE IS SHUTDOWN, DO NOT SET THE “PROP DE ICE” SWITCH TO ON, DAMAGE TO THE PROPELLER BLADES COULD RESULT

Preflight inspection
1 - Remove any snow or ice from the wings, stabilizers and movable surfaces, landing gear wells and gear doors, as well as flap tracks, actuators and their fairings.
2 - Spray anti-icing fluid on the wings, stabilizers and movable surfaces (upper and lower surfaces) and in the landing gear wells, shortly before takeoff.

Taxiing
1 - “INERT SEP” switch ... ON
2 - Taxi at very slow speed (max. 5 KIAS), flaps up, brake occasionally to maintain the brake pads warm (this will prevent any subsequent locking due to freezing after takeoff).

Before takeoff
1 - If the runway is long enough, takeoff should be performed with the flaps in the up position. In that case, rotation speed must be increased by 5 KIAS.

NOTE
Takeoff distances must be increased to take into account the flap position (+ 15 % compared to the takeoff position) and the runway condition.
The ground roll may be multiplied by 3 in some melting or not tamped snow cases.

2 - “IGNITION” switch ... ON
3 - “INERT SEP” switch ... ON

Takeoff
1 - Lightly lift up nose wheel during takeoff run in order to reduce the forward resistance due to snow accumulation against the wheel.
2 - After takeoff, normally retract the landing gear, then perform a complete cycle (extension / retraction) at IAS ≤ 150 KIAS.

Before landing
1 - “IGNITION” switch ... ON
2 - “INERT SEP” switch ... ON

Touch and Go
Prohibited
UTILIZATION ON RUNWAYS COVERED WITH MELTING OR NOT TAMPED SNOW (2/2)

On the ramp, after landing or taxiing:

1 - Do not use the parking brake to prevent brake lock.

2 - Use chocks and / or tie-down the airplane.
UTILIZATION ON ICY OR COVERED WITH TAMPED SNOW RUNWAYS (1/2)

Refer if required to paragraph “UTILIZATION BY COLD WEATHER AND VERY COLD WEATHER”.

CAUTION

WHEN ENGINE IS SHUTDOWN, DO NOT SET THE “PROP DE ICE” SWITCH TO ON, DAMAGE TO THE PROPELLER BLADES COULD RESULT

Preflight inspection

1 - Remove any snow or ice from the wings, stabilizers and movable surfaces, landing gear wells and gear doors, as well as flap tracks, actuators and their fairings.

2 - Spray anti-icing fluid on the wings, stabilizers and movable surfaces (upper and lower surfaces), shortly before takeoff.

Taxiing

1 - “INERT SEP” switch ON

2 - Taxi at very slow speed (max. 5 KIAS).

 Use β area of throttle to adjust speed.

 Apply very smooth variations using throttle.

3 - Steer the airplane using the rudder.

 Make turns at a very low speed, engine torque tends to make the airplane turn to the left.

4 - Use brakes only at very low speed and progressively.

Before takeoff

1 - “IGNITION” switch ON

2 - “INERT SEP” switch ON

Takeoff

1 - After takeoff, normally retract the landing gear, then perform a complete cycle (extension / retraction) at IAS ≤ 150 KIAS.

Before landing

1 - “IGNITION” switch ON

2 - “INERT SEP” switch ON

Landing

After wheel touch

1 - Use reverse only if necessary and very progressively by monitoring the airplane behaviour.

 The engine torque tends to make the airplane turn to the left.
UTILIZATION ON ICY OR COVERED WITH TAMPED SNOW RUNWAYS (2/2)

2 - Taxi at very slow speed (max. 5 KIAS).
 Use β area of throttle to adjust speed.
 Apply very smooth variations using throttle.
3 - Steer the airplane using the rudder.
 Make turns at a very low speed, engine torque tends to make the airplane turn to the left.
4 - Use brakes only at very low speed and progressively.

On the ramp, after landing or taxiing:
1 - Do not use the parking brake to prevent brake lock.
2 - Use chocks and / or tie-down the airplane.
UTILIZATION BY COLD WEATHER (-0°C TO -25°C) AND VERY COLD WEATHER (-25°C TO -40°C) (1/9)

REMARK: The procedures hereafter supplement the normal procedures for the airplane use when operating under temperatures between 0°C and -40°C on ground.

Figure 4.5.1 - OPERATING ENVELOPES BY COLD WEATHER (-0°C to -25°C) AND VERY COLD WEATHER (-25°C to -40°C)
UTILIZATION BY COLD WEATHER (-0°C TO -25°C) AND VERY COLD WEATHER (-25°C TO -40°C) (2/9)

ENVELOPE 1

The procedures hereafter supplement the normal procedures for the airplane use when operating in the "envelope 1" defined in Figure 4.5.1.

Preflight inspection

1 - Remove any snow or ice from the wings, stabilizers and movable surfaces.

 Apply, according to the condition of runways and taxiways, the procedures "UTILIZATION ON RUNWAYS COVERED WITH MELTING OR NOT TAMPED SNOW" or the procedures "UTILIZATION ON ICY OR COVERED WITH TAMPED SNOW RUNWAYS".

2 - Carry out a complete rotation of the propeller to check its free rotation.

3 - Do not perform a fuel draining. If the airplane is operating permanently under negative temperatures, drainings will have to be performed once a week after having parked the airplane in a heated hangar.

4 - Remove chocks and / or release ties from the airplane.

5 - Check the free deflection of the flight controls and of the elevator trim.

6 - Check the free deflection of throttle.

Before starting the engine / Starting the engine / After starting the engine

Apply normal procedures defined in Chapter(s) 4.3 and / or 4.4.

Taxiing / Before takeoff / Takeoff

1 - On "DE-ICE SYSTEM" panel:
 - "INERT SEP" switch ... ON
 - WARNING CAS MESSAGE "INERT SEP ON" ON
 - "PITOT L HTR" switch .. ON
 - "PITOT R & STALL HTR" switch ON
 - "PROP DE-ICE" switch ... ON

2 - Apply normal procedures

3 - Apply, according to the condition of runways and taxiways, the procedures "UTILIZATION ON RUNWAYS COVERED WITH MELTING OR NOT TAMPED SNOW" or the procedures "UTILIZATION ON ICY OR COVERED WITH TAMPED SNOW RUNWAYS".

Landing / After landing

1 - Apply normal procedures defined in Chapter(s) 4.3 and / or 4.4.

2 - Apply, according to the condition of runways and taxiways, the procedures "UTILIZATION ON RUNWAYS COVERED WITH MELTING OR NOT TAMPED SNOW" or the procedures "UTILIZATION ON ICY OR COVERED WITH TAMPED SNOW RUNWAYS".
UTILIZATION BY COLD WEATHER (-0°C TO -25°C) AND VERY COLD WEATHER (-25°C TO -40°C) (3/9)

Shut down

1 - Park brake .. OFF

WARNING CAS MESSAGE "PARK BRAKE" OFF

It is recommended not to use the parking brake by cold or very cold weather, so that the brakes do not stick when cooling.

2 - Apply normal procedures defined in Chapter(s) 4.3 and / or 4.4.

3 - Use chocks and / or tie-down the airplane using anchor points on ground.

4 - Put blanking caps and plugs on air inlets, exhaust stubs, pitots and static ports.
UTILIZATION BY COLD WEATHER (- 0°C TO - 25°C) AND VERY COLD WEATHER (- 25°C TO - 40°C) (4/9)

ENVELOPE 2

The procedures hereafter supplement or replace the normal procedures for the airplane use when operating in the "envelope 2" defined in Figure 4.5.1.

Preflight inspection

1 - Preheat the engine and the cabin.
 Preheating the engine and the cabin during at least 30 minutes is necessary using a heater (70°C mini). Hot air pipes must be installed:
 - in the air inlet,
 - on engine rear table by opening the upper cowling,
 - in the cabin by half-opening the door.

2 - Remove any snow or ice from the wings, stabilizers and movable surfaces.
 Apply, according to the condition of runways and taxiways, the procedures "UTILIZATION ON RUNWAYS COVERED WITH MELTING OR NOT TAMPED SNOW" or the procedures "UTILIZATION ON ICY OR COVERED WITH TAMPED SNOW RUNWAYS".
 Spray anti-icing fluid on the wings, stabilizers and movable surfaces (upper and lower surfaces), shortly before takeoff.

3 - Carry out a complete rotation of the propeller to check its free rotation.

4 - Do not perform a fuel draining. If the airplane is operating permanently under negative temperatures, drainings will have to be performed once a week after having parked the airplane in a heated hangar.

5 - Remove chocks and / or release ties from the airplane.

6 - Check the free deflection of the flight controls and of the elevator trim.

7 - Check the free deflection of the throttle.

8 - "IGNITION" switch .. ON during 30 seconds

 WARNING CAS MESSAGE "IGNITION" ON
 then "IGNITION" switch .. AUTO

 WARNING CAS MESSAGE "IGNITION" OFF

 This enables to preheat spark igniters before starting the engine.

Before starting the engine

Apply normal procedures defined in Chapter(s) 4.3 and / or 4.4.

Starting the engine

The starting must be mandatorily performed using an external power source (GPU).

1 - Ground power unit .. CONNECTED
UTILIZATION BY COLD WEATHER (- 0° C TO - 25° C) AND VERY COLD WEATHER (- 25° C TO - 40° C) (5/9)

2 - “SOURCE” selector ... GPU
 WARNING CAS MESSAGE ”GPU DOOR” ON
 - BAT and ESS voltmeters .. Voltage checked (V ≈ 28 Volts)

3 - Engine controls
 - "MAN OVRD” control .. Backward
 CAUTION
 WHEN THE ENGINE IS SHUTDOWN, THE THROTTLE MUST NOT BE MOVED INTO THE REVERSE AREA.
 - Throttle ... CUT OFF

4 - Fuel panel
 - "AUX BP” switch ... ON
 WARNING CAS MESSAGE ”AUX BOOST PMP ON” ON
 WARNING CAS MESSAGE ”FUEL PRESS” OFF

5 - Propeller ... AREA CLEAR

6 - G1000 ... Composite mode

7 - "ENGINE START” panel
 - "IGNITION” switch ... ON
 WARNING CAS MESSAGE ”IGNITION” ON
 - "STARTER” switch ... ON, start timer
 WARNING CAS MESSAGE ”STARTER” ON

When Ng ≈ 13 %
 - Throttle ... HI / IDLE
 Move directly throttle to HI / IDLE

NOTE

The more the temperature is low, the more the selector is hard to move.
Starter limits and checks of starting sequence are unchanged.
UTILIZATION BY COLD WEATHER (- 0°C TO - 25°C) AND VERY COLD WEATHER (- 25°C TO - 40°C) (6/9)

When Ng = 52 % (± 2%)

8 - Check Starter is automatically OFF
 Check STARTER CAS message is OFF.

 CAUTION
 IF THE STARTER DOES NOT GO OFF AUTOMATICALLY, DO IT USING THE "ABORT" POSITION OF THE STARTER SWITCH.

9 - Engine instruments Check Ng = 70 % (± 2 %) (Oil pressure / ITT = green sector)
 WARNING CAS MESSAGE BAT OFF OFF

10 - "SOURCE" selector .. BAT
 "SOURCE" selector .. OFF

11 - "IGNITION" switch .. AUTO
 WARNING CAS MESSAGE IGNITION OFF

12 - Ground power unit HAVE IT DISCONNECTED
 WARNING CAS MESSAGE GPU DOOR OFF

13 - "FUEL" panel
 "SOURCE" selector .. AUTO
 WARNING CAS MESSAGE AUX BOOST PMP ON OFF

14 - Generator
 WARNING CAS MESSAGE MAIN GEN OFF
 RESET if necessary

After starting the engine

- **Pre- MOD70-0529-21**

 1 - On "ECS" panel
 As soon as the current flow is lower than 100 A :
 - "BLEED" switch ... AUTO
 - "CONTROL" selector COCKPIT
 - "TEMP/°C" selector FULL HOT
UTILIZATION BY COLD WEATHER (-0°C TO -25°C) AND VERY COLD WEATHER (-25°C TO -40°C) (7/9)

Post-MOD70-0529-21

1 - On "A/C" and "PRESSURIZATION" panel

As soon as the current flow is lower than 100 A:

- "BLEED" switch ... AUTO
- "A/C" switch ... PILOT
- "MODE" pressurization switch .. As required
- "TEMP" selector ... FULL HOT
- "FAN" speed selector ... 0

All

As soon as the oil temperature is greater than 0°C:

2 - Throttle ... Flight IDLE to HI / IDLE twice, then Flight IDLE

3 - Apply normal procedures defined in Chapter(s) 4.3 and / or 4.4.

Taxiing / Before takeoff / Takeoff

Apply procedures defined for Envelope 1.

Landing / After landing / Shut down

Apply procedures defined for Envelope 1.
UTILIZATION BY COLD WEATHER (-0°C TO -25°C) AND VERY COLD WEATHER (-25°C TO -40°C) (8/9)

ENVELOPE 3

The procedures defined for the "envelope 2" are also applicable for the "envelope 3". However it is possible to start the engine using GPU without preheating of the engine and the cabin with a heater. In that case the procedure "After starting the engine" is modified as follows:

Preflight inspection / Before starting the engine / Starting the engine

Apply the procedures defined for the Envelope 2.

After starting the engine

Pre-MOD70-0529-21

1 - On "ECS" panel

As soon as the current flow is lower than 100 A:
- "BLEED" switch ... AUTO
- "CONTROL" selector .. COCKPIT
- "TEMP/°C" selector ... FULL HOT

Preheat the cabin respecting time defined in Figure 4.5.2 before switching on the navigation and monitoring systems. This allows to respect minimum temperatures necessary for the equipment operation.

Post-MOD70-0529-21

1 - On "A/C" and "PRESSURIZATION" panel

As soon as the current flow is lower than 100 A:
- "BLEED" switch ... AUTO
- "MODE" pressurization switch ... As required
- "A/C" switch ... PILOT
- "TEMP" selector ... FULL HOT
- "FAN" speed selector ... 0

Preheat the cabin respecting time defined in Figure 4.5.2 before switching on the navigation and monitoring systems. This allows to respect minimum temperatures necessary for the equipment operation.

All

As soon as the oil temperature is greater than 0°C:

2 - Throttle ... Flight IDLE to HI / IDLE twice, then Flight IDLE
UTLIZATION BY COLD WEATHER (- 0°C TO - 25°C) AND VERY COLD WEATHER (- 25°C TO - 40°C) (9/9)

3 - Apply normal procedures defined in Chapter(s) 4.3 and / or 4.4.

Taxiing / Before takeoff / Takeoff
Apply procedures defined for Envelope 1.

Landing / After landing / Shut down
Apply procedures defined for Envelope 1.

Complement
If landing is foreseen by cold or very cold weather, or in case of prolonged operation of the airplane in such conditions, it is recommended to prepare the airplane as specified in Chapter 8.9.

Figure 4.5.2 - PREHEATING DURATION
LANDING PROCEDURE WITH STRONG HEADWIND OR CROSSWIND

If landing must be performed with strong headwind or crosswind, increase approach speed by the greatest of these 2 following values:

\[\Delta V = \frac{(\text{WIND DOWN} - 10)}{2} \]
(Ex. WIND DOWN = 30 kt i.e. \(\Delta V = 10 \) kt)

The wind down is the longitudinal component of the wind.

- Gust amplitude

Use flaps LDG.

It is not desirable to adopt configuration with flaps TO. Lateral control is not improved, and flare phase is lengthened in time and in distance, with increase of piloting difficulties and landing performance.

During approach with crosswind, maintain airplane in drift correction at the latest until the beginning of flare.

In short final, on a short runway, it is necessary to use normal approach speed (80 KIAS) with flaps LDG, in order to avoid an excessive speed. Indeed, in this case, landing distance indicated in Chapter 5.14, would not be respected.

Before touch-down, generate a slideslip with the rudder in order to align fuselage with the runway (ie left crosswind, left wing low).

Do not use or select the fuel tank on the low wing side during prolonged sideslips with a fuel low warning or gage indicating low.

Retract flaps immediately after landing.

Flap travel is slow and will not have an appreciable effect on landing performance.

Do not try to stabilize the airplane by pushing down the elevator control just after the touch; this operation may provide pitch oscillations while increasing the yaw movement to the wind.

Do not deflect ailerons into wind while taxiing. This will raise spoilers and have a detrimental effect. A good solution is to maintain ailerons to neutral position during taxiing after landing and taxiing before takeoff.

Maximum demonstrated crosswind for landing is 20 kt.

The most restrictive situation is as follows:

- takeoff with wind coming from the left,
- wet runway,
- aft C.G.
UTILITY ON GRASS RUNWAY

CAUTION

THE SMALL WHEELS OF THE AIRPLANE AND ITS WEIGHT MAY LEAD IT TO SINK IN SOPPY OR LOOSE GROUND.

Before planning the landing, ensure that the field is hard, smooth and dry enough. Landing and moreover takeoff shall not begin if any doubt exists about the condition of such a runway.

Particular directives

TAXI / TAKEOFF

1 - “INERT SEP” switch ... ON

2 - Reverse ... Do not use

In fact, on a flat runway with grass, it is necessary to adopt a power greater than the one obtained when the throttle is set to Flight IDLE, so the pilot will not be tempted to use the reverse.

LANDING

1 - “INERT SEP” switch ... ON

After wheel touch down :

2 - Reverse ... Only if necessary

Do not maintain reverse at speeds below 40 KIAS to avoid ingestion of foreign matter.

Indeed, under this speed, using the reverse makes a cloud of solid particles (dusts, sand, gravels, trocken grass, and so on ...) appear around the front face of the airplane. This will damage the propeller and, after ingestion, the engine internal components (compressor and turbine blades).
GPS NAVIGATION

Set up conditions

- Verify if the data base is current.
- Verify that altitude data is valid for the GPS prior to flight.
- In case of B-RNAV use:
 During the preflight planning phase, the availability of GPS integrity (RAIM) shall be confirmed for the intended flight (route and time). RAIM computation is automatically done by G1000 system.
 B-RNAV flight dispatch shall not be made in the event of a continuous loss of RAIM for more than 5 minutes predicted in any part of the intended flight.
 When less than 24 satellites are available (or less than 23 if equipment uses pressure altitude information), the pilot must make sure that RAIM function is available on the projected route and for the flight period in B-RNAV areas. An alarm is provided by G1000 system in that case.
 When 23 or more satellites are available, the prediction of satellite position is valid for 7 days. Their predicted availability is ensured for 48 hours by EUROCONTROL.
 When less than 23 satellites are available, the predicted availability of RAIM shall be confirmed short before each flight.

GPS flight plan

In the active flight plan, addition of a STAR or an approach is always made at the end of the flight plan. In the scope of these additions, the pilot must pay attention not to duplicate points.

Non precision approach with coupled autopilot

Coupling with autopilot may be made in "NAV" mode, except in the following cases:
- holding pattern,
- landing pattern turn,
- interrupted approach,
which have to be made in "HDG" mode.

For memory, the approach particular point name in the GARMIN system is as follows:
- IA = IAF
- FA = FAF ou FAP
- MA = MAP
- MH = MAHP
INTENTIONALLY LEFT BLANK
SECTION 5

PERFORMANCE

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>GENERAL</td>
<td>5.1.1</td>
</tr>
<tr>
<td>5.2</td>
<td>NOISE LEVEL</td>
<td>5.2.1</td>
</tr>
<tr>
<td>5.3</td>
<td>AIRSPEED CALIBRATION</td>
<td>5.3.1</td>
</tr>
<tr>
<td>5.4</td>
<td>CABIN PRESSURIZATION ENVELOPE</td>
<td>5.4.1</td>
</tr>
<tr>
<td>5.5</td>
<td>SAT - OAT CONVERSIONS</td>
<td>5.5.1</td>
</tr>
<tr>
<td>5.6</td>
<td>STALL SPEEDS</td>
<td>5.6.1</td>
</tr>
<tr>
<td>5.7</td>
<td>WIND COMPONENTS</td>
<td>5.7.1</td>
</tr>
<tr>
<td>5.8</td>
<td>ENGINE OPERATION</td>
<td>5.8.1</td>
</tr>
<tr>
<td></td>
<td>MAXIMUM CLIMB POWER (FL (\leq 200)) ISA - 124 KIAS</td>
<td>5.8.2</td>
</tr>
<tr>
<td></td>
<td>MAXIMUM CLIMB POWER (FL (\geq 200)) ISA - 124 KIAS</td>
<td>5.8.3</td>
</tr>
<tr>
<td></td>
<td>MAXIMUM CLIMB POWER (FL (\leq 200)) ISA - 170 KIAS/M 0.40</td>
<td>5.8.4</td>
</tr>
<tr>
<td></td>
<td>MAXIMUM CLIMB POWER (FL (\geq 200)) ISA - 170 KIAS/M 0.40</td>
<td>5.8.5</td>
</tr>
<tr>
<td></td>
<td>MAXIMUM CRUISE POWER (FL (\leq 200))</td>
<td>5.8.6</td>
</tr>
<tr>
<td></td>
<td>MAXIMUM CRUISE POWER (FL (\geq 200))</td>
<td>5.8.7</td>
</tr>
<tr>
<td></td>
<td>NORMAL (RECOMMENDED) CRUISE POWER (FL (\leq 200))</td>
<td>5.8.8</td>
</tr>
<tr>
<td></td>
<td>NORMAL (RECOMMENDED) CRUISE POWER (FL (\geq 200))</td>
<td>5.8.9</td>
</tr>
<tr>
<td>5.9</td>
<td>TAKEOFF DISTANCES</td>
<td>5.9.1</td>
</tr>
<tr>
<td></td>
<td>WEIGHT : 5512 lbs (2500 kg)</td>
<td>5.9.1</td>
</tr>
<tr>
<td></td>
<td>WEIGHT : 6579 lbs (2984 kg)</td>
<td>5.9.2</td>
</tr>
<tr>
<td></td>
<td>WEIGHT : 7394 lbs (3354 kg)</td>
<td>5.9.3</td>
</tr>
<tr>
<td>5.10</td>
<td>CLIMB PERFORMANCE</td>
<td>5.10.1</td>
</tr>
<tr>
<td></td>
<td>MXCL - SPEEDS (IAS - 124 KIAS)</td>
<td>5.10.1</td>
</tr>
<tr>
<td></td>
<td>MXCL - SPEEDS (IAS - 170 KIAS/M 0.40)</td>
<td>5.10.2</td>
</tr>
<tr>
<td></td>
<td>MXCL - TIME, CONSUMPTION AND CLIMB DISTANCE (IAS = 124 KIAS)</td>
<td>5.10.3</td>
</tr>
<tr>
<td></td>
<td>MXCL - TIME, CONSUMPTION AND CLIMB DISTANCE (IAS = 170 KIAS/M 0.40)</td>
<td>5.10.6</td>
</tr>
<tr>
<td></td>
<td>CLIMB PERFORMANCE AFTER GO-AROUND</td>
<td>5.10.9</td>
</tr>
<tr>
<td></td>
<td>CLIMB PERFORMANCE - FLAPS TO</td>
<td>5.10.10</td>
</tr>
</tbody>
</table>
5.11 - CRUISE PERFORMANCE

- **MAXIMUM CRUISE**
- **NORMAL (RECOMMENDED) CRUISE**
- **LONG RANGE CRUISE (5500 lbs - 2495 kg) (Altitude ≤ 24000 ft)**
- **LONG RANGE CRUISE (5500 lbs - 2495 kg) (Altitude ≥ 24000 ft)**
- **LONG RANGE CRUISE (6300 lbs - 2858 kg) (Altitude ≤ 24000 ft)**
- **LONG RANGE CRUISE (6300 lbs - 2858 kg) (Altitude ≥ 24000 ft)**
- **LONG RANGE CRUISE (7100 lbs - 3220 kg) (Altitude ≤ 24000 ft)**
- **LONG RANGE CRUISE (7100 lbs - 3220 kg) (Altitude ≥ 24000 ft)**

5.12 - TIME, CONSUMPTION AND DESCENT DISTANCE

5.13 - HOLDING TIME

5.14 - LANDING DISTANCES

- **WEIGHT : 7024 lbs (3186 kg)**
- **WEIGHT : 6250 lbs (2835 kg)**
- **WEIGHT : 5071 lbs (2300 kg)**
5.1 - GENERAL

This Section provides all of the required and additional performance data for airplane operations.

The Section 9, "Supplements" of the Pilot's Operating Handbook, provides specific airplane performance associated with optional equipment and systems.
5.2 - NOISE LEVEL

<table>
<thead>
<tr>
<th>Source</th>
<th>Maximum noise level permissible</th>
<th>Demonstrated noise level</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAR PART 36, Appendix G - Amdt 28</td>
<td>88 dB(A)</td>
<td>76.4 dB(A)</td>
</tr>
<tr>
<td>ICAO, Annex 16, Vol. 1, 6th edition, Amdt 8</td>
<td>85 dB(A)</td>
<td>76.4 dB(A)</td>
</tr>
</tbody>
</table>

Approved noise levels for TBM airplane are stated in EASA.A.010 Type Certificate Data Sheet.

NOTE: No determination has been made by the Federal Aviation Administration that the noise levels of this airplane are or should be acceptable or unacceptable for operation at, into or out of any airport.
5.3 - AIRSPEED CALIBRATION

NOTE: Indicated airspeeds (IAS) : instrument error supposed to be null (power configuration for cruise condition flight).

<table>
<thead>
<tr>
<th>FLAPS UP LDG GR UP</th>
<th>FLAPS TO LDG GR DN</th>
<th>FLAPS LDG LDG GR DN</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIAS</td>
<td>KCAS</td>
<td>KIAS</td>
</tr>
<tr>
<td>125</td>
<td>128</td>
<td>70</td>
</tr>
<tr>
<td>150</td>
<td>154</td>
<td>80</td>
</tr>
<tr>
<td>175</td>
<td>179</td>
<td>90</td>
</tr>
<tr>
<td>200</td>
<td>205</td>
<td>100</td>
</tr>
<tr>
<td>225</td>
<td>230</td>
<td>120</td>
</tr>
<tr>
<td>250</td>
<td>255</td>
<td>140</td>
</tr>
<tr>
<td>266</td>
<td>271</td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MPH IAS</th>
<th>MPH CAS</th>
<th>MPH IAS</th>
<th>MPH CAS</th>
<th>MPH IAS</th>
<th>MPH CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>147</td>
<td>81</td>
<td>79</td>
<td>69</td>
<td>67</td>
</tr>
<tr>
<td>173</td>
<td>177</td>
<td>92</td>
<td>92</td>
<td>81</td>
<td>78</td>
</tr>
<tr>
<td>201</td>
<td>206</td>
<td>104</td>
<td>104</td>
<td>92</td>
<td>90</td>
</tr>
<tr>
<td>230</td>
<td>236</td>
<td>115</td>
<td>116</td>
<td>104</td>
<td>101</td>
</tr>
<tr>
<td>259</td>
<td>264</td>
<td>138</td>
<td>139</td>
<td>115</td>
<td>113</td>
</tr>
<tr>
<td>288</td>
<td>293</td>
<td>161</td>
<td>162</td>
<td>127</td>
<td>124</td>
</tr>
<tr>
<td>307</td>
<td>312</td>
<td>184</td>
<td>187</td>
<td>138</td>
<td>136</td>
</tr>
</tbody>
</table>

Figure 5.3.1 - NORMAL STATIC SOURCE
<table>
<thead>
<tr>
<th>KIAS</th>
<th>KCAS</th>
<th>KIAS</th>
<th>KCAS</th>
<th>KIAS</th>
<th>KCAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>124</td>
<td>70</td>
<td>70</td>
<td>60</td>
<td>59</td>
</tr>
<tr>
<td>150</td>
<td>149</td>
<td>80</td>
<td>80</td>
<td>70</td>
<td>69</td>
</tr>
<tr>
<td>175</td>
<td>174</td>
<td>90</td>
<td>90</td>
<td>80</td>
<td>79</td>
</tr>
<tr>
<td>200</td>
<td>199</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>225</td>
<td>224</td>
<td>120</td>
<td>120</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>250</td>
<td>249</td>
<td>140</td>
<td>139</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>271</td>
<td>270</td>
<td>160</td>
<td>159</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MPH IAS</th>
<th>MPH CAS</th>
<th>MPH IAS</th>
<th>MPH CAS</th>
<th>MPH IAS</th>
<th>MPH CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>142</td>
<td>81</td>
<td>81</td>
<td>69</td>
<td>68</td>
</tr>
<tr>
<td>173</td>
<td>171</td>
<td>92</td>
<td>92</td>
<td>81</td>
<td>79</td>
</tr>
<tr>
<td>201</td>
<td>200</td>
<td>104</td>
<td>104</td>
<td>92</td>
<td>91</td>
</tr>
<tr>
<td>230</td>
<td>229</td>
<td>115</td>
<td>115</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>259</td>
<td>258</td>
<td>138</td>
<td>138</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>288</td>
<td>287</td>
<td>161</td>
<td>160</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>312</td>
<td>311</td>
<td>184</td>
<td>183</td>
<td>138</td>
<td>138</td>
</tr>
</tbody>
</table>

Figure 5.3.2 - ALTERNATE STATIC SOURCE (BLEED AUTO)
5.4 - CABIN PRESSURIZATION ENVELOPE

Figure 5.4.1 - CABIN PRESSURIZATION ENVELOPE
5.5 - SAT - OAT CONVERSIONS

NOTE

These indicated temperatures are available for stabilized cruise at normal operating power.

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>ISA - 20°C SAT</th>
<th>ISA - 10°C SAT</th>
<th>ISA SAT</th>
<th>ISA + 10°C SAT</th>
<th>ISA + 20°C SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>- 05</td>
<td>- 04</td>
<td>05</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>2000</td>
<td>- 09</td>
<td>- 08</td>
<td>01</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>4000</td>
<td>- 13</td>
<td>- 12</td>
<td>- 03</td>
<td>- 02</td>
<td>07</td>
</tr>
<tr>
<td>6000</td>
<td>- 17</td>
<td>- 16</td>
<td>- 07</td>
<td>- 06</td>
<td>03</td>
</tr>
<tr>
<td>8000</td>
<td>- 21</td>
<td>- 20</td>
<td>- 11</td>
<td>- 10</td>
<td>09</td>
</tr>
<tr>
<td>10000</td>
<td>- 25</td>
<td>- 24</td>
<td>- 15</td>
<td>- 14</td>
<td>- 05</td>
</tr>
<tr>
<td>12000</td>
<td>- 29</td>
<td>- 28</td>
<td>- 19</td>
<td>- 18</td>
<td>- 09</td>
</tr>
<tr>
<td>14000</td>
<td>- 33</td>
<td>- 32</td>
<td>- 23</td>
<td>- 22</td>
<td>- 13</td>
</tr>
<tr>
<td>16000</td>
<td>- 37</td>
<td>- 36</td>
<td>- 27</td>
<td>- 26</td>
<td>- 17</td>
</tr>
<tr>
<td>18000</td>
<td>- 41</td>
<td>- 40</td>
<td>- 31</td>
<td>- 30</td>
<td>- 21</td>
</tr>
<tr>
<td>20000</td>
<td>- 45</td>
<td>- 44</td>
<td>- 35</td>
<td>- 34</td>
<td>- 25</td>
</tr>
<tr>
<td>22000</td>
<td>- 49</td>
<td>- 48</td>
<td>- 39</td>
<td>- 38</td>
<td>- 29</td>
</tr>
<tr>
<td>24000</td>
<td>- 53</td>
<td>- 52</td>
<td>- 43</td>
<td>- 42</td>
<td>- 33</td>
</tr>
<tr>
<td>26000</td>
<td>- 57</td>
<td>- 56</td>
<td>- 47</td>
<td>- 46</td>
<td>- 37</td>
</tr>
<tr>
<td>28000</td>
<td>- 61</td>
<td>- 60</td>
<td>- 51</td>
<td>- 50</td>
<td>- 41</td>
</tr>
<tr>
<td>30000</td>
<td>- 65</td>
<td>- 64</td>
<td>- 55</td>
<td>- 54</td>
<td>- 45</td>
</tr>
<tr>
<td>31000</td>
<td>- 67</td>
<td>- 66</td>
<td>- 57</td>
<td>- 56</td>
<td>- 47</td>
</tr>
</tbody>
</table>

Figure 5.5.1 - SAT - OAT CONVERSIONS
5.6 - STALL SPEEDS

<table>
<thead>
<tr>
<th>AIRPLANE WEIGHT</th>
<th>CONFIG.</th>
<th>FLIGHT IDLE</th>
<th>BANK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LDG GR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4850 lbs (2200 kg)</td>
<td>UP</td>
<td>65 66 75</td>
<td>70 71 81</td>
</tr>
<tr>
<td></td>
<td>DN TO</td>
<td>62 63 71</td>
<td>67 68 77</td>
</tr>
<tr>
<td></td>
<td>DN LDG</td>
<td>53 53 61</td>
<td>57 57 66</td>
</tr>
<tr>
<td>5512 lbs (2500 kg)</td>
<td>UP</td>
<td>70 71 81</td>
<td>75 76 86</td>
</tr>
<tr>
<td></td>
<td>DN TO</td>
<td>66 67 76</td>
<td>71 72 82</td>
</tr>
<tr>
<td></td>
<td>DN LDG</td>
<td>57 57 66</td>
<td>61 61 70</td>
</tr>
<tr>
<td>6579 lbs (2984 kg)</td>
<td>UP</td>
<td>75 76 86</td>
<td>80 82 92</td>
</tr>
<tr>
<td></td>
<td>DN TO</td>
<td>71 72 82</td>
<td>75 77 86</td>
</tr>
<tr>
<td></td>
<td>DN LDG</td>
<td>61 61 70</td>
<td>66 66 76</td>
</tr>
<tr>
<td>7394 lbs (3354 kg)</td>
<td>UP</td>
<td>81 83 93</td>
<td>88 89 101</td>
</tr>
<tr>
<td></td>
<td>DN TO</td>
<td>77 77 89</td>
<td>81 83 93</td>
</tr>
<tr>
<td></td>
<td>DN LDG</td>
<td>65 65 75</td>
<td>69 70 79</td>
</tr>
</tbody>
</table>

Figure 5.6.1 - STALL SPEEDS
5.7 - WIND COMPONENTS

 EXAMPLE: Angle between wind direction and flight path: 50°
Headwind: 8 kts
Crosswind: 10 kts
Wind speed: 13 kts

Figure 5.7.1 - WIND COMPONENTS
INTENTIONALLY LEFT BLANK
5.8 - ENGINE OPERATION

The following tables or/and the optimum torque indicator must be used during normal operation of the airplane.

IMPORTANT: It is the responsibility of the Operator to make sure that the required version of Garmin System Software is installed prior to using the hereafter Engine Operation tables. The Garmin System Software required for this revision of the Engine Operation tables is the version 0719.14 or later. This information is displayed on the MFD Power-up page upon system start.

The following conditions are given:

- BLEED AUTO.

The torque must be set at or below the value corresponding to the local conditions of flight level and temperature.

NOTE

Inertial separator must be OFF and “BLEED HI” MSG OFF.

Example: for FL = 260 and OAT = - 22°C, the following tables give the maximum torque to be set.

Maximum climb power:

\[TRQ = 83\% \text{ for } IAS = 124 \text{ KIAS (Add 0.5 } \% \text{ of TRQ for each additional 10 KIAS on climb airspeed)} \]

(cf. tables Figures 5.8.1 and 5.8.1A)

Maximum cruise power:

\[TRQ = 97\% \text{ (cf. tables Figures 5.8.3 and 5.8.3A)} \]

Recommended cruise power:

\[TRQ = 92\% \text{ (cf. tables Figures 5.8.4 and 5.8.4A)} \]

CAUTION

THE TRQ SETTING MUST NEVER EXCEED 100\%.

WHEN SETTING TRQ, NG MUST NEVER EXCEED 104\%

REMARK: The engine ITT limit at 840°C during continuous operation may be used in case of operational need.
ENGINE OPERATION

Conditions:

Maximum climb power (FL ≤ 200)

- ISA - 124 KIAS
- If "BLEED HI" MSG ON, reduce TRQ by 5 %
- Landing gear and flaps UP
- "BLEED" switch on "AUTO"

NOTE: Add 0.5 % of TRQ for each additional 10 KIAS on climb airspeed.

This table is not valid if INERTIAL SEPARATOR ON and/or "BLEED HI" MSG ON.

<table>
<thead>
<tr>
<th>T° (°C)</th>
<th>FLIGHT LEVEL (FL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAT</td>
<td>100</td>
</tr>
<tr>
<td>-24</td>
<td></td>
</tr>
<tr>
<td>-22</td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>-18</td>
<td></td>
</tr>
<tr>
<td>-16</td>
<td></td>
</tr>
<tr>
<td>-14</td>
<td>100</td>
</tr>
<tr>
<td>-12</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

Recommended NG < 103 %

CAUTION

THE TRQ SETTING MUST NEVER EXCEED 100 %
WHEN SETTING TRQ, NG MUST NEVER EXCEED 104 %

Figure 5.8.1 - ENGINE OPERATION

[Maximum climb power (FL ≤ 200)]
ENGINE OPERATION

Conditions:

Maximum climb power (FL ≥ 200)ISA - 124 KIAS

If "BLEED HI" MSG ON, reduce TRQ by 5%

- Landing gear and flaps UP
- "BLEED" switch on "AUTO"

NOTE: Add 0.5 % of TRQ for each additional 10 KIAS on climb airspeed.
This table is not valid if INERTIAL SEPARATOR ON and/or "BLEED HI" MSG ON.

<table>
<thead>
<tr>
<th>T° (°C)</th>
<th>FLIGHT LEVEL (FL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAT</td>
<td>200</td>
</tr>
<tr>
<td>-68</td>
<td></td>
</tr>
<tr>
<td>-66</td>
<td></td>
</tr>
<tr>
<td>-64</td>
<td></td>
</tr>
<tr>
<td>-62</td>
<td></td>
</tr>
<tr>
<td>-60</td>
<td></td>
</tr>
<tr>
<td>-58</td>
<td></td>
</tr>
<tr>
<td>-56</td>
<td></td>
</tr>
<tr>
<td>-54</td>
<td></td>
</tr>
<tr>
<td>-52</td>
<td></td>
</tr>
<tr>
<td>-50</td>
<td></td>
</tr>
<tr>
<td>-48</td>
<td></td>
</tr>
<tr>
<td>-46</td>
<td></td>
</tr>
<tr>
<td>-44</td>
<td></td>
</tr>
<tr>
<td>-42</td>
<td></td>
</tr>
<tr>
<td>-40</td>
<td></td>
</tr>
<tr>
<td>-38</td>
<td></td>
</tr>
<tr>
<td>-36</td>
<td></td>
</tr>
<tr>
<td>-34</td>
<td></td>
</tr>
<tr>
<td>-32</td>
<td></td>
</tr>
<tr>
<td>-30</td>
<td></td>
</tr>
<tr>
<td>-28</td>
<td></td>
</tr>
<tr>
<td>-26</td>
<td></td>
</tr>
<tr>
<td>-24</td>
<td></td>
</tr>
<tr>
<td>-22</td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>-18</td>
<td></td>
</tr>
<tr>
<td>-16</td>
<td></td>
</tr>
<tr>
<td>-14</td>
<td></td>
</tr>
<tr>
<td>-12</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

CAUTION

THE TRQ SETTING MUST NEVER EXCEED 100 %
WHEN SETTING TRQ, NG MUST NEVER EXCEED 104 %

Figure 5.8.1A - ENGINE OPERATION
[Maximum climb power (FL ≥ 200)]
ENGINE OPERATION

Conditions:

Maximum climb power (FL ≤ 200)
ISA - 170 KIAS / M 0.40
If "BLEED HI" MSG ON, reduce TRQ by 5 %

- Landing gear and flaps UP
- "BLEED" switch on "AUTO"

NOTE:
Add 0.5 % of TRQ for each additional 10 KIAS on climb airspeed.
This table is not valid if INERTIAL SEPARATOR ON and/or "BLEED HI" MSG ON.

<table>
<thead>
<tr>
<th>T° (°C)</th>
<th>FLIGHT LEVEL (FL)</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>190</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>-24</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>-22</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>-18</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>-16</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>-14</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>-12</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td>82</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td>79</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td>79</td>
<td>76</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td>79</td>
<td>76</td>
<td>74</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td>79</td>
<td>76</td>
<td>74</td>
<td>76</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td>79</td>
<td>76</td>
<td>74</td>
<td>76</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td>79</td>
<td>76</td>
<td>74</td>
<td>76</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td>79</td>
<td>76</td>
<td>74</td>
<td>76</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td>79</td>
<td>76</td>
<td>74</td>
<td>76</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td>79</td>
<td>76</td>
<td>74</td>
<td>76</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td>79</td>
<td>76</td>
<td>74</td>
<td>76</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td>79</td>
<td>76</td>
<td>74</td>
<td>76</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>100</td>
<td>98</td>
<td>92</td>
<td>87</td>
<td>82</td>
<td>79</td>
<td>76</td>
<td>74</td>
<td>76</td>
<td>74</td>
<td>76</td>
</tr>
</tbody>
</table>

CAUTION

THE TRQ SETTING MUST NEVER EXCEED 100 %
WHEN SETTING TRQ, NG MUST NEVER EXCEED 104 %

Figure 5.8.2 - ENGINE OPERATION
[Maximum climb power (FL ≤ 200)]
ENGINE OPERATION

Conditions:

- Landing gear and flaps UP
- "BLEED" switch on "AUTO"

NOTE: Add 0.5 % of TRQ for each additional 10 KIAS on climb airspeed.
This table is not valid if INERTIAL SEPARATOR ON and/or "BLEED HI" MSG ON.

Maximunm climb power (FL ≥ 200) □ ISA - 170 KIAS / M 0.40
If "BLEED HI" MSG ON, reduce TRQ by 5 %

<table>
<thead>
<tr>
<th>T° (°C)</th>
<th>200</th>
<th>210</th>
<th>220</th>
<th>230</th>
<th>240</th>
<th>250</th>
<th>260</th>
<th>270</th>
<th>280</th>
<th>290</th>
<th>300</th>
<th>310</th>
</tr>
</thead>
<tbody>
<tr>
<td>-88</td>
<td>99</td>
<td>94</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-66</td>
<td>98</td>
<td>93</td>
<td>88</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-64</td>
<td>97</td>
<td>92</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-62</td>
<td>100</td>
<td>96</td>
<td>91</td>
<td>86</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-60</td>
<td>100</td>
<td>95</td>
<td>90</td>
<td>86</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-58</td>
<td>99</td>
<td>94</td>
<td>89</td>
<td>84</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-56</td>
<td>98</td>
<td>93</td>
<td>88</td>
<td>83</td>
<td>79</td>
<td>75</td>
<td>71</td>
<td>67</td>
<td>63</td>
<td>59</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>-54</td>
<td>100</td>
<td>96</td>
<td>92</td>
<td>88</td>
<td>84</td>
<td>80</td>
<td>76</td>
<td>72</td>
<td>68</td>
<td>64</td>
<td>60</td>
<td>56</td>
</tr>
<tr>
<td>-52</td>
<td>100</td>
<td>96</td>
<td>93</td>
<td>88</td>
<td>85</td>
<td>81</td>
<td>77</td>
<td>73</td>
<td>69</td>
<td>65</td>
<td>61</td>
<td>57</td>
</tr>
<tr>
<td>-50</td>
<td>99</td>
<td>94</td>
<td>89</td>
<td>85</td>
<td>81</td>
<td>77</td>
<td>73</td>
<td>69</td>
<td>65</td>
<td>61</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td>-48</td>
<td>98</td>
<td>93</td>
<td>88</td>
<td>84</td>
<td>80</td>
<td>76</td>
<td>72</td>
<td>68</td>
<td>64</td>
<td>60</td>
<td>56</td>
<td>52</td>
</tr>
<tr>
<td>-46</td>
<td>100</td>
<td>97</td>
<td>93</td>
<td>88</td>
<td>84</td>
<td>80</td>
<td>76</td>
<td>72</td>
<td>68</td>
<td>64</td>
<td>60</td>
<td>56</td>
</tr>
<tr>
<td>-44</td>
<td>100</td>
<td>96</td>
<td>91</td>
<td>86</td>
<td>82</td>
<td>78</td>
<td>74</td>
<td>70</td>
<td>66</td>
<td>62</td>
<td>58</td>
<td>54</td>
</tr>
<tr>
<td>-42</td>
<td>99</td>
<td>94</td>
<td>89</td>
<td>85</td>
<td>81</td>
<td>77</td>
<td>73</td>
<td>69</td>
<td>65</td>
<td>61</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td>-40</td>
<td>98</td>
<td>93</td>
<td>88</td>
<td>84</td>
<td>80</td>
<td>76</td>
<td>72</td>
<td>68</td>
<td>64</td>
<td>60</td>
<td>56</td>
<td>52</td>
</tr>
<tr>
<td>-38</td>
<td>100</td>
<td>97</td>
<td>92</td>
<td>88</td>
<td>88</td>
<td>83</td>
<td>79</td>
<td>75</td>
<td>71</td>
<td>67</td>
<td>63</td>
<td>59</td>
</tr>
<tr>
<td>-36</td>
<td>100</td>
<td>96</td>
<td>91</td>
<td>86</td>
<td>82</td>
<td>78</td>
<td>74</td>
<td>70</td>
<td>66</td>
<td>62</td>
<td>58</td>
<td>54</td>
</tr>
<tr>
<td>-34</td>
<td>99</td>
<td>94</td>
<td>89</td>
<td>85</td>
<td>81</td>
<td>77</td>
<td>73</td>
<td>69</td>
<td>65</td>
<td>61</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td>-32</td>
<td>98</td>
<td>93</td>
<td>88</td>
<td>84</td>
<td>80</td>
<td>76</td>
<td>72</td>
<td>68</td>
<td>64</td>
<td>60</td>
<td>56</td>
<td>52</td>
</tr>
<tr>
<td>-30</td>
<td>100</td>
<td>97</td>
<td>93</td>
<td>88</td>
<td>84</td>
<td>80</td>
<td>76</td>
<td>72</td>
<td>68</td>
<td>64</td>
<td>60</td>
<td>56</td>
</tr>
<tr>
<td>-28</td>
<td>99</td>
<td>95</td>
<td>90</td>
<td>86</td>
<td>82</td>
<td>78</td>
<td>74</td>
<td>70</td>
<td>66</td>
<td>62</td>
<td>58</td>
<td>54</td>
</tr>
<tr>
<td>-26</td>
<td>98</td>
<td>94</td>
<td>89</td>
<td>85</td>
<td>81</td>
<td>77</td>
<td>73</td>
<td>69</td>
<td>65</td>
<td>61</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td>-24</td>
<td>100</td>
<td>97</td>
<td>92</td>
<td>88</td>
<td>83</td>
<td>79</td>
<td>75</td>
<td>71</td>
<td>67</td>
<td>63</td>
<td>59</td>
<td>55</td>
</tr>
<tr>
<td>-22</td>
<td>100</td>
<td>96</td>
<td>91</td>
<td>86</td>
<td>82</td>
<td>77</td>
<td>73</td>
<td>69</td>
<td>65</td>
<td>61</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td>-20</td>
<td>99</td>
<td>94</td>
<td>89</td>
<td>85</td>
<td>81</td>
<td>77</td>
<td>73</td>
<td>69</td>
<td>65</td>
<td>61</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td>-18</td>
<td>100</td>
<td>97</td>
<td>93</td>
<td>88</td>
<td>83</td>
<td>79</td>
<td>75</td>
<td>71</td>
<td>67</td>
<td>63</td>
<td>60</td>
<td>56</td>
</tr>
<tr>
<td>-16</td>
<td>100</td>
<td>96</td>
<td>91</td>
<td>86</td>
<td>82</td>
<td>77</td>
<td>73</td>
<td>69</td>
<td>65</td>
<td>61</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td>-14</td>
<td>99</td>
<td>94</td>
<td>88</td>
<td>84</td>
<td>80</td>
<td>76</td>
<td>72</td>
<td>68</td>
<td>64</td>
<td>60</td>
<td>56</td>
<td>52</td>
</tr>
<tr>
<td>-12</td>
<td>100</td>
<td>96</td>
<td>92</td>
<td>87</td>
<td>83</td>
<td>79</td>
<td>75</td>
<td>71</td>
<td>67</td>
<td>63</td>
<td>59</td>
<td>55</td>
</tr>
<tr>
<td>-10</td>
<td>99</td>
<td>95</td>
<td>90</td>
<td>85</td>
<td>81</td>
<td>76</td>
<td>72</td>
<td>68</td>
<td>64</td>
<td>60</td>
<td>56</td>
<td>52</td>
</tr>
<tr>
<td>-8</td>
<td>100</td>
<td>97</td>
<td>93</td>
<td>88</td>
<td>83</td>
<td>79</td>
<td>75</td>
<td>71</td>
<td>67</td>
<td>63</td>
<td>59</td>
<td>55</td>
</tr>
<tr>
<td>-6</td>
<td>100</td>
<td>95</td>
<td>91</td>
<td>86</td>
<td>81</td>
<td>77</td>
<td>73</td>
<td>69</td>
<td>65</td>
<td>61</td>
<td>57</td>
<td>53</td>
</tr>
<tr>
<td>-4</td>
<td>98</td>
<td>93</td>
<td>88</td>
<td>83</td>
<td>78</td>
<td>74</td>
<td>70</td>
<td>66</td>
<td>62</td>
<td>58</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>95</td>
<td>90</td>
<td>85</td>
<td>81</td>
<td>77</td>
<td>73</td>
<td>69</td>
<td>65</td>
<td>61</td>
<td>57</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>92</td>
<td>88</td>
<td>83</td>
<td>78</td>
<td>74</td>
<td>70</td>
<td>66</td>
<td>62</td>
<td>58</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>85</td>
<td>81</td>
<td>77</td>
<td>73</td>
<td>69</td>
<td>65</td>
<td>61</td>
<td>57</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>87</td>
<td>83</td>
<td>78</td>
<td>74</td>
<td>70</td>
<td>66</td>
<td>62</td>
<td>58</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>85</td>
<td>80</td>
<td>76</td>
<td>71</td>
<td>67</td>
<td>63</td>
<td>60</td>
<td>56</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>82</td>
<td>78</td>
<td>73</td>
<td>69</td>
<td>65</td>
<td>61</td>
<td>57</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>79</td>
<td>75</td>
<td>71</td>
<td>67</td>
<td>63</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>77</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>74</td>
<td></td>
</tr>
</tbody>
</table>

CAUTION

THE TRQ SETTING MUST NEVER EXCEED 100 %
WHEN SETTING TRQ, NG MUST NEVER EXCEED 104 %

Figure 5.8.2A - ENGINE OPERATION
[Maximum climb power (FL ≥ 200)]
ENGINE OPERATION

Conditions:

- Landing gear and flaps UP
- "BLEED" switch on "AUTO"

Maximum cruise power (FL ≤ 200)
ISA

If "BLEED HI" MSG ON, reduce TRQ by 5%

NOTE: Use preferably recommended cruise power.
This table is not valid if INERTIAL SEPARATOR ON and/or "BLEED HI" MSG ON.

<table>
<thead>
<tr>
<th>T° (°C)</th>
<th>FLIGHT LEVEL (FL)</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>190</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAT</td>
<td>-24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

Recommended NG < 103%

CAUTION
THE TRQ SETTING MUST NEVER EXCEED 100 %
WHEN SETTING TRQ, NG MUST NEVER EXCEED 104 %

Figure 5.8.3 - ENGINE OPERATION
[Maximum cruise power (FL ≤ 200)]
ENGINE OPERATION

Conditions:

Maximum cruise power (FL ≥ 200)

- Landing gear and flaps UP
- "BLEED" switch on "AUTO"

NOTE: Use preferably recommended cruise power.

This table is not valid if INERTIAL SEPARATOR ON and/or "BLEED HI" MSG ON.

<table>
<thead>
<tr>
<th>T° (°C)</th>
<th>FLIGHT LEVEL (FL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAT</td>
<td>200</td>
</tr>
<tr>
<td>-62</td>
<td></td>
</tr>
<tr>
<td>-60</td>
<td></td>
</tr>
<tr>
<td>-58</td>
<td></td>
</tr>
<tr>
<td>-56</td>
<td></td>
</tr>
<tr>
<td>-54</td>
<td></td>
</tr>
<tr>
<td>-52</td>
<td></td>
</tr>
<tr>
<td>-50</td>
<td></td>
</tr>
<tr>
<td>-48</td>
<td></td>
</tr>
<tr>
<td>-46</td>
<td></td>
</tr>
<tr>
<td>-44</td>
<td></td>
</tr>
<tr>
<td>-42</td>
<td></td>
</tr>
<tr>
<td>-40</td>
<td></td>
</tr>
<tr>
<td>-38</td>
<td></td>
</tr>
<tr>
<td>-36</td>
<td>99</td>
</tr>
<tr>
<td>-34</td>
<td></td>
</tr>
<tr>
<td>-32</td>
<td></td>
</tr>
<tr>
<td>-30</td>
<td></td>
</tr>
<tr>
<td>-28</td>
<td></td>
</tr>
<tr>
<td>-26</td>
<td></td>
</tr>
<tr>
<td>-24</td>
<td></td>
</tr>
<tr>
<td>-22</td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>-18</td>
<td></td>
</tr>
<tr>
<td>-16</td>
<td></td>
</tr>
<tr>
<td>-14</td>
<td></td>
</tr>
<tr>
<td>-12</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

CAUTION

THE TRQ SETTING MUST NEVER EXCEED 100% WHEN SETTING TRQ, NG MUST NEVER EXCEED 104%

Figure 5.8.3A - ENGINE OPERATION

[Maximum cruise power (FL ≥ 200)]
ENGINE OPERATION

Conditions:

- **Normal (recommended) cruise power (FL ≤ 200)**
- If "BLEED HI" MSG ON, reduce TRQ by 5%
- Landing gear and flaps UP
- "BLEED" switch on "AUTO"

NOTE:

This table is not valid if INERTIAL SEPARATOR ON and/or "BLEED HI" MSG ON.

Table:

<table>
<thead>
<tr>
<th>T° (°C)</th>
<th>FLIGHT LEVEL (FL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAT</td>
<td>100 110 120 130 140 150 160 170 180 190 200</td>
</tr>
<tr>
<td>-24</td>
<td></td>
</tr>
<tr>
<td>-22</td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>-18</td>
<td></td>
</tr>
<tr>
<td>-16</td>
<td></td>
</tr>
<tr>
<td>-14</td>
<td></td>
</tr>
<tr>
<td>-12</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
</tbody>
</table>

CAUTION

THE TRQ SETTING MUST NEVER EXCEED 100 %
WHEN SETTING TRQ, NG MUST NEVER EXCEED 104 %

Figure 5.8.4 - ENGINE OPERATION

[Normal (recommended) cruise power (FL ≤ 200)]
ENGINE OPERATION

Conditions:

- Normal (recommended) cruise power (FL ≥ 200)
- "BLEED HI" MSG ON, reduce TRQ by 5%
 - Landing gear and flaps UP
 - "BLEED" switch on "AUTO"

NOTE: This table is not valid if INERTIAL SEPARATOR ON and/or "BLEED HI" MSG ON.

<table>
<thead>
<tr>
<th>T° (°C)</th>
<th>OAT</th>
<th>FLIGHT LEVEL (FL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
<td>210</td>
</tr>
<tr>
<td>-68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAUTION:

THE TRQ SETTING MUST NEVER EXCEED 100 %
WHEN SETTING TRQ, NG MUST NEVER EXCEED 104 %

Figure 5.8.4A - ENGINE OPERATION
[Normal (recommended) cruise power (FL ≥ 200)]
5.9 - TAKEOFF DISTANCES

WEIGHT : 5512 lbs (2500 kg)

Associated conditions:
- Landing gear DN and flaps TO
- 15° of attitude - TRQ = 100 %
- "BLEED" switch on "AUTO"
- Hard, dry and level runway
- GR = Ground roll (in ft)
- \(D_{50} \) = Takeoff distance (clear to 50 ft) (in ft)
- Rotation speed choice (\(V_R \))

<table>
<thead>
<tr>
<th>WEIGHT (LBS)</th>
<th>6000</th>
<th>6500</th>
<th>7500</th>
<th>8000</th>
<th>8500</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR (KT)</td>
<td>8500</td>
<td>6000</td>
<td>5500</td>
<td>5000</td>
<td>4500</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEIGHT (MASSE KG)</th>
<th>2800</th>
<th>2500</th>
<th>2200</th>
</tr>
</thead>
</table>

At 50 ft = 91 KIAS - 105 MPH IAS

<table>
<thead>
<tr>
<th>PRESSURE ALTITUDE ft</th>
<th>ISA - 35°C</th>
<th>ISA - 20°C</th>
<th>ISA - 10°C</th>
<th>ISA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GR</td>
<td>D50</td>
<td>GR</td>
<td>D50</td>
</tr>
<tr>
<td>0</td>
<td>665</td>
<td>1085</td>
<td>740</td>
<td>1190</td>
</tr>
<tr>
<td>2000</td>
<td>735</td>
<td>1185</td>
<td>800</td>
<td>1265</td>
</tr>
<tr>
<td>4000</td>
<td>800</td>
<td>1260</td>
<td>885</td>
<td>1380</td>
</tr>
<tr>
<td>6000</td>
<td>880</td>
<td>1375</td>
<td>965</td>
<td>1505</td>
</tr>
<tr>
<td>8000</td>
<td>965</td>
<td>1500</td>
<td>1060</td>
<td>1645</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSURE ALTITUDE ft</th>
<th>ISA + 10°C</th>
<th>ISA + 20°C</th>
<th>ISA + 30°C</th>
<th>ISA + 37°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GR</td>
<td>D50</td>
<td>GR</td>
<td>D50</td>
</tr>
<tr>
<td>0</td>
<td>865</td>
<td>1365</td>
<td>920</td>
<td>1435</td>
</tr>
<tr>
<td>2000</td>
<td>955</td>
<td>1490</td>
<td>1005</td>
<td>1565</td>
</tr>
<tr>
<td>4000</td>
<td>1050</td>
<td>1625</td>
<td>1110</td>
<td>1720</td>
</tr>
<tr>
<td>6000</td>
<td>1165</td>
<td>1800</td>
<td>1240</td>
<td>1910</td>
</tr>
<tr>
<td>8000</td>
<td>1305</td>
<td>2000</td>
<td>1390</td>
<td>2120</td>
</tr>
</tbody>
</table>

Figure 5.9.1 - TAKEOFF DISTANCES - 5512 lbs (2500 kg)

Corrections:
- Reduce total distances of 10 % every 10 kts of headwind
- Increase total distances of 30 % every 10 kts of rear wind
- Increase by:
 - 7 % on hard sod
 - 25 % on high grass
 - 10 % on short grass
 - 30 % on slippery runway
 - 15 % on wet runway

NOTE: Between ISA + 30°C and ISA + 37°C, it may be necessary to cut-off the "BLEED" in order to set TRQ = 100 % during takeoff while respecting the engine limitations. In this case, reduce power after takeoff to set the "BLEED" switch to AUTO.

NOTE: In SL ISA conditions, nominal \(N_p \) is of 1985 RPM.
WEIGHT : 6579 lbs (2984 kg)

Associated conditions:
- Landing gear DN and flaps TO
- 15° of attitude - TRQ = 100 %
- "BLEED" switch on "AUTO"
- Hard, dry and level runway
- GR = Ground roll (in ft)
- D50 = Takeoff distance (clear to 50 ft) (in ft)
- Rotation speed choice (VR)

<table>
<thead>
<tr>
<th>WEIGHT (LBS)</th>
<th>5000</th>
<th>5500</th>
<th>6000</th>
<th>6500</th>
<th>V_R (KT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6500</td>
<td>85</td>
<td>80</td>
<td>75</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>2984</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSURE ALTITUDE ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISA - 35°C</td>
</tr>
<tr>
<td>GR</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>4000</td>
</tr>
<tr>
<td>6000</td>
</tr>
<tr>
<td>8000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSURE ALTITUDE ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISA + 10°C</td>
</tr>
<tr>
<td>GR</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>4000</td>
</tr>
<tr>
<td>6000</td>
</tr>
<tr>
<td>8000</td>
</tr>
</tbody>
</table>

Figure 5.9.2 - TAKEOFF DISTANCES - 6579 lbs (2984 kg)

Corrections:
- Reduce total distances of 10 % every 10 kts of headwind
- Increase total distances of 30 % every 10 kts of rear wind
- Increase by:
 - 7 % on hard sod
 - 25 % on high grass
 - 10 % on short grass
 - 30 % on slippery runway
 - 15 % on wet runway

NOTE: Between ISA + 30°C and ISA + 37°C, it may be necessary to cut-off the "BLEED" in order to set TRQ = 100 % during takeoff while respecting the engine limitations. In this case, reduce power after takeoff to set the "BLEED" switch to AUTO.

NOTE: In SL ISA conditions, nominal Np is of 1985 RPM.
WEIGHT : 7394 lbs (3354 kg)

Associated conditions:
- Landing gear DN and flaps TO
- 12°5 of attitude - TRQ = 100 %
- "BLEED" switch on "AUTO"
- Hard, dry and level runway
- GR = Ground roll (in ft)
- D50 = Takeoff distance (clear to 50 ft) (in ft)
- Rotation speed choice (V_R)

<table>
<thead>
<tr>
<th>VR (KT)</th>
<th>WEIGHT (LBS)</th>
<th>MASSE (KG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>6500</td>
<td>3400</td>
</tr>
<tr>
<td>90</td>
<td>7394</td>
<td>3354</td>
</tr>
<tr>
<td>3200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3354</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WEIGHT : 7394 lbs (3354 kg) At 50 ft = 99 KIAS - 114 MPH IAS

<table>
<thead>
<tr>
<th>PRESSURE ALTITUDE ft</th>
<th>ISA - 35°C</th>
<th>ISA - 20°C</th>
<th>ISA - 10°C</th>
<th>ISA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GR</td>
<td>D50</td>
<td>GR</td>
<td>D50</td>
</tr>
<tr>
<td>0</td>
<td>1440</td>
<td>2020</td>
<td>1560</td>
<td>2175</td>
</tr>
<tr>
<td>2000</td>
<td>1555</td>
<td>2170</td>
<td>1690</td>
<td>2335</td>
</tr>
<tr>
<td>4000</td>
<td>1685</td>
<td>2325</td>
<td>1820</td>
<td>2505</td>
</tr>
<tr>
<td>6000</td>
<td>1810</td>
<td>2500</td>
<td>1970</td>
<td>2710</td>
</tr>
<tr>
<td>8000</td>
<td>1960</td>
<td>2695</td>
<td>2220</td>
<td>3045</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSURE ALTITUDE ft</th>
<th>ISA + 10°C</th>
<th>ISA + 20°C</th>
<th>ISA + 30°C</th>
<th>ISA + 37°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GR</td>
<td>D50</td>
<td>GR</td>
<td>D50</td>
</tr>
<tr>
<td>0</td>
<td>1800</td>
<td>2485</td>
<td>1880</td>
<td>2595</td>
</tr>
<tr>
<td>2000</td>
<td>1945</td>
<td>2675</td>
<td>2080</td>
<td>2865</td>
</tr>
<tr>
<td>4000</td>
<td>2185</td>
<td>3000</td>
<td>2355</td>
<td>3200</td>
</tr>
<tr>
<td>6000</td>
<td>2470</td>
<td>3340</td>
<td>2640</td>
<td>3550</td>
</tr>
<tr>
<td>8000</td>
<td>2775</td>
<td>3720</td>
<td>2965</td>
<td>3950</td>
</tr>
</tbody>
</table>

Figure 5.9.3 - TAKEOFF DISTANCES - 7394 lbs (3354 kg)

Corrections:
- Reduce total distances of 10 % every 10 kts of headwind
- Increase total distances of 30 % every 10 kts of rear wind
- Increase by:
 - 7 % on hard sod
 - 25 % on high grass
 - 10 % on short grass
 - 30 % on slippery runway
 - 15 % on wet runway

NOTE: Between ISA + 30°C and ISA + 37°C, it may be necessary to cut-off the “BLEED” in order to set TRQ = 100 % during takeoff while respecting the engine limitations. In this case, reduce power after takeoff to set the “BLEED” switch to AUTO.

NOTE: In SL ISA conditions, nominal Np is of 1985 RPM.
5.10 - CLIMB PERFORMANCE

MXCL - SPEEDS (IAS - 124 KIAS)

Conditions:
- Maximum climb power TRQ = 100%
- Landing gear and flaps UP
- IAS = 124 KIAS - “BLEED” switch on “AUTO” or “BLEED HI” MSG ON

<table>
<thead>
<tr>
<th>Airplane weight</th>
<th>Pressure Altitude (feet)</th>
<th>RATE OF CLIMB (ft/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ISA - 20°C</td>
</tr>
<tr>
<td>5794 lbs (2628 kg)</td>
<td>SL</td>
<td>2885</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>2860</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>2840</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>2810</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>2775</td>
</tr>
<tr>
<td>6594 lbs (2991 kg)</td>
<td>SL</td>
<td>2440</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>2415</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>2395</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>2365</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>2335</td>
</tr>
<tr>
<td>7394 lbs (3354 kg)</td>
<td>SL</td>
<td>2080</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>1975</td>
</tr>
</tbody>
</table>

Figure 5.10.1 - MXCL - SPEEDS (IAS - 124 KIAS)

NOTE: In SL ISA conditions, nominal Np is of 1985 RPM.
MXCL - SPEEDS (IAS - 170 KIAS / M 0.40)

Conditions:
- Maximum climb power TRQ = 100 %
- Landing gear and flaps UP
- IAS = 170 KIAS / M 0.40
- “BLEED” switch on “AUTO” or “BLEED HI” MSG ON

<table>
<thead>
<tr>
<th>Airplane weight</th>
<th>Pressure Altitude (feet)</th>
<th>RATE OF CLIMB (ft/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ISA - 20°C</td>
<td>ISA - 10°C</td>
</tr>
<tr>
<td>5794 lbs (2628 kg)</td>
<td>SL</td>
<td>2 420</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>2 385</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>2 345</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>2 305</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>2 260</td>
</tr>
<tr>
<td>6594 lbs (2991 kg)</td>
<td>SL</td>
<td>2 075</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>2 045</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>2 010</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>1 975</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>1 930</td>
</tr>
<tr>
<td>7394 lbs (3354 kg)</td>
<td>SL</td>
<td>1 800</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>1 770</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>1 735</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>1 705</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>1 660</td>
</tr>
</tbody>
</table>

Figure 5.10.2 - MXCL - SPEEDS (IAS - 170 KIAS / M 0.40)

NOTE: In SL ISA conditions, nominal Np is of 1985 RPM.
MXCL - TIME, CONSUMPTION AND CLIMB DISTANCE (IAS = 124 KIAS)

Conditions:
- **ISA - 20°C**
- Maximum climb power
- Landing gear and flaps UP
- IAS = 124 KIAS - "BLEED" switch on "AUTO"

NOTE:
- Time, consumption and distance from the 50 ft
- If BLEED HI selected: fuel consumptions increased by 1%

<table>
<thead>
<tr>
<th>Pressure altitude (ft)</th>
<th>WEIGHT 5794 lbs (2628 kg)</th>
<th>WEIGHT 6579 lbs (2984 kg)</th>
<th>WEIGHT 7394 lbs (3354 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (min. s)</td>
<td>Consump.</td>
<td>Dist. (NM)</td>
</tr>
<tr>
<td>SL</td>
<td>00:00</td>
<td>0 0 0 0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>2000</td>
<td>00:45</td>
<td>4 3 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>4000</td>
<td>01:30</td>
<td>8 6 2 3</td>
<td>3 3 3 3</td>
</tr>
<tr>
<td>6000</td>
<td>02:15</td>
<td>11 9 3 4</td>
<td>4 4 4 4</td>
</tr>
<tr>
<td>8000</td>
<td>03:00</td>
<td>15 12 3 6</td>
<td>6 6 6 6</td>
</tr>
<tr>
<td>10000</td>
<td>03:30</td>
<td>18 14 4 9</td>
<td>9 9 9 9</td>
</tr>
<tr>
<td>12000</td>
<td>04:15</td>
<td>22 17 5 9</td>
<td>9 9 9 9</td>
</tr>
<tr>
<td>14000</td>
<td>05:00</td>
<td>25 20 6 7</td>
<td>11 11 11</td>
</tr>
<tr>
<td>16000</td>
<td>05:45</td>
<td>29 23 7 6</td>
<td>13 13 13</td>
</tr>
<tr>
<td>18000</td>
<td>06:30</td>
<td>32 25 8 5</td>
<td>15 15 15</td>
</tr>
<tr>
<td>20000</td>
<td>07:30</td>
<td>35 28 9 4</td>
<td>17 17 17</td>
</tr>
<tr>
<td>22000</td>
<td>08:15</td>
<td>39 30 10 3</td>
<td>19 19 19</td>
</tr>
<tr>
<td>24000</td>
<td>09:00</td>
<td>42 33 11 1</td>
<td>21 21 21</td>
</tr>
<tr>
<td>26000</td>
<td>09:45</td>
<td>46 36 12 0</td>
<td>24 24 24</td>
</tr>
<tr>
<td>28000</td>
<td>10:30</td>
<td>49 38 13 0</td>
<td>26 26 26</td>
</tr>
<tr>
<td>30000</td>
<td>11:30</td>
<td>53 41 13 9</td>
<td>29 29 29</td>
</tr>
</tbody>
</table>

Figure 5.10.3 - MXCL - TIME, CONSUMPTION AND CLIMB DISTANCE (IAS = 124 KIAS) / ISA - 20°C
MXCL - TIME, CONSUMPTION AND CLIMB DISTANCE (IAS = 124 KIAS)

Conditions:
- ISA
- Maximum climb power
- Landing gear and flaps UP
- IAS = 124 KIAS - "BLEED" switch on "AUTO"

NOTE:
- *Time, consumption and distance from the 50 ft*
- If BLEED HI selected:
 - Fuel consumptions increased by 2%
 - Time to climb increased up to 1% above FL 260

<table>
<thead>
<tr>
<th>Pressure Altitude (ft)</th>
<th>Time (min. s)</th>
<th>Consump.</th>
<th>Dist. (NM)</th>
<th>Time (min. s)</th>
<th>Consump.</th>
<th>Dist. (NM)</th>
<th>Time (min. s)</th>
<th>Consump.</th>
<th>Dist. (NM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>kg</td>
<td>USG</td>
<td>I</td>
<td>kg</td>
<td>USG</td>
<td>I</td>
<td>kg</td>
</tr>
<tr>
<td>SL</td>
<td>00:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00:00</td>
<td>0</td>
<td>0</td>
<td>00:00</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>00:45</td>
<td>4</td>
<td>3</td>
<td>1.0</td>
<td>00:45</td>
<td>5</td>
<td>4</td>
<td>1.2</td>
<td>01:00</td>
</tr>
<tr>
<td>4000</td>
<td>01:30</td>
<td>8</td>
<td>6</td>
<td>2.1</td>
<td>01:45</td>
<td>9</td>
<td>7</td>
<td>2.4</td>
<td>02:00</td>
</tr>
<tr>
<td>6000</td>
<td>02:15</td>
<td>12</td>
<td>9</td>
<td>3.1</td>
<td>02:30</td>
<td>14</td>
<td>11</td>
<td>3.6</td>
<td>03:00</td>
</tr>
<tr>
<td>8000</td>
<td>03:00</td>
<td>15</td>
<td>12</td>
<td>4.1</td>
<td>03:30</td>
<td>18</td>
<td>14</td>
<td>4.8</td>
<td>04:00</td>
</tr>
<tr>
<td>10000</td>
<td>03:45</td>
<td>19</td>
<td>15</td>
<td>5.0</td>
<td>04:15</td>
<td>22</td>
<td>18</td>
<td>5.9</td>
<td>05:15</td>
</tr>
<tr>
<td>12000</td>
<td>04:30</td>
<td>23</td>
<td>18</td>
<td>6.0</td>
<td>05:15</td>
<td>27</td>
<td>21</td>
<td>7.1</td>
<td>06:15</td>
</tr>
<tr>
<td>14000</td>
<td>05:15</td>
<td>26</td>
<td>21</td>
<td>6.9</td>
<td>06:15</td>
<td>31</td>
<td>24</td>
<td>8.2</td>
<td>07:15</td>
</tr>
<tr>
<td>16000</td>
<td>06:00</td>
<td>30</td>
<td>23</td>
<td>7.9</td>
<td>07:00</td>
<td>35</td>
<td>28</td>
<td>9.3</td>
<td>08:15</td>
</tr>
<tr>
<td>18000</td>
<td>06:45</td>
<td>33</td>
<td>26</td>
<td>8.8</td>
<td>08:00</td>
<td>39</td>
<td>31</td>
<td>10.4</td>
<td>09:30</td>
</tr>
<tr>
<td>20000</td>
<td>07:30</td>
<td>37</td>
<td>29</td>
<td>9.7</td>
<td>09:00</td>
<td>44</td>
<td>34</td>
<td>11.5</td>
<td>10:45</td>
</tr>
<tr>
<td>22000</td>
<td>08:15</td>
<td>40</td>
<td>32</td>
<td>10.6</td>
<td>10:00</td>
<td>48</td>
<td>38</td>
<td>12.7</td>
<td>11:45</td>
</tr>
<tr>
<td>24000</td>
<td>09:15</td>
<td>44</td>
<td>34</td>
<td>11.6</td>
<td>11:00</td>
<td>52</td>
<td>41</td>
<td>13.8</td>
<td>13:00</td>
</tr>
<tr>
<td>26000</td>
<td>10:00</td>
<td>47</td>
<td>37</td>
<td>12.5</td>
<td>12:00</td>
<td>57</td>
<td>44</td>
<td>14.9</td>
<td>14:15</td>
</tr>
<tr>
<td>28000</td>
<td>11:00</td>
<td>51</td>
<td>40</td>
<td>13.5</td>
<td>13:15</td>
<td>61</td>
<td>48</td>
<td>16.2</td>
<td>16:00</td>
</tr>
<tr>
<td>30000</td>
<td>12:15</td>
<td>55</td>
<td>43</td>
<td>14.6</td>
<td>14:30</td>
<td>66</td>
<td>52</td>
<td>17.5</td>
<td>17:45</td>
</tr>
<tr>
<td>31000</td>
<td>12:45</td>
<td>57</td>
<td>45</td>
<td>15.1</td>
<td>15:30</td>
<td>69</td>
<td>54</td>
<td>18.2</td>
<td>18:45</td>
</tr>
</tbody>
</table>

Figure 5.10.4 - MXCL - TIME, CONSUMPTION AND CLIMB DISTANCE (IAS = 124 KIAS) / ISA
MXCL - TIME, CONSUMPTION AND CLIMB DISTANCE (IAS = 124 KIAS)

Conditions:
- ISA + 20°C
- Maximum climb power
- Landing gear and flaps UP
- IAS = 124 KIAS - “BLEED” switch on “AUTO”

NOTE:
- Time, consumption and distance from the 50 ft
- If BLEED HI selected:
 - Fuel consumption increased by 2% below FL 260 and 3% above FL 260
 - Time to climb increased by 1% to 5% from FL 200 to FL 310

<table>
<thead>
<tr>
<th>Pressure altitude (ft)</th>
<th>WEIGHT 5794 lbs (2628 kg)</th>
<th>WEIGHT 6579 lbs (2984 kg)</th>
<th>WEIGHT 7394 lbs (3354 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (min. s)</td>
<td>Consump.</td>
<td>Dist. (NM)</td>
</tr>
<tr>
<td>0</td>
<td>00:00:00</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>2 000</td>
<td>00:45:00</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>4 000</td>
<td>01:30:00</td>
<td>2</td>
<td>2.1</td>
</tr>
<tr>
<td>6 000</td>
<td>02:15:00</td>
<td>3</td>
<td>3.2</td>
</tr>
<tr>
<td>8 000</td>
<td>03:00:00</td>
<td>4</td>
<td>4.2</td>
</tr>
<tr>
<td>10 000</td>
<td>03:45:00</td>
<td>5</td>
<td>5.2</td>
</tr>
<tr>
<td>12 000</td>
<td>04:30:00</td>
<td>6</td>
<td>6.2</td>
</tr>
<tr>
<td>14 000</td>
<td>05:15:00</td>
<td>7</td>
<td>7.2</td>
</tr>
<tr>
<td>16 000</td>
<td>06:00:00</td>
<td>8</td>
<td>8.1</td>
</tr>
<tr>
<td>18 000</td>
<td>06:45:00</td>
<td>9</td>
<td>9.1</td>
</tr>
<tr>
<td>20 000</td>
<td>07:45:00</td>
<td>10</td>
<td>10.1</td>
</tr>
<tr>
<td>22 000</td>
<td>08:30:00</td>
<td>11</td>
<td>11.1</td>
</tr>
<tr>
<td>24 000</td>
<td>09:45:00</td>
<td>12</td>
<td>12.1</td>
</tr>
<tr>
<td>26 000</td>
<td>10:45:00</td>
<td>13</td>
<td>13.2</td>
</tr>
<tr>
<td>28 000</td>
<td>12:00:00</td>
<td>14</td>
<td>14.4</td>
</tr>
<tr>
<td>30 000</td>
<td>13:30:00</td>
<td>15</td>
<td>15.6</td>
</tr>
<tr>
<td>31 000</td>
<td>14:15:00</td>
<td>16</td>
<td>16.3</td>
</tr>
</tbody>
</table>

Figure 5.10.5 - MXCL - TIME, CONSUMPTION AND CLIMB DISTANCE (IAS = 124 KIAS) / ISA + 20°C
MXCL - TIME, CONSUMPTION AND CLIMB DISTANCE (IAS = 170 KIAS / M 0.40)

Conditions:
- ISA - 20°C
- Maximum climb power
- Landing gear and flaps UP
- IAS = 170 KIAS / M 0.40 - "BLEED" switch on "AUTO"

NOTE:
- Time, consumption and distance from the 50 ft
- If BLEED HI selected : fuel consumptions increased by 1%

<table>
<thead>
<tr>
<th>Pressure altitude (ft)</th>
<th>5794 lbs (2628 kg)</th>
<th>6579 lbs (2984 kg)</th>
<th>7394 lbs (3354 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (min. s)</td>
<td>Consump.</td>
<td>Dist. (NM)</td>
</tr>
<tr>
<td>SL</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>00:45</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4000</td>
<td>01:45</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>6000</td>
<td>02:30</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>8000</td>
<td>03:30</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>10000</td>
<td>04:15</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>12000</td>
<td>05:15</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>14000</td>
<td>06:00</td>
<td>30</td>
<td>24</td>
</tr>
<tr>
<td>16000</td>
<td>07:00</td>
<td>34</td>
<td>27</td>
</tr>
<tr>
<td>18000</td>
<td>08:00</td>
<td>39</td>
<td>30</td>
</tr>
<tr>
<td>20000</td>
<td>09:00</td>
<td>43</td>
<td>34</td>
</tr>
<tr>
<td>22000</td>
<td>10:00</td>
<td>47</td>
<td>37</td>
</tr>
<tr>
<td>24000</td>
<td>11:00</td>
<td>51</td>
<td>40</td>
</tr>
<tr>
<td>26000</td>
<td>12:00</td>
<td>55</td>
<td>43</td>
</tr>
<tr>
<td>28000</td>
<td>12:45</td>
<td>59</td>
<td>46</td>
</tr>
<tr>
<td>30000</td>
<td>13:45</td>
<td>62</td>
<td>49</td>
</tr>
<tr>
<td>31000</td>
<td>14:15</td>
<td>64</td>
<td>50</td>
</tr>
</tbody>
</table>

Figure 5.10.6 - MXCL - TIME, CONSUMPTION AND CLIMB DISTANCE (IAS = 170 KIAS / M 0.40) / ISA - 20°C
MXCL - TIME, CONSUMPTION AND CLimb DISTANCE (IAS = 170 KIAS / M 0.40)

Conditions:
- ISA
- Maximum climb power
- Landing gear and flaps UP
- IAS = 170 KIAS / M 0.40 - "BLEED" switch on "AUTO"

NOTE:
- Time, consumption and distance from the 50 ft
- If BLEED HI selected:
 - Fuel consumptions increased by 2%
 - Time to climb increased up to 2% above FL 260

<table>
<thead>
<tr>
<th>Pressure altitude (ft)</th>
<th>WEIGHT 5794 lbs (2628 kg)</th>
<th>WEIGHT 6579 lbs (2984 kg)</th>
<th>WEIGHT 7394 lbs (3354 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (min. s)</td>
<td>Consump.</td>
<td>Dist. (NM)</td>
</tr>
<tr>
<td>SL</td>
<td>00:00</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>00:45</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4000</td>
<td>01:45</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>6000</td>
<td>02:30</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>8000</td>
<td>03:30</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>10000</td>
<td>04:30</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>12000</td>
<td>05:15</td>
<td>27</td>
<td>21</td>
</tr>
<tr>
<td>14000</td>
<td>06:15</td>
<td>32</td>
<td>25</td>
</tr>
<tr>
<td>16000</td>
<td>07:15</td>
<td>36</td>
<td>28</td>
</tr>
<tr>
<td>18000</td>
<td>08:15</td>
<td>41</td>
<td>32</td>
</tr>
<tr>
<td>20000</td>
<td>09:15</td>
<td>45</td>
<td>36</td>
</tr>
<tr>
<td>22000</td>
<td>10:30</td>
<td>50</td>
<td>39</td>
</tr>
<tr>
<td>24000</td>
<td>11:30</td>
<td>54</td>
<td>43</td>
</tr>
<tr>
<td>26000</td>
<td>12:30</td>
<td>59</td>
<td>46</td>
</tr>
<tr>
<td>28000</td>
<td>13:30</td>
<td>63</td>
<td>49</td>
</tr>
<tr>
<td>30000</td>
<td>14:45</td>
<td>67</td>
<td>52</td>
</tr>
<tr>
<td>31000</td>
<td>15:15</td>
<td>69</td>
<td>54</td>
</tr>
</tbody>
</table>

Figure 5.10.7 - MXCL - TIME, CONSUMPTION AND CLimb DISTANCE (IAS = 170 KIAS / M 0.40) / ISA
MXCL - TIME, CONSUMPTION AND CLIMB DISTANCE (IAS = 170 KIAS / M 0.40)

Conditions:
- ISA + 20°C
- Maximum climb power
- Landing gear and flaps UP
- IAS = 170 KIAS / M 0.40 - "BLEED" switch on "AUTO"

NOTE:
- Time, consumption and distance from the 50 ft
- If BLEED HI selected:
 - 3% below FL 240
 - Up to 6% above FL 240
 - Time to climb increased by 1% to 8% from FL 200 to FL 310

<table>
<thead>
<tr>
<th>Pressure altitude (ft)</th>
<th>Time (min. s)</th>
<th>Weight 5794 lbs (2628 kg)</th>
<th>Weight 6579 lbs (2984 kg)</th>
<th>Weight 7394 lbs (3354 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>kg</td>
<td>USG</td>
</tr>
<tr>
<td>SL</td>
<td>00:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>00:45</td>
<td>5</td>
<td>4</td>
<td>1.3</td>
</tr>
<tr>
<td>4000</td>
<td>01:45</td>
<td>10</td>
<td>8</td>
<td>2.6</td>
</tr>
<tr>
<td>6000</td>
<td>02:45</td>
<td>14</td>
<td>11</td>
<td>3.8</td>
</tr>
<tr>
<td>8000</td>
<td>03:30</td>
<td>19</td>
<td>15</td>
<td>5.1</td>
</tr>
<tr>
<td>10000</td>
<td>04:30</td>
<td>24</td>
<td>19</td>
<td>6.3</td>
</tr>
<tr>
<td>12000</td>
<td>05:30</td>
<td>29</td>
<td>22</td>
<td>7.5</td>
</tr>
<tr>
<td>14000</td>
<td>06:30</td>
<td>33</td>
<td>26</td>
<td>8.8</td>
</tr>
<tr>
<td>16000</td>
<td>07:30</td>
<td>38</td>
<td>30</td>
<td>10.1</td>
</tr>
<tr>
<td>18000</td>
<td>08:30</td>
<td>43</td>
<td>34</td>
<td>11.3</td>
</tr>
<tr>
<td>20000</td>
<td>09:45</td>
<td>48</td>
<td>38</td>
<td>12.7</td>
</tr>
<tr>
<td>22000</td>
<td>11:00</td>
<td>53</td>
<td>42</td>
<td>14.1</td>
</tr>
<tr>
<td>24000</td>
<td>12:30</td>
<td>59</td>
<td>46</td>
<td>15.6</td>
</tr>
<tr>
<td>26000</td>
<td>13:45</td>
<td>64</td>
<td>50</td>
<td>17.0</td>
</tr>
<tr>
<td>28000</td>
<td>15:30</td>
<td>70</td>
<td>55</td>
<td>18.4</td>
</tr>
<tr>
<td>30000</td>
<td>17:15</td>
<td>75</td>
<td>59</td>
<td>19.8</td>
</tr>
<tr>
<td>31000</td>
<td>18:00</td>
<td>78</td>
<td>61</td>
<td>20.6</td>
</tr>
</tbody>
</table>

Figure 5.10.8 - MXCL - TIME, CONSUMPTION AND CLIMB DISTANCE (IAS = 170 KIAS / M 0.40) / ISA + 20°C

Page 5.10.8 Edition 1 - December 5, 2014 Rev. 0
CLIMB PERFORMANCE AFTER GO-AROUND

Conditions:
- Landing gear DN and flaps LDG
- IAS = 90 KIAS

<table>
<thead>
<tr>
<th>Airplane weight (feet)</th>
<th>Pressure altitude</th>
<th>RATE OF CLIMB (ft/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ISA - 35°C</td>
</tr>
<tr>
<td>6594 lbs (2991 kg)</td>
<td>SL</td>
<td>1635</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>1615</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>1585</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>1555</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>1520</td>
</tr>
</tbody>
</table>

Conditions:
- Landing gear DN and flaps LDG
- IAS = 95 KIAS

<table>
<thead>
<tr>
<th>Airplane weight (feet)</th>
<th>Pressure altitude</th>
<th>RATE OF CLIMB (ft/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ISA - 35°C</td>
</tr>
<tr>
<td>7394 lbs (3354 kg)</td>
<td>SL</td>
<td>1350</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>1325</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>1295</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>1265</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>1230</td>
</tr>
</tbody>
</table>

Figure 5.10.9 - CLIMB PERFORMANCE AFTER GO-AROUND
CLIMB PERFORMANCE - FLAPS TO

Conditions:
- Landing gear UP and flaps TO
- **IAS = 110 KIAS**

<table>
<thead>
<tr>
<th>Airplane weight (feet)</th>
<th>Pressure altitude (feet)</th>
<th>RATE OF CLIMB (ft/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ISA - 35°C</td>
<td>ISA - 20°C</td>
</tr>
<tr>
<td>6594 lbs (2991 kg)</td>
<td>SL</td>
<td>2295</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>2280</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>2265</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>2250</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>2235</td>
</tr>
</tbody>
</table>

Conditions:
- Landing gear UP and flaps TO
- **IAS = 115 KIAS**

<table>
<thead>
<tr>
<th>Airplane weight (feet)</th>
<th>Pressure altitude (feet)</th>
<th>RATE OF CLIMB (ft/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ISA - 35°C</td>
<td>ISA - 20°C</td>
</tr>
<tr>
<td>7394 lbs (3354 kg)</td>
<td>SL</td>
<td>1985</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>1970</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>1955</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>1940</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>1915</td>
</tr>
</tbody>
</table>

Figure 5.10.10 - CLIMB PERFORMANCE - FLAPS TO
5.11 - CRUISE PERFORMANCE

MAXIMUM CRUISE

Installation of GWX 70 Color Weather Radar system results in a 5 KIAS decrease in Maximum Cruise performance.

Figure 5.11.1 - CRUISE PERFORMANCE (Maximum cruise)
MAXIMUM CRUISE

Conditions:
- ISA - 20°C
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

NOTE:
- Use preferably recommended cruise power
 - If "BLEED HI" MSG ON:
 Fuel flow will increase by 1%, reduce the torque only to respect the maximum power of 100%.

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>OAT (°C)</th>
<th>TRQ (%)</th>
<th>Fuel flow</th>
<th>AIRSPEEDS (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5500 lbs (2495 kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I / h</td>
<td>kg / h</td>
</tr>
<tr>
<td>SL</td>
<td>-4</td>
<td>100</td>
<td>325</td>
<td>255</td>
</tr>
<tr>
<td>5000</td>
<td>-14</td>
<td>100</td>
<td>299</td>
<td>234</td>
</tr>
<tr>
<td>10000</td>
<td>-24</td>
<td>100</td>
<td>278</td>
<td>218</td>
</tr>
<tr>
<td>15000</td>
<td>-34</td>
<td>100</td>
<td>265</td>
<td>208</td>
</tr>
<tr>
<td>18000</td>
<td>-40</td>
<td>100</td>
<td>256</td>
<td>201</td>
</tr>
<tr>
<td>20000</td>
<td>-44</td>
<td>100</td>
<td>251</td>
<td>197</td>
</tr>
<tr>
<td>21000</td>
<td>-46</td>
<td>100</td>
<td>248</td>
<td>195</td>
</tr>
<tr>
<td>22000</td>
<td>-48</td>
<td>100</td>
<td>246</td>
<td>193</td>
</tr>
<tr>
<td>23000</td>
<td>-50</td>
<td>100</td>
<td>244</td>
<td>192</td>
</tr>
<tr>
<td>24000</td>
<td>-52</td>
<td>100</td>
<td>243</td>
<td>190</td>
</tr>
<tr>
<td>25000</td>
<td>-54</td>
<td>100</td>
<td>241</td>
<td>189</td>
</tr>
<tr>
<td>26000</td>
<td>-56</td>
<td>100</td>
<td>240</td>
<td>188</td>
</tr>
<tr>
<td>27000</td>
<td>-57</td>
<td>100</td>
<td>239</td>
<td>188</td>
</tr>
<tr>
<td>28000</td>
<td>-59</td>
<td>100</td>
<td>238</td>
<td>187</td>
</tr>
<tr>
<td>29000</td>
<td>-61</td>
<td>100</td>
<td>238</td>
<td>187</td>
</tr>
<tr>
<td>30000</td>
<td>-63</td>
<td>100</td>
<td>238</td>
<td>187</td>
</tr>
<tr>
<td>31000</td>
<td>-65</td>
<td>100</td>
<td>238</td>
<td>187</td>
</tr>
</tbody>
</table>

Figure 5.11.2 - CRUISE PERFORMANCE
Maximum cruise / ISA - 20°C
MAXIMUM CRUISE

Conditions :
- **ISA - 10°C**
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

NOTE :
- Use preferably recommended cruise power
- If "BLEED HI" MSG ON :
 . Below FL 300 : fuel flow will increase by 1 %, reduce the torque only to respect the maximum power of 100 %.
 . FL 300 and above : reduce the torque value mentioned in the table below by 2 %, leading to airspeed reduction by 2 KIAS.

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>OAT (°C)</th>
<th>TRQ (%)</th>
<th>Fuel flow I / h</th>
<th>Fuel flow kg / h</th>
<th>Fuel flow USG / h</th>
<th>AIRSPEEDS (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5500 lbs (2495 kg)</td>
</tr>
<tr>
<td>SL</td>
<td>6</td>
<td>100</td>
<td>329</td>
<td>258</td>
<td>86.9</td>
<td>238</td>
</tr>
<tr>
<td>5000</td>
<td>-4</td>
<td>100</td>
<td>302</td>
<td>237</td>
<td>79.7</td>
<td>234</td>
</tr>
<tr>
<td>10000</td>
<td>-14</td>
<td>100</td>
<td>281</td>
<td>220</td>
<td>74.2</td>
<td>229</td>
</tr>
<tr>
<td>15000</td>
<td>-24</td>
<td>100</td>
<td>268</td>
<td>210</td>
<td>70.8</td>
<td>224</td>
</tr>
<tr>
<td>18000</td>
<td>-30</td>
<td>100</td>
<td>259</td>
<td>203</td>
<td>68.4</td>
<td>221</td>
</tr>
<tr>
<td>20000</td>
<td>-34</td>
<td>100</td>
<td>253</td>
<td>199</td>
<td>66.9</td>
<td>219</td>
</tr>
<tr>
<td>21000</td>
<td>-36</td>
<td>100</td>
<td>251</td>
<td>197</td>
<td>66.2</td>
<td>218</td>
</tr>
<tr>
<td>22000</td>
<td>-38</td>
<td>100</td>
<td>249</td>
<td>195</td>
<td>65.7</td>
<td>217</td>
</tr>
<tr>
<td>23000</td>
<td>-40</td>
<td>100</td>
<td>247</td>
<td>194</td>
<td>65.1</td>
<td>216</td>
</tr>
<tr>
<td>24000</td>
<td>-42</td>
<td>100</td>
<td>245</td>
<td>192</td>
<td>64.7</td>
<td>215</td>
</tr>
<tr>
<td>25000</td>
<td>-44</td>
<td>100</td>
<td>243</td>
<td>191</td>
<td>64.3</td>
<td>214</td>
</tr>
<tr>
<td>26000</td>
<td>-46</td>
<td>100</td>
<td>242</td>
<td>190</td>
<td>63.9</td>
<td>213</td>
</tr>
<tr>
<td>27000</td>
<td>-47</td>
<td>100</td>
<td>242</td>
<td>190</td>
<td>63.8</td>
<td>212</td>
</tr>
<tr>
<td>28000</td>
<td>-49</td>
<td>100</td>
<td>241</td>
<td>189</td>
<td>63.6</td>
<td>211</td>
</tr>
<tr>
<td>29000</td>
<td>-51</td>
<td>100</td>
<td>240</td>
<td>189</td>
<td>63.5</td>
<td>210</td>
</tr>
<tr>
<td>30000</td>
<td>-53</td>
<td>100</td>
<td>239</td>
<td>188</td>
<td>63.2</td>
<td>209</td>
</tr>
<tr>
<td>31000</td>
<td>-55</td>
<td>97</td>
<td>230</td>
<td>181</td>
<td>60.8</td>
<td>205</td>
</tr>
</tbody>
</table>

Figure 5.11.3 - CRUISE PERFORMANCE
Maximum cruise / ISA - 10°C
MAXIMUM CRUISE

Conditions:
- ISA - 5°C
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

NOTE:
- Use preferably recommended cruise power
- If "BLEED HI" MSG ON:
 - Below FL 290 : fuel flow will increase by 1 %, reduce the torque only to respect the maximum power of 100 %.
 - FL 290 and above : reduce the torque value mentioned in the table below by 3 %, leading to airspeed reduction by 2 KIAS.

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>OAT (°C)</th>
<th>TRQ (%)</th>
<th>Fuel flow</th>
<th>AIRSPEEDS (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I / h</td>
<td>5500 lbs (2495 kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kg / h</td>
<td>IAS</td>
</tr>
<tr>
<td>SL</td>
<td>11</td>
<td>100</td>
<td>331</td>
<td>238</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
<td>100</td>
<td>304</td>
<td>233</td>
</tr>
<tr>
<td>10000</td>
<td>-9</td>
<td>100</td>
<td>282</td>
<td>228</td>
</tr>
<tr>
<td>15000</td>
<td>-19</td>
<td>100</td>
<td>269</td>
<td>223</td>
</tr>
<tr>
<td>18000</td>
<td>-25</td>
<td>100</td>
<td>260</td>
<td>220</td>
</tr>
<tr>
<td>20000</td>
<td>-29</td>
<td>100</td>
<td>254</td>
<td>218</td>
</tr>
<tr>
<td>21000</td>
<td>-31</td>
<td>100</td>
<td>252</td>
<td>217</td>
</tr>
<tr>
<td>22000</td>
<td>-33</td>
<td>100</td>
<td>250</td>
<td>216</td>
</tr>
<tr>
<td>23000</td>
<td>-35</td>
<td>100</td>
<td>248</td>
<td>215</td>
</tr>
<tr>
<td>24000</td>
<td>-37</td>
<td>100</td>
<td>246</td>
<td>214</td>
</tr>
<tr>
<td>25000</td>
<td>-39</td>
<td>100</td>
<td>244</td>
<td>213</td>
</tr>
<tr>
<td>26000</td>
<td>-41</td>
<td>100</td>
<td>243</td>
<td>212</td>
</tr>
<tr>
<td>27000</td>
<td>-42</td>
<td>100</td>
<td>243</td>
<td>211</td>
</tr>
<tr>
<td>28000</td>
<td>-44</td>
<td>100</td>
<td>242</td>
<td>210</td>
</tr>
<tr>
<td>29000</td>
<td>-46</td>
<td>100</td>
<td>242</td>
<td>210</td>
</tr>
<tr>
<td>30000</td>
<td>-48</td>
<td>97</td>
<td>233</td>
<td>206</td>
</tr>
<tr>
<td>31000</td>
<td>-50</td>
<td>94</td>
<td>224</td>
<td>202</td>
</tr>
</tbody>
</table>

Figure 5.11.4 - CRUISE PERFORMANCE
Maximum cruise / ISA - 5°C
MAXIMUM CRUISE

Conditions:
- **ISA**
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

NOTE:
- Use preferably recommended cruise power
- If "BLEED HI" MSG ON:
 - Below FL 280: fuel flow will increase by 1 %, reduce the torque only to respect the maximum power of 100 %.
 - FL 280 and above: reduce the torque value mentioned in the table below by 3 %, leading to airspeed reduction by 2 KIAS.

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>OAT (°C)</th>
<th>TRQ (%)</th>
<th>Fuel flow (I/h)</th>
<th>USG / h</th>
<th>IAS (kt)</th>
<th>TAS (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL</td>
<td>16</td>
<td>100</td>
<td>333</td>
<td>261</td>
<td>87.9</td>
<td>237</td>
</tr>
<tr>
<td>5000</td>
<td>6</td>
<td>100</td>
<td>305</td>
<td>240</td>
<td>80.7</td>
<td>232</td>
</tr>
<tr>
<td>10000</td>
<td>-4</td>
<td>100</td>
<td>284</td>
<td>223</td>
<td>74.9</td>
<td>227</td>
</tr>
<tr>
<td>15000</td>
<td>-14</td>
<td>100</td>
<td>271</td>
<td>213</td>
<td>71.5</td>
<td>222</td>
</tr>
<tr>
<td>18000</td>
<td>-20</td>
<td>100</td>
<td>261</td>
<td>205</td>
<td>69.0</td>
<td>219</td>
</tr>
<tr>
<td>20000</td>
<td>-24</td>
<td>100</td>
<td>256</td>
<td>201</td>
<td>67.6</td>
<td>217</td>
</tr>
<tr>
<td>21000</td>
<td>-26</td>
<td>100</td>
<td>253</td>
<td>199</td>
<td>66.9</td>
<td>216</td>
</tr>
<tr>
<td>22000</td>
<td>-28</td>
<td>100</td>
<td>251</td>
<td>197</td>
<td>66.3</td>
<td>215</td>
</tr>
<tr>
<td>23000</td>
<td>-30</td>
<td>100</td>
<td>249</td>
<td>195</td>
<td>65.8</td>
<td>214</td>
</tr>
<tr>
<td>24000</td>
<td>-32</td>
<td>100</td>
<td>247</td>
<td>194</td>
<td>65.3</td>
<td>213</td>
</tr>
<tr>
<td>25000</td>
<td>-34</td>
<td>100</td>
<td>246</td>
<td>193</td>
<td>64.9</td>
<td>212</td>
</tr>
<tr>
<td>26000</td>
<td>-36</td>
<td>100</td>
<td>244</td>
<td>192</td>
<td>64.5</td>
<td>211</td>
</tr>
<tr>
<td>27000</td>
<td>-37</td>
<td>100</td>
<td>244</td>
<td>191</td>
<td>64.4</td>
<td>210</td>
</tr>
<tr>
<td>28000</td>
<td>-39</td>
<td>100</td>
<td>242</td>
<td>190</td>
<td>64.1</td>
<td>210</td>
</tr>
<tr>
<td>29000</td>
<td>-41</td>
<td>97</td>
<td>234</td>
<td>184</td>
<td>61.8</td>
<td>206</td>
</tr>
<tr>
<td>30000</td>
<td>-43</td>
<td>94</td>
<td>226</td>
<td>177</td>
<td>59.7</td>
<td>202</td>
</tr>
<tr>
<td>31000</td>
<td>-45</td>
<td>90</td>
<td>218</td>
<td>171</td>
<td>57.5</td>
<td>198</td>
</tr>
</tbody>
</table>

Figure 5.11.5 - CRUISE PERFORMANCE
Maximum cruise / ISA
MAXIMUM CRUISE

Conditions:
- **ISA + 5°C**
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

NOTE:
- Use preferably recommended cruise power
- If "BLEED HI" MSG ON:
 - Below FL 270 : fuel flow will increase by 1 %, reduce the torque only to respect the maximum power of 100 %.
 - FL 270 and above : reduce the torque value mentioned in the table below by 3 %, leading to airspeed reduction by 2 KIAS.

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>OAT (°C)</th>
<th>TRQ (%)</th>
<th>Fuel flow</th>
<th>AIRSPEEDS (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I / h kg / h USG / h</td>
<td>5500 lbs (2495 kg)</td>
</tr>
<tr>
<td>SL</td>
<td>21</td>
<td>100</td>
<td>334 263 88.4</td>
<td>236 243</td>
</tr>
<tr>
<td>5000</td>
<td>11</td>
<td>100</td>
<td>307 241 81.1</td>
<td>231 256</td>
</tr>
<tr>
<td>10000</td>
<td>1</td>
<td>100</td>
<td>285 224 75.3</td>
<td>226 270</td>
</tr>
<tr>
<td>15000</td>
<td>-9</td>
<td>100</td>
<td>272 214 72.0</td>
<td>221 285</td>
</tr>
<tr>
<td>18000</td>
<td>-15</td>
<td>100</td>
<td>263 206 69.4</td>
<td>218 295</td>
</tr>
<tr>
<td>20000</td>
<td>-19</td>
<td>100</td>
<td>257 202 67.9</td>
<td>216 302</td>
</tr>
<tr>
<td>21000</td>
<td>-21</td>
<td>100</td>
<td>254 200 67.2</td>
<td>215 305</td>
</tr>
<tr>
<td>22000</td>
<td>-23</td>
<td>100</td>
<td>252 198 66.6</td>
<td>214 309</td>
</tr>
<tr>
<td>23000</td>
<td>-25</td>
<td>100</td>
<td>250 196 66.1</td>
<td>213 312</td>
</tr>
<tr>
<td>24000</td>
<td>-27</td>
<td>100</td>
<td>248 195 65.7</td>
<td>212 316</td>
</tr>
<tr>
<td>25000</td>
<td>-29</td>
<td>100</td>
<td>247 194 65.2</td>
<td>211 320</td>
</tr>
<tr>
<td>26000</td>
<td>-31</td>
<td>100</td>
<td>245 192 64.8</td>
<td>210 324</td>
</tr>
<tr>
<td>27000</td>
<td>-32</td>
<td>100</td>
<td>244 192 64.6</td>
<td>210 328</td>
</tr>
<tr>
<td>28000</td>
<td>-34</td>
<td>97</td>
<td>236 185 62.3</td>
<td>206 328</td>
</tr>
<tr>
<td>29000</td>
<td>-36</td>
<td>93</td>
<td>227 178 60.0</td>
<td>202 327</td>
</tr>
<tr>
<td>30000</td>
<td>-38</td>
<td>90</td>
<td>219 172 57.9</td>
<td>198 327</td>
</tr>
<tr>
<td>31000</td>
<td>-40</td>
<td>87</td>
<td>211 166 55.8</td>
<td>194 326</td>
</tr>
</tbody>
</table>

Figure 5.11.6 - CRUISE PERFORMANCE
Maximum cruise / ISA + 5°C
MAXIMUM CRUISE

Conditions:
- **ISA + 10°C**
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

NOTE:
- Use preferably recommended cruise power
- If "BLEED HI" MSG ON:
 - Below FL 260: fuel flow will increase by 1 %, reduce the torque only to respect the maximum power of 100 %.
 - FL 260 and above: reduce the torque value mentioned in the table below by 3 %, leading to airspeed reduction by 3 KIAS.

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>OAT (°C)</th>
<th>TRQ (%)</th>
<th>Fuel flow</th>
<th>AIRSPEEDS (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5500 lbs (2495 kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I / h kg / h USG / h</td>
<td>IAS</td>
</tr>
<tr>
<td>SL</td>
<td></td>
<td></td>
<td>336 264 88.9</td>
<td>236</td>
</tr>
<tr>
<td>5000</td>
<td>16</td>
<td>100</td>
<td>309 242 81.6</td>
<td>231</td>
</tr>
<tr>
<td>10000</td>
<td>6</td>
<td>100</td>
<td>287 225 75.7</td>
<td>226</td>
</tr>
<tr>
<td>15000</td>
<td>-4</td>
<td>100</td>
<td>274 215 72.3</td>
<td>221</td>
</tr>
<tr>
<td>18000</td>
<td>-10</td>
<td>100</td>
<td>264 207 69.7</td>
<td>218</td>
</tr>
<tr>
<td>20000</td>
<td>-14</td>
<td>100</td>
<td>258 203 68.3</td>
<td>216</td>
</tr>
<tr>
<td>21000</td>
<td>-16</td>
<td>100</td>
<td>256 201 67.6</td>
<td>215</td>
</tr>
<tr>
<td>22000</td>
<td>-18</td>
<td>100</td>
<td>254 199 67.0</td>
<td>214</td>
</tr>
<tr>
<td>23000</td>
<td>-20</td>
<td>100</td>
<td>252 197 66.5</td>
<td>212</td>
</tr>
<tr>
<td>24000</td>
<td>-22</td>
<td>100</td>
<td>250 196 66.0</td>
<td>212</td>
</tr>
<tr>
<td>25000</td>
<td>-24</td>
<td>100</td>
<td>248 195 65.5</td>
<td>211</td>
</tr>
<tr>
<td>26000</td>
<td>-26</td>
<td>100</td>
<td>246 193 65.1</td>
<td>210</td>
</tr>
<tr>
<td>27000</td>
<td>-27</td>
<td>97</td>
<td>238 187 62.8</td>
<td>206</td>
</tr>
<tr>
<td>28000</td>
<td>-29</td>
<td>93</td>
<td>229 180 60.5</td>
<td>202</td>
</tr>
<tr>
<td>29000</td>
<td>-31</td>
<td>90</td>
<td>221 173 58.3</td>
<td>198</td>
</tr>
<tr>
<td>30000</td>
<td>-33</td>
<td>86</td>
<td>213 167 56.2</td>
<td>194</td>
</tr>
<tr>
<td>31000</td>
<td>-35</td>
<td>83</td>
<td>205 161 54.1</td>
<td>190</td>
</tr>
</tbody>
</table>

Figure 5.11.7 - CRUISE PERFORMANCE
Maximum cruise / ISA + 10°C
MAXIMUM CRUISE

Conditions:
- **ISA + 20°C**
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

NOTE:
- Use preferably recommended cruise power
- If "BLEED HI" MSG ON:
 . Below FL 230 : fuel flow will increase by 1 %, reduce the torque only to respect the maximum power of 100 %.
 . FL 230 and above : reduce the torque value mentioned in the table below by 3 %, leading to airspeed reduction by 4 KIAS.

Pressure altitude (feet) | OAT (°C) | TRQ (%) | Fuel flow | AIRSPEEDS (kt)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I/h</td>
<td>kg/h</td>
</tr>
<tr>
<td>SL</td>
<td>36</td>
<td>100</td>
<td>340</td>
<td>267</td>
</tr>
<tr>
<td>5000</td>
<td>26</td>
<td>100</td>
<td>312</td>
<td>245</td>
</tr>
<tr>
<td>10000</td>
<td>16</td>
<td>100</td>
<td>290</td>
<td>227</td>
</tr>
<tr>
<td>15000</td>
<td>6</td>
<td>100</td>
<td>276</td>
<td>217</td>
</tr>
<tr>
<td>18000</td>
<td>0</td>
<td>100</td>
<td>266</td>
<td>209</td>
</tr>
<tr>
<td>20000</td>
<td>-4</td>
<td>100</td>
<td>261</td>
<td>205</td>
</tr>
<tr>
<td>21000</td>
<td>-6</td>
<td>100</td>
<td>258</td>
<td>203</td>
</tr>
<tr>
<td>22000</td>
<td>-8</td>
<td>100</td>
<td>256</td>
<td>201</td>
</tr>
<tr>
<td>23000</td>
<td>-10</td>
<td>100</td>
<td>254</td>
<td>200</td>
</tr>
<tr>
<td>24000</td>
<td>-12</td>
<td>98</td>
<td>246</td>
<td>193</td>
</tr>
<tr>
<td>25000</td>
<td>-14</td>
<td>95</td>
<td>238</td>
<td>187</td>
</tr>
<tr>
<td>26000</td>
<td>-16</td>
<td>92</td>
<td>230</td>
<td>180</td>
</tr>
<tr>
<td>27000</td>
<td>-17</td>
<td>88</td>
<td>222</td>
<td>174</td>
</tr>
<tr>
<td>28000</td>
<td>-19</td>
<td>85</td>
<td>214</td>
<td>168</td>
</tr>
<tr>
<td>29000</td>
<td>-21</td>
<td>82</td>
<td>207</td>
<td>162</td>
</tr>
<tr>
<td>30000</td>
<td>-23</td>
<td>79</td>
<td>199</td>
<td>156</td>
</tr>
<tr>
<td>31000</td>
<td>-25</td>
<td>76</td>
<td>192</td>
<td>151</td>
</tr>
</tbody>
</table>

Figure 5.11.8 - CRUISE PERFORMANCE
Maximum cruise / ISA + 20°C
NORMAL CRUISE (Recommended)

Installation of GWX 70 Color Weather Radar system results in a 3 KIAS decrease in Long Range Cruise performance.

Figure 5.11.9 - CRUISE PERFORMANCE (Recommended cruise)
NORMAL (RECOMMENDED) CRUISE

Conditions:
- ISA - 20°C
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

NOTE:
- Power recommended by PRATT & WHITNEY CANADA
- If "BLEED HI" MSG ON:
 - Fuel flow will increase by 1 %, reduce the torque only to respect the maximum power of 100 %.

Table: Normal Cruise / ISA - 20°C

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>OAT (°C)</th>
<th>TRQ (%)</th>
<th>Fuel flow</th>
<th>AIRSPEEDS (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5500 lbs (2495 kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I / h</td>
<td>kg / h</td>
<td>USG / h</td>
</tr>
<tr>
<td>SL</td>
<td>-4</td>
<td>100</td>
<td>325</td>
<td>255</td>
</tr>
<tr>
<td>5000</td>
<td>-14</td>
<td>100</td>
<td>299</td>
<td>234</td>
</tr>
<tr>
<td>10000</td>
<td>-24</td>
<td>100</td>
<td>278</td>
<td>218</td>
</tr>
<tr>
<td>15000</td>
<td>-34</td>
<td>100</td>
<td>265</td>
<td>208</td>
</tr>
<tr>
<td>18000</td>
<td>-40</td>
<td>100</td>
<td>256</td>
<td>201</td>
</tr>
<tr>
<td>20000</td>
<td>-44</td>
<td>100</td>
<td>251</td>
<td>197</td>
</tr>
<tr>
<td>21000</td>
<td>-46</td>
<td>100</td>
<td>248</td>
<td>195</td>
</tr>
<tr>
<td>22000</td>
<td>-48</td>
<td>100</td>
<td>246</td>
<td>193</td>
</tr>
<tr>
<td>23000</td>
<td>-50</td>
<td>100</td>
<td>244</td>
<td>192</td>
</tr>
<tr>
<td>24000</td>
<td>-52</td>
<td>100</td>
<td>243</td>
<td>190</td>
</tr>
<tr>
<td>25000</td>
<td>-54</td>
<td>100</td>
<td>241</td>
<td>189</td>
</tr>
<tr>
<td>26000</td>
<td>-56</td>
<td>100</td>
<td>240</td>
<td>188</td>
</tr>
<tr>
<td>27000</td>
<td>-57</td>
<td>100</td>
<td>239</td>
<td>188</td>
</tr>
<tr>
<td>28000</td>
<td>-59</td>
<td>100</td>
<td>238</td>
<td>187</td>
</tr>
<tr>
<td>29000</td>
<td>-61</td>
<td>100</td>
<td>238</td>
<td>187</td>
</tr>
<tr>
<td>30000</td>
<td>-63</td>
<td>100</td>
<td>238</td>
<td>187</td>
</tr>
<tr>
<td>31000</td>
<td>-65</td>
<td>100</td>
<td>238</td>
<td>187</td>
</tr>
</tbody>
</table>

Figure 5.11.10 - CRUISE PERFORMANCE
Normal cruise / ISA - 20°C
NORMAL (RECOMMENDED) CRUISE

Conditions:
- ISA - 10°C
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

NOTE:
- Power recommended by PRATT & WHITNEY CANADA
- If "BLEED HI" MSG ON:
 - Below FL 290: fuel flow will increase by 1%, reduce the torque only to respect the maximum power of 100%.
 - FL 290 and above: reduce the torque value mentioned in the table below by 2%, leading to airspeed reduction by 2 KIAS.

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>OAT (°C)</th>
<th>TRQ (%)</th>
<th>Fuel flow</th>
<th>AIRSPEEDS (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I/h</td>
<td>5500 lbs (2495 kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kg/h</td>
<td>IAS</td>
</tr>
<tr>
<td>SL</td>
<td>6</td>
<td>100</td>
<td>329</td>
<td>238</td>
</tr>
<tr>
<td>5000</td>
<td>-4</td>
<td>100</td>
<td>302</td>
<td>234</td>
</tr>
<tr>
<td>10000</td>
<td>-14</td>
<td>100</td>
<td>281</td>
<td>229</td>
</tr>
<tr>
<td>15000</td>
<td>-24</td>
<td>100</td>
<td>268</td>
<td>224</td>
</tr>
<tr>
<td>18000</td>
<td>-30</td>
<td>100</td>
<td>259</td>
<td>221</td>
</tr>
<tr>
<td>20000</td>
<td>-34</td>
<td>100</td>
<td>253</td>
<td>219</td>
</tr>
<tr>
<td>21000</td>
<td>-36</td>
<td>100</td>
<td>251</td>
<td>218</td>
</tr>
<tr>
<td>22000</td>
<td>-38</td>
<td>100</td>
<td>249</td>
<td>217</td>
</tr>
<tr>
<td>23000</td>
<td>-40</td>
<td>100</td>
<td>247</td>
<td>216</td>
</tr>
<tr>
<td>24000</td>
<td>-42</td>
<td>100</td>
<td>245</td>
<td>215</td>
</tr>
<tr>
<td>25000</td>
<td>-44</td>
<td>100</td>
<td>243</td>
<td>214</td>
</tr>
<tr>
<td>26000</td>
<td>-46</td>
<td>100</td>
<td>242</td>
<td>213</td>
</tr>
<tr>
<td>27000</td>
<td>-47</td>
<td>100</td>
<td>242</td>
<td>212</td>
</tr>
<tr>
<td>28000</td>
<td>-49</td>
<td>100</td>
<td>241</td>
<td>211</td>
</tr>
<tr>
<td>29000</td>
<td>-51</td>
<td>100</td>
<td>238</td>
<td>210</td>
</tr>
<tr>
<td>30000</td>
<td>-53</td>
<td>96</td>
<td>230</td>
<td>206</td>
</tr>
<tr>
<td>31000</td>
<td>-55</td>
<td>93</td>
<td>222</td>
<td>202</td>
</tr>
</tbody>
</table>

Figure 5.11.11 - CRUISE PERFORMANCE
Normal cruise / ISA - 10°C
NORMAL (RECOMMENDED) CRUISE

Conditions:
- ISA - 5°C
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

NOTE:
- Power recommended by PRATT & WHITNEY CANADA
- If "BLEED HI" MSG ON:
 - Below FL 280: fuel flow will increase by 1%, reduce the torque only to respect the maximum power of 100%.
 - FL 280 and above: reduce the torque value mentioned in the table below by 2%, leading to airspeed reduction by 2 KIAS.

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>OAT (°C)</th>
<th>TRQ (%)</th>
<th>Fuel flow</th>
<th>AIRSPEEDS (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5500 lbs (2495 kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>I / h</td>
<td>kg / h</td>
</tr>
<tr>
<td>SL</td>
<td>11</td>
<td>100</td>
<td>331</td>
<td>259</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
<td>100</td>
<td>304</td>
<td>238</td>
</tr>
<tr>
<td>10000</td>
<td>-9</td>
<td>100</td>
<td>282</td>
<td>221</td>
</tr>
<tr>
<td>15000</td>
<td>-19</td>
<td>100</td>
<td>269</td>
<td>211</td>
</tr>
<tr>
<td>18000</td>
<td>-25</td>
<td>100</td>
<td>260</td>
<td>204</td>
</tr>
<tr>
<td>20000</td>
<td>-29</td>
<td>100</td>
<td>254</td>
<td>200</td>
</tr>
<tr>
<td>21000</td>
<td>-31</td>
<td>100</td>
<td>252</td>
<td>198</td>
</tr>
<tr>
<td>22000</td>
<td>-33</td>
<td>100</td>
<td>250</td>
<td>196</td>
</tr>
<tr>
<td>23000</td>
<td>-35</td>
<td>100</td>
<td>248</td>
<td>195</td>
</tr>
<tr>
<td>24000</td>
<td>-37</td>
<td>100</td>
<td>246</td>
<td>193</td>
</tr>
<tr>
<td>25000</td>
<td>-39</td>
<td>100</td>
<td>244</td>
<td>192</td>
</tr>
<tr>
<td>26000</td>
<td>-41</td>
<td>100</td>
<td>243</td>
<td>191</td>
</tr>
<tr>
<td>27000</td>
<td>-42</td>
<td>100</td>
<td>243</td>
<td>191</td>
</tr>
<tr>
<td>28000</td>
<td>-44</td>
<td>100</td>
<td>239</td>
<td>188</td>
</tr>
<tr>
<td>29000</td>
<td>-46</td>
<td>96</td>
<td>231</td>
<td>181</td>
</tr>
<tr>
<td>30000</td>
<td>-48</td>
<td>93</td>
<td>223</td>
<td>175</td>
</tr>
<tr>
<td>31000</td>
<td>-50</td>
<td>89</td>
<td>215</td>
<td>169</td>
</tr>
</tbody>
</table>

Figure 5.11.12 - CRUISE PERFORMANCE
Normal cruise / ISA - 5°C
NORMAL (RECOMMENDED) CRUISE

Conditions:
- ISA
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

NOTE:
- Power recommended by PRATT & WHITNEY CANADA
- If "BLEED HI" MSG ON:
 - Below FL 270: fuel flow will increase by 1 %, reduce the torque only to respect the maximum power of 100 %.
 - FL 270 and above: reduce the torque value mentioned in the table below by 2 %, leading to airspeed reduction by 2 KIAS.

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>OAT (°C)</th>
<th>TRQ (%)</th>
<th>Fuel flow</th>
<th>AIRSPEEDS (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I / h</td>
<td>kg / h</td>
<td>USG / h</td>
<td>5500 lbs (2495 kg)</td>
</tr>
<tr>
<td>SL</td>
<td>16</td>
<td>100</td>
<td>333 261 87.9</td>
<td>237 242</td>
</tr>
<tr>
<td>5000</td>
<td>6</td>
<td>100</td>
<td>305 240 80.7</td>
<td>232 255</td>
</tr>
<tr>
<td>10000</td>
<td>-4</td>
<td>100</td>
<td>284 223 74.9</td>
<td>227 268</td>
</tr>
<tr>
<td>15000</td>
<td>-14</td>
<td>100</td>
<td>271 213 71.5</td>
<td>222 283</td>
</tr>
<tr>
<td>18000</td>
<td>-20</td>
<td>100</td>
<td>261 205 69.0</td>
<td>219 293</td>
</tr>
<tr>
<td>20000</td>
<td>-24</td>
<td>100</td>
<td>256 201 67.6</td>
<td>217 300</td>
</tr>
<tr>
<td>21000</td>
<td>-26</td>
<td>100</td>
<td>253 199 66.9</td>
<td>216 303</td>
</tr>
<tr>
<td>22000</td>
<td>-28</td>
<td>100</td>
<td>251 197 66.3</td>
<td>215 307</td>
</tr>
<tr>
<td>23000</td>
<td>-30</td>
<td>100</td>
<td>249 195 65.8</td>
<td>214 310</td>
</tr>
<tr>
<td>24000</td>
<td>-32</td>
<td>100</td>
<td>247 194 65.3</td>
<td>213 314</td>
</tr>
<tr>
<td>25000</td>
<td>-34</td>
<td>100</td>
<td>246 193 64.9</td>
<td>212 318</td>
</tr>
<tr>
<td>26000</td>
<td>-36</td>
<td>100</td>
<td>244 192 64.5</td>
<td>211 322</td>
</tr>
<tr>
<td>27000</td>
<td>-37</td>
<td>99</td>
<td>241 189 63.6</td>
<td>209 324</td>
</tr>
<tr>
<td>28000</td>
<td>-39</td>
<td>96</td>
<td>232 182 61.4</td>
<td>205 324</td>
</tr>
<tr>
<td>29000</td>
<td>-41</td>
<td>92</td>
<td>224 176 59.2</td>
<td>201 323</td>
</tr>
<tr>
<td>30000</td>
<td>-43</td>
<td>89</td>
<td>216 170 57.0</td>
<td>198 323</td>
</tr>
<tr>
<td>31000</td>
<td>-45</td>
<td>86</td>
<td>208 164 55.0</td>
<td>194 322</td>
</tr>
</tbody>
</table>

Figure 5.11.13 - CRUISE PERFORMANCE
Normal cruise / ISA
NORMAL (RECOMMENDED) CRUISE

Conditions:
- ISA + 5°C
- Landing gear and flaps UP
- “BLEED” switch on “AUTO” and “BLEED HI” MSG OFF

NOTE:
- Power recommended by PRATT & WHITNEY CANADA
- If “BLEED HI” MSG ON:
 - Below FL 260: fuel flow will increase by 1%, reduce the torque only to respect the maximum power of 100%.
 - FL 260 and above: reduce the torque value mentioned in the table below by 2%, leading to airspeed reduction by 2 KIAS.

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>OAT (°C)</th>
<th>TRQ (%)</th>
<th>Fuel flow</th>
<th>AIRSPEEDS (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I / h</td>
<td>kg / h</td>
</tr>
<tr>
<td>SL</td>
<td>21</td>
<td>100</td>
<td>334</td>
<td>263</td>
</tr>
<tr>
<td>5000</td>
<td>11</td>
<td>100</td>
<td>307</td>
<td>241</td>
</tr>
<tr>
<td>10000</td>
<td>-1</td>
<td>100</td>
<td>285</td>
<td>224</td>
</tr>
<tr>
<td>15000</td>
<td>-9</td>
<td>100</td>
<td>272</td>
<td>214</td>
</tr>
<tr>
<td>18000</td>
<td>-15</td>
<td>100</td>
<td>263</td>
<td>206</td>
</tr>
<tr>
<td>20000</td>
<td>-19</td>
<td>100</td>
<td>257</td>
<td>202</td>
</tr>
<tr>
<td>21000</td>
<td>-21</td>
<td>100</td>
<td>254</td>
<td>200</td>
</tr>
<tr>
<td>22000</td>
<td>-23</td>
<td>100</td>
<td>252</td>
<td>198</td>
</tr>
<tr>
<td>23000</td>
<td>-25</td>
<td>100</td>
<td>250</td>
<td>196</td>
</tr>
<tr>
<td>24000</td>
<td>-27</td>
<td>100</td>
<td>248</td>
<td>195</td>
</tr>
<tr>
<td>25000</td>
<td>-29</td>
<td>100</td>
<td>247</td>
<td>194</td>
</tr>
<tr>
<td>26000</td>
<td>-31</td>
<td>99</td>
<td>242</td>
<td>190</td>
</tr>
<tr>
<td>27000</td>
<td>-32</td>
<td>96</td>
<td>234</td>
<td>184</td>
</tr>
<tr>
<td>28000</td>
<td>-34</td>
<td>92</td>
<td>226</td>
<td>177</td>
</tr>
<tr>
<td>29000</td>
<td>-36</td>
<td>89</td>
<td>217</td>
<td>171</td>
</tr>
<tr>
<td>30000</td>
<td>-38</td>
<td>85</td>
<td>209</td>
<td>164</td>
</tr>
<tr>
<td>31000</td>
<td>-40</td>
<td>82</td>
<td>202</td>
<td>158</td>
</tr>
</tbody>
</table>

Figure 5.11.14 - CRUISE PERFORMANCE
Normal cruise / ISA + 5°C
NORMAL (RECOMMENDED) CRUISE

Conditions:
- **ISA + 10°C**
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

NOTE:
- Power recommended by PRATT & WHITNEY CANADA
- If "BLEED HI" MSG ON:
 - Below FL 240: fuel flow will increase by 1 %, reduce the torque only to respect the maximum power of 100 %.
 - FL 240 and above: reduce the torque value mentioned in the table below by 3 %, leading to airspeed reduction by 3 KIAS.

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>OAT (°C)</th>
<th>TRQ (%)</th>
<th>Fuel flow</th>
<th>AIRSPEEDS (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5500 lbs (2495 kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>l/h</td>
<td>IAS</td>
</tr>
<tr>
<td>SL</td>
<td>26</td>
<td>100</td>
<td>336</td>
<td>264</td>
</tr>
<tr>
<td>5000</td>
<td>16</td>
<td>100</td>
<td>309</td>
<td>242</td>
</tr>
<tr>
<td>10000</td>
<td>6</td>
<td>100</td>
<td>287</td>
<td>225</td>
</tr>
<tr>
<td>15000</td>
<td>-4</td>
<td>100</td>
<td>274</td>
<td>215</td>
</tr>
<tr>
<td>18000</td>
<td>-10</td>
<td>100</td>
<td>264</td>
<td>207</td>
</tr>
<tr>
<td>20000</td>
<td>-14</td>
<td>100</td>
<td>258</td>
<td>203</td>
</tr>
<tr>
<td>21000</td>
<td>-16</td>
<td>100</td>
<td>256</td>
<td>201</td>
</tr>
<tr>
<td>22000</td>
<td>-18</td>
<td>100</td>
<td>254</td>
<td>199</td>
</tr>
<tr>
<td>23000</td>
<td>-20</td>
<td>100</td>
<td>252</td>
<td>197</td>
</tr>
<tr>
<td>24000</td>
<td>-22</td>
<td>100</td>
<td>250</td>
<td>196</td>
</tr>
<tr>
<td>25000</td>
<td>-24</td>
<td>99</td>
<td>244</td>
<td>192</td>
</tr>
<tr>
<td>26000</td>
<td>-26</td>
<td>96</td>
<td>236</td>
<td>185</td>
</tr>
<tr>
<td>27000</td>
<td>-27</td>
<td>92</td>
<td>227</td>
<td>178</td>
</tr>
<tr>
<td>28000</td>
<td>-29</td>
<td>89</td>
<td>219</td>
<td>172</td>
</tr>
<tr>
<td>29000</td>
<td>-31</td>
<td>85</td>
<td>211</td>
<td>166</td>
</tr>
<tr>
<td>30000</td>
<td>-33</td>
<td>82</td>
<td>203</td>
<td>160</td>
</tr>
<tr>
<td>31000</td>
<td>-35</td>
<td>79</td>
<td>196</td>
<td>154</td>
</tr>
</tbody>
</table>

Figure 5.11.15 - CRUISE PERFORMANCE
Normal cruise / ISA + 10°C
NORMAL (RECOMMENDED) CRUISE

Conditions:
- ISA + 20°C
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

NOTE:
- Power recommended by PRATT & WHITNEY CANADA
- If "BLEED HI" MSG ON:
 - Below FL 210: fuel flow will increase by 1%, reduce the torque only to respect the maximum power of 100%.
 - FL 210 and above: reduce the torque value mentioned in the table below by 4%, leading to airspeed reduction by 4 KIAS.

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>OAT (°C)</th>
<th>TRQ (%)</th>
<th>Fuel flow</th>
<th>AIRSPEEDS (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I / h</td>
<td>5500 lbs (2495 kg)</td>
</tr>
<tr>
<td>SL</td>
<td>36</td>
<td>100</td>
<td>340</td>
<td>234</td>
</tr>
<tr>
<td>5000</td>
<td>26</td>
<td>100</td>
<td>312</td>
<td>229</td>
</tr>
<tr>
<td>10000</td>
<td>16</td>
<td>100</td>
<td>290</td>
<td>224</td>
</tr>
<tr>
<td>15000</td>
<td>6</td>
<td>100</td>
<td>276</td>
<td>219</td>
</tr>
<tr>
<td>18000</td>
<td>0</td>
<td>100</td>
<td>266</td>
<td>216</td>
</tr>
<tr>
<td>20000</td>
<td>-4</td>
<td>100</td>
<td>261</td>
<td>214</td>
</tr>
<tr>
<td>21000</td>
<td>-6</td>
<td>100</td>
<td>256</td>
<td>212</td>
</tr>
<tr>
<td>22000</td>
<td>-8</td>
<td>97</td>
<td>248</td>
<td>209</td>
</tr>
<tr>
<td>23000</td>
<td>-10</td>
<td>95</td>
<td>241</td>
<td>206</td>
</tr>
<tr>
<td>24000</td>
<td>-12</td>
<td>92</td>
<td>234</td>
<td>203</td>
</tr>
<tr>
<td>25000</td>
<td>-14</td>
<td>89</td>
<td>226</td>
<td>199</td>
</tr>
<tr>
<td>26000</td>
<td>-16</td>
<td>86</td>
<td>219</td>
<td>196</td>
</tr>
<tr>
<td>27000</td>
<td>-17</td>
<td>83</td>
<td>211</td>
<td>192</td>
</tr>
<tr>
<td>28000</td>
<td>-19</td>
<td>80</td>
<td>203</td>
<td>188</td>
</tr>
<tr>
<td>29000</td>
<td>-21</td>
<td>77</td>
<td>196</td>
<td>185</td>
</tr>
<tr>
<td>30000</td>
<td>-23</td>
<td>74</td>
<td>189</td>
<td>181</td>
</tr>
<tr>
<td>31000</td>
<td>-25</td>
<td>72</td>
<td>183</td>
<td>178</td>
</tr>
</tbody>
</table>

Figure 5.11.16 - CRUISE PERFORMANCE
Normal cruise / ISA + 20°C
LONG RANGE CRUISE (5500 LBS - 2495 KG)

LEGEND:
- OAT: °C
- IAS: KIAS
- FF: USG/h
- FF: kg/h
- TAS: KTAS

Conditions:
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>TRQ (%)</th>
<th>ISA - 20°C</th>
<th>ISA - 10°C</th>
<th>ISA</th>
<th>ISA + 10°C</th>
<th>ISA + 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>15000</td>
<td>38</td>
<td>-34</td>
<td>-24</td>
<td>-14</td>
<td>-4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>153</td>
<td>152</td>
<td>150</td>
<td>148</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40.7</td>
<td>41.2</td>
<td>41.4</td>
<td>41.6</td>
<td>42.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>121</td>
<td>189</td>
<td>122</td>
<td>192</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td></td>
<td>192</td>
<td></td>
<td>123</td>
<td>193</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td></td>
<td>158</td>
<td></td>
<td>124</td>
<td>194</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>197</td>
<td></td>
<td>125</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>18000</td>
<td>39</td>
<td>-40</td>
<td>-30</td>
<td>-20</td>
<td>-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>149</td>
<td>148</td>
<td>147</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.2</td>
<td>38.7</td>
<td>39.2</td>
<td>39.7</td>
<td>40.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>113</td>
<td>194</td>
<td>115</td>
<td>197</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>194</td>
<td></td>
<td>116</td>
<td>200</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td></td>
<td>197</td>
<td></td>
<td>118</td>
<td>203</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td></td>
<td>197</td>
<td></td>
<td>119</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>19000</td>
<td>39</td>
<td>-42</td>
<td>-32</td>
<td>-22</td>
<td>-12</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>149</td>
<td>148</td>
<td>147</td>
<td>145</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.4</td>
<td>37.9</td>
<td>38.4</td>
<td>38.7</td>
<td>38.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111</td>
<td>196</td>
<td>113</td>
<td>199</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>196</td>
<td></td>
<td>114</td>
<td>202</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>199</td>
<td></td>
<td>115</td>
<td>203</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>199</td>
<td></td>
<td>116</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>20000</td>
<td>39</td>
<td>-44</td>
<td>-34</td>
<td>-24</td>
<td>-14</td>
<td>-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>149</td>
<td>148</td>
<td>146</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.0</td>
<td>37.3</td>
<td>37.9</td>
<td>38.4</td>
<td>38.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
<td>201</td>
<td>111</td>
<td>202</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>201</td>
<td></td>
<td>112</td>
<td>205</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>202</td>
<td></td>
<td>114</td>
<td>208</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>202</td>
<td></td>
<td>115</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>21000</td>
<td>39</td>
<td>-46</td>
<td>-36</td>
<td>-26</td>
<td>-16</td>
<td>-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>148</td>
<td>147</td>
<td>146</td>
<td>145</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.0</td>
<td>36.6</td>
<td>37.1</td>
<td>37.6</td>
<td>38.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>107</td>
<td>201</td>
<td>109</td>
<td>204</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>201</td>
<td></td>
<td>110</td>
<td>207</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>204</td>
<td></td>
<td>112</td>
<td>210</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td></td>
<td>207</td>
<td></td>
<td>113</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>22000</td>
<td>39</td>
<td>-48</td>
<td>-38</td>
<td>-28</td>
<td>-18</td>
<td>-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>147</td>
<td>146</td>
<td>145</td>
<td>143</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35.3</td>
<td>35.8</td>
<td>36.4</td>
<td>36.6</td>
<td>37.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>105</td>
<td>203</td>
<td>106</td>
<td>206</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>203</td>
<td></td>
<td>108</td>
<td>209</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>206</td>
<td></td>
<td>109</td>
<td>211</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>209</td>
<td></td>
<td>111</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>23000</td>
<td>39</td>
<td>-50</td>
<td>-40</td>
<td>-30</td>
<td>-20</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>146</td>
<td>145</td>
<td>144</td>
<td>142</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.5</td>
<td>35.1</td>
<td>35.6</td>
<td>35.9</td>
<td>36.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>103</td>
<td>205</td>
<td>104</td>
<td>209</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td></td>
<td>205</td>
<td></td>
<td>106</td>
<td>212</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>209</td>
<td></td>
<td>107</td>
<td>213</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>209</td>
<td></td>
<td>108</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>24000</td>
<td>40</td>
<td>-52</td>
<td>-42</td>
<td>-32</td>
<td>-22</td>
<td>-12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>146</td>
<td>145</td>
<td>144</td>
<td>142</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.1</td>
<td>34.6</td>
<td>35.2</td>
<td>35.4</td>
<td>36.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>101</td>
<td>209</td>
<td>103</td>
<td>212</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td></td>
<td>209</td>
<td></td>
<td>104</td>
<td>215</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>212</td>
<td></td>
<td>105</td>
<td>217</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>212</td>
<td></td>
<td>107</td>
<td>219</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.11.17 (1/2) - CRUISE PERFORMANCE
Long Range Cruise (5500 lbs - 2495 kg) (Altitude ≤ 24000 ft)
LONG RANGE CRUISE (5500 LBS - 2495 KG) (CONT'D)

CONDITIONS:
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

TABLE

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>TRQ (%)</th>
<th>ISA (-20^\circ\text{C})</th>
<th>ISA (-10^\circ\text{C})</th>
<th>ISA</th>
<th>ISA +10(^\circ\text{C})</th>
<th>ISA +20(^\circ\text{C})</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 000</td>
<td>40</td>
<td>-52 146</td>
<td>-42 145</td>
<td>-32 144</td>
<td>-22 142</td>
<td>-12 141</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.1 34.6 35.2 35.4 36.0 36.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>101 209 103 212 104 215 105 217 107 219</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 000</td>
<td>41</td>
<td>-56 148</td>
<td>-44 146</td>
<td>-34 145</td>
<td>-24 144</td>
<td>-14 142</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.1 34.4 34.9 35.5 35.8 35.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>101 215 102 217 104 220 105 223 106 225</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 000</td>
<td>43</td>
<td>-65 151</td>
<td>-46 150</td>
<td>-36 148</td>
<td>-26 146</td>
<td>-16 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.6 35.1 35.4 35.6 36.2 36.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>103 223 104 226 105 228 106 230 108 233</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 000</td>
<td>45</td>
<td>-67 152</td>
<td>-47 151</td>
<td>-37 150</td>
<td>-27 148</td>
<td>-17 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.6 35.1 35.7 36.0 36.5 36.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>103 228 104 232 106 235 107 237 108 241</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 000</td>
<td>46</td>
<td>-69 153</td>
<td>-49 152</td>
<td>-39 151</td>
<td>-29 149</td>
<td>-19 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.5 35.1 35.7 36.0 36.3 36.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>103 233 104 237 106 241 107 243 108 245</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 000</td>
<td>46</td>
<td>-61 153</td>
<td>-51 151</td>
<td>-41 150</td>
<td>-31 148</td>
<td>-21 146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.3 34.6 35.2 35.5 35.7 35.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>102 237 103 240 104 244 105 246 106 248</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 000</td>
<td>46</td>
<td>-63 153</td>
<td>-53 151</td>
<td>-43 149</td>
<td>-33 148</td>
<td>-23 146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.2 34.4 34.7 35.3 35.6 35.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>101 241 102 244 103 246 105 250 106 252</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 000</td>
<td>46</td>
<td>-65 152</td>
<td>-55 150</td>
<td>-45 148</td>
<td>-35 147</td>
<td>-25 145</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33.7 34.0 34.3 34.8 35.1 35.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 244 101 247 102 249 103 253 104 255</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Figure 5.11.17 (2/2) - CRUISE PERFORMANCE
Long Range Cruise (5500 lbs - 2495 kg) (Altitude ≥ 24000 ft)*
LONG RANGE CRUISE (6300 LBS - 2858 KG)

Legend:
- OAT: °C
- IAS: KIAS
- FF: USG/h
- FF: kg/h
- TAS: KTAS

Conditions:
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>TRQ (%)</th>
<th>ISA - 20° C</th>
<th>ISA - 10° C</th>
<th>ISA + 10° C</th>
<th>ISA + 20° C</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 000</td>
<td>42</td>
<td>-34 156</td>
<td>-24 155</td>
<td>-14 154</td>
<td>-4 153</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42.3</td>
<td>42.9</td>
<td>43.5</td>
<td>44.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>126 193</td>
<td>128 195</td>
<td>129 198</td>
<td>131 201</td>
</tr>
<tr>
<td>18 000</td>
<td>42</td>
<td>-40 154</td>
<td>-30 152</td>
<td>-20 151</td>
<td>-10 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40.0</td>
<td>40.4</td>
<td>41.0</td>
<td>41.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>119 199</td>
<td>120 201</td>
<td>122 204</td>
<td>124 207</td>
</tr>
<tr>
<td>19 000</td>
<td>43</td>
<td>-42 156</td>
<td>-32 154</td>
<td>-22 152</td>
<td>-12 151</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40.0</td>
<td>40.3</td>
<td>40.7</td>
<td>41.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>119 205</td>
<td>120 207</td>
<td>121 209</td>
<td>123 211</td>
</tr>
<tr>
<td>20 000</td>
<td>43</td>
<td>-44 154</td>
<td>-34 153</td>
<td>-24 151</td>
<td>-14 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.9</td>
<td>39.5</td>
<td>39.9</td>
<td>40.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116 206</td>
<td>117 209</td>
<td>118 211</td>
<td>120 214</td>
</tr>
<tr>
<td>21 000</td>
<td>44</td>
<td>-46 153</td>
<td>-36 152</td>
<td>-26 151</td>
<td>-16 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.2</td>
<td>38.7</td>
<td>39.4</td>
<td>39.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>113 208</td>
<td>115 211</td>
<td>117 214</td>
<td>119 217</td>
</tr>
<tr>
<td>22 000</td>
<td>44</td>
<td>-48 152</td>
<td>-38 151</td>
<td>-28 150</td>
<td>-18 149</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.4</td>
<td>38.0</td>
<td>38.6</td>
<td>39.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111 210</td>
<td>113 213</td>
<td>115 216</td>
<td>117 219</td>
</tr>
<tr>
<td>23 000</td>
<td>44</td>
<td>-50 152</td>
<td>-40 151</td>
<td>-30 149</td>
<td>-20 148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.9</td>
<td>37.5</td>
<td>37.9</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110 213</td>
<td>111 217</td>
<td>113 219</td>
<td>114 222</td>
</tr>
<tr>
<td>24 000</td>
<td>44</td>
<td>-52 150</td>
<td>-42 149</td>
<td>-32 148</td>
<td>-22 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.0</td>
<td>36.6</td>
<td>37.2</td>
<td>37.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>107 214</td>
<td>109 218</td>
<td>111 221</td>
<td>112 224</td>
</tr>
</tbody>
</table>

Figure 5.11.18 (1/2) - CRUISE PERFORMANCE
Long Range Cruise (6300 lbs - 2858 kg) (Altitude ≤ 24000 ft)
LONG RANGE CRUISE (6300 LBS - 2858 KG) (CONT'D)

LEGEND:
- OAT : °C
- IAS : KTAS
- FF : USG/h
- FF : kg/h
- TAS : KTAS

Conditions:
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>TRQ (%)</th>
<th>ISA - 20°C</th>
<th>ISA - 10°C</th>
<th>ISA</th>
<th>ISA + 10°C</th>
<th>ISA + 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 000</td>
<td>44</td>
<td>-52 150</td>
<td>-42 149</td>
<td>-32 148</td>
<td>-22 147</td>
<td>-12 146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.0</td>
<td>36.6</td>
<td>37.2</td>
<td>37.8</td>
<td>38.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>107 214</td>
<td>109 218</td>
<td>111 221</td>
<td>112 224</td>
<td>114 227</td>
</tr>
<tr>
<td>25 000</td>
<td>44</td>
<td>-54 149</td>
<td>-44 148</td>
<td>-34 147</td>
<td>-24 145</td>
<td>-14 143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35.4</td>
<td>36.0</td>
<td>36.6</td>
<td>36.9</td>
<td>37.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>105 216</td>
<td>107 220</td>
<td>109 223</td>
<td>110 225</td>
<td>111 226</td>
</tr>
<tr>
<td>26 000</td>
<td>45</td>
<td>-56 152</td>
<td>-46 150</td>
<td>-36 148</td>
<td>-26 147</td>
<td>-16 146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35.9</td>
<td>36.2</td>
<td>36.6</td>
<td>37.2</td>
<td>37.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>107 224</td>
<td>108 226</td>
<td>109 228</td>
<td>111 232</td>
<td>112 235</td>
</tr>
<tr>
<td>27 000</td>
<td>47</td>
<td>-57 154</td>
<td>-47 152</td>
<td>-37 150</td>
<td>-27 148</td>
<td>-17 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.2</td>
<td>36.5</td>
<td>36.9</td>
<td>37.2</td>
<td>37.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>107 231</td>
<td>108 233</td>
<td>109 235</td>
<td>111 237</td>
<td>112 241</td>
</tr>
<tr>
<td>28 000</td>
<td>49</td>
<td>-59 156</td>
<td>-49 154</td>
<td>-39 152</td>
<td>-29 151</td>
<td>-19 149</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.5</td>
<td>36.8</td>
<td>37.2</td>
<td>37.8</td>
<td>38.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>108 238</td>
<td>109 240</td>
<td>111 243</td>
<td>112 246</td>
<td>113 248</td>
</tr>
<tr>
<td>29 000</td>
<td>49</td>
<td>-61 155</td>
<td>-51 153</td>
<td>-41 151</td>
<td>-31 149</td>
<td>-21 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.1</td>
<td>36.4</td>
<td>36.8</td>
<td>37.1</td>
<td>37.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>107 240</td>
<td>108 243</td>
<td>109 245</td>
<td>110 247</td>
<td>111 249</td>
</tr>
<tr>
<td>30 000</td>
<td>50</td>
<td>-63 155</td>
<td>-53 153</td>
<td>-43 151</td>
<td>-33 149</td>
<td>-23 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35.9</td>
<td>36.2</td>
<td>36.6</td>
<td>37.0</td>
<td>37.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>107 244</td>
<td>108 247</td>
<td>109 250</td>
<td>110 252</td>
<td>111 254</td>
</tr>
<tr>
<td>31 000</td>
<td>50</td>
<td>-65 154</td>
<td>-55 152</td>
<td>-45 150</td>
<td>-35 148</td>
<td>-25 146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35.5</td>
<td>35.8</td>
<td>36.2</td>
<td>36.6</td>
<td>37.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>105 247</td>
<td>106 250</td>
<td>108 252</td>
<td>109 255</td>
<td>110 257</td>
</tr>
</tbody>
</table>

Figure 5.11.18 (2/2) - CRUISE PERFORMANCE
Long Range Cruise (6300 lbs - 2858 kg) (Altitude ≥ 24000 ft)
LONG RANGE CRUISE (7100 LBS - 3220 KG)

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>TRQ (%)</th>
<th>ISA - 20°C</th>
<th>ISA - 10°C</th>
<th>ISA</th>
<th>ISA + 10°C</th>
<th>ISA + 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 000</td>
<td>48</td>
<td>-34 164</td>
<td>-24 163</td>
<td>-14 162</td>
<td>-4 161</td>
<td>6 160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.4</td>
<td>46.0</td>
<td>46.7</td>
<td>47.4</td>
<td>48.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>135 202</td>
<td>137 205</td>
<td>139 208</td>
<td>141 211</td>
<td>143 213</td>
</tr>
<tr>
<td>18 000</td>
<td>49</td>
<td>-40 161</td>
<td>-30 160</td>
<td>-20 159</td>
<td>-10 158</td>
<td>0 157</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42.7</td>
<td>43.5</td>
<td>43.9</td>
<td>44.8</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>127 208</td>
<td>129 211</td>
<td>130 214</td>
<td>133 217</td>
<td>135 220</td>
</tr>
<tr>
<td>19 000</td>
<td>49</td>
<td>-42 160</td>
<td>-34 160</td>
<td>-22 168</td>
<td>-12 164</td>
<td>-2 156</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42.0</td>
<td>42.6</td>
<td>43.3</td>
<td>44.0</td>
<td>44.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 210</td>
<td>127 214</td>
<td>129 217</td>
<td>131 219</td>
<td>133 222</td>
</tr>
<tr>
<td>20 000</td>
<td>49</td>
<td>-44 160</td>
<td>-42 160</td>
<td>-24 170</td>
<td>-14 165</td>
<td>-4 155</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41.4</td>
<td>42.1</td>
<td>43.2</td>
<td>43.9</td>
<td>43.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123 214</td>
<td>125 217</td>
<td>126 219</td>
<td>128 222</td>
<td>130 225</td>
</tr>
<tr>
<td>21 000</td>
<td>49</td>
<td>-46 158</td>
<td>-24 158</td>
<td>-16 154</td>
<td>-16 152</td>
<td>-6 154</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40.4</td>
<td>41.1</td>
<td>41.8</td>
<td>42.4</td>
<td>43.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>120 214</td>
<td>122 218</td>
<td>124 221</td>
<td>126 224</td>
<td>128 227</td>
</tr>
<tr>
<td>22 000</td>
<td>49</td>
<td>-48 157</td>
<td>-36 157</td>
<td>-26 159</td>
<td>-18 153</td>
<td>-8 152</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39.8</td>
<td>40.4</td>
<td>41.0</td>
<td>41.4</td>
<td>42.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>118 217</td>
<td>120 220</td>
<td>122 223</td>
<td>123 225</td>
<td>125 228</td>
</tr>
<tr>
<td>23 000</td>
<td>49</td>
<td>-50 155</td>
<td>-40 154</td>
<td>-30 153</td>
<td>-20 150</td>
<td>-10 148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.9</td>
<td>39.5</td>
<td>40.1</td>
<td>40.3</td>
<td>40.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>116 217</td>
<td>117 221</td>
<td>119 224</td>
<td>120 225</td>
<td>121 226</td>
</tr>
<tr>
<td>24 000</td>
<td>49</td>
<td>-52 154</td>
<td>-42 153</td>
<td>-32 152</td>
<td>-22 150</td>
<td>-12 148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.3</td>
<td>38.9</td>
<td>39.6</td>
<td>40.0</td>
<td>40.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>114 220</td>
<td>116 223</td>
<td>118 227</td>
<td>119 228</td>
<td>121 231</td>
</tr>
</tbody>
</table>

Conditions:
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

Figure 5.11.19 (1/2) - CRUISE PERFORMANCE
Long Range Cruise (7100 lbs - 3220 kg) (Altitude ≤ 24000 ft)
LONG RANGE CRUISE (7100 LBS - 3220 KG) (CONT'D)

LEGEND:

- OAT : °C
- IAS : KIAS
- FF : USG/h
- FF : kg/h
- TAS : KTAS

Conditions:
- Landing gear and flaps UP
- "BLEED" switch on "AUTO" and "BLEED HI" MSG OFF

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>TRQ (%)</th>
<th>ISA - 20°C</th>
<th>ISA - 10°C</th>
<th>ISA</th>
<th>ISA + 10°C</th>
<th>ISA + 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 000</td>
<td>49</td>
<td>-52 154</td>
<td>-42 153</td>
<td>-32 152</td>
<td>-22 150</td>
<td>-12 149</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.3</td>
<td>38.9</td>
<td>39.6</td>
<td>40.0</td>
<td>40.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>114 220</td>
<td>116 223</td>
<td>118 227</td>
<td>119 228</td>
<td>121 231</td>
</tr>
<tr>
<td>25 000</td>
<td>49</td>
<td>-54 153</td>
<td>-44 152</td>
<td>-34 151</td>
<td>-24 149</td>
<td>-14 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.7</td>
<td>38.3</td>
<td>39.0</td>
<td>39.4</td>
<td>39.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>112 222</td>
<td>114 226</td>
<td>116 229</td>
<td>117 231</td>
<td>118 232</td>
</tr>
<tr>
<td>26 000</td>
<td>51</td>
<td>-56 153</td>
<td>-46 151</td>
<td>-36 150</td>
<td>-26 149</td>
<td>-16 148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.4</td>
<td>37.9</td>
<td>38.5</td>
<td>39.2</td>
<td>39.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111 226</td>
<td>113 228</td>
<td>114 231</td>
<td>117 235</td>
<td>118 238</td>
</tr>
<tr>
<td>27 000</td>
<td>52</td>
<td>-57 155</td>
<td>-47 153</td>
<td>-37 151</td>
<td>-27 149</td>
<td>-17 148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.7</td>
<td>38.1</td>
<td>38.5</td>
<td>39.0</td>
<td>39.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>112 232</td>
<td>113 235</td>
<td>114 237</td>
<td>116 239</td>
<td>118 242</td>
</tr>
<tr>
<td>28 000</td>
<td>53</td>
<td>-59 157</td>
<td>-49 154</td>
<td>-39 152</td>
<td>-29 150</td>
<td>-19 149</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.1</td>
<td>38.2</td>
<td>38.7</td>
<td>39.1</td>
<td>39.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>113 239</td>
<td>114 240</td>
<td>115 243</td>
<td>116 245</td>
<td>118 248</td>
</tr>
<tr>
<td>29 000</td>
<td>53</td>
<td>-61 156</td>
<td>-51 154</td>
<td>-41 152</td>
<td>-31 150</td>
<td>-21 148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.7</td>
<td>38.1</td>
<td>38.6</td>
<td>39.0</td>
<td>39.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>112 242</td>
<td>113 244</td>
<td>115 247</td>
<td>116 249</td>
<td>117 251</td>
</tr>
<tr>
<td>30 000</td>
<td>53</td>
<td>-63 155</td>
<td>-53 153</td>
<td>-43 151</td>
<td>-33 149</td>
<td>-23 147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.3</td>
<td>37.8</td>
<td>38.2</td>
<td>38.7</td>
<td>39.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111 244</td>
<td>112 247</td>
<td>113 250</td>
<td>115 252</td>
<td>116 254</td>
</tr>
<tr>
<td>31 000</td>
<td>49</td>
<td>-65 155</td>
<td>-55 153</td>
<td>-45 150</td>
<td>-35 148</td>
<td>-25 146</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.3</td>
<td>37.7</td>
<td>37.9</td>
<td>38.3</td>
<td>38.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111 249</td>
<td>112 251</td>
<td>113 252</td>
<td>114 255</td>
<td>115 257</td>
</tr>
</tbody>
</table>

Figure 5.11.19 (2/2) - CRUISE PERFORMANCE
Long Range Cruise (7100 lbs - 3220 kg) (Altitude ≥ 24000 ft)
5.12 - TIME, CONSUMPTION AND DESCENT DISTANCE

Conditions:
- Power as required to maintain constant Vz
- Landing gear and flaps UP
- CAS = 230 KCAS - "BLEED" switch on "AUTO"

<table>
<thead>
<tr>
<th>Pressure altitude (ft)</th>
<th>Vz = 1500 ft/min</th>
<th>Vz = 2000 ft/min</th>
<th>Vz = 2500 ft/min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (min. s)</td>
<td>Consump. (l)</td>
<td>Dist. (NM)</td>
</tr>
<tr>
<td>31000</td>
<td>20:40</td>
<td>70</td>
<td>55</td>
</tr>
<tr>
<td>30000</td>
<td>20:00</td>
<td>68</td>
<td>53</td>
</tr>
<tr>
<td>28000</td>
<td>18:40</td>
<td>64</td>
<td>50</td>
</tr>
<tr>
<td>26000</td>
<td>17:20</td>
<td>59</td>
<td>47</td>
</tr>
<tr>
<td>24000</td>
<td>16:00</td>
<td>55</td>
<td>43</td>
</tr>
<tr>
<td>22000</td>
<td>14:40</td>
<td>51</td>
<td>40</td>
</tr>
<tr>
<td>20000</td>
<td>13:20</td>
<td>47</td>
<td>37</td>
</tr>
<tr>
<td>18000</td>
<td>12:00</td>
<td>42</td>
<td>33</td>
</tr>
<tr>
<td>16000</td>
<td>10:40</td>
<td>38</td>
<td>30</td>
</tr>
<tr>
<td>14000</td>
<td>09:20</td>
<td>33</td>
<td>26</td>
</tr>
<tr>
<td>12000</td>
<td>08:00</td>
<td>29</td>
<td>23</td>
</tr>
<tr>
<td>10000</td>
<td>06:40</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td>8000</td>
<td>05:20</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>6000</td>
<td>04:00</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>4000</td>
<td>02:40</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>2000</td>
<td>01:20</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>SL</td>
<td>00:00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 5.12.1 - TIME, CONSUMPTION AND DESCENT DISTANCE
INTENTIONALLY LEFT BLANK
5.13 - HOLDING TIME

Conditions:
- Landing gear and flaps UP
- IAS = 120 KIAS - “BLEED” switch on “AUTO”
- TRQ = 26 %

<table>
<thead>
<tr>
<th>Pressure altitude (feet)</th>
<th>FUEL USED DURING HOLDING TIME</th>
<th>10 min</th>
<th>30 min</th>
<th>10 min</th>
<th>30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weight 5500 lbs (2495 kg)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Weight 6300 lbs (2858 kg)</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>SL 10 min</td>
<td>I</td>
<td>kg</td>
<td>USG</td>
<td>I</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>23</td>
<td>7.8</td>
<td>89</td>
<td>70</td>
</tr>
<tr>
<td>5000</td>
<td>26</td>
<td>21</td>
<td>6.9</td>
<td>79</td>
<td>62</td>
</tr>
<tr>
<td>10000</td>
<td>24</td>
<td>18</td>
<td>6.2</td>
<td>71</td>
<td>55</td>
</tr>
<tr>
<td>15000</td>
<td>22</td>
<td>17</td>
<td>5.8</td>
<td>66</td>
<td>51</td>
</tr>
<tr>
<td>20000</td>
<td>20</td>
<td>16</td>
<td>5.3</td>
<td>60</td>
<td>47</td>
</tr>
</tbody>
</table>

Figure 5.13.1 - HOLDING TIME
INTENTIONALLY LEFT BLANK
5.14 - LANDING DISTANCES

WEIGHT : 7024 lbs (3186 kg)

Associated conditions:
- Landing gear DN and flaps LDG
- Approach speed IAS = 85 KIAS
- Touch-down speed IAS = 78 KIAS
- Maximum braking without reverse
- Hard, dry and level runway
- GR = Ground roll (in ft)
- D50 = Landing distance (clear to 50 ft) (in ft)

<table>
<thead>
<tr>
<th>PRESSURE ALTITUDE ft</th>
<th>ISA - 35°C</th>
<th>ISA - 20°C</th>
<th>ISA - 10°C</th>
<th>ISA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GR</td>
<td>D50</td>
<td></td>
<td>GR</td>
</tr>
<tr>
<td>0</td>
<td>1675</td>
<td>2265</td>
<td>1740</td>
<td>2330</td>
</tr>
<tr>
<td>2000</td>
<td>1805</td>
<td>2395</td>
<td>1940</td>
<td>2560</td>
</tr>
<tr>
<td>4000</td>
<td>1940</td>
<td>2560</td>
<td>2100</td>
<td>2725</td>
</tr>
<tr>
<td>6000</td>
<td>2100</td>
<td>2725</td>
<td>2265</td>
<td>2920</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSURE ALTITUDE ft</th>
<th>ISA + 10°C</th>
<th>ISA + 20°C</th>
<th>ISA + 30°C</th>
<th>ISA + 37°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GR</td>
<td>D50</td>
<td></td>
<td>GR</td>
</tr>
<tr>
<td>0</td>
<td>1905</td>
<td>2530</td>
<td>2000</td>
<td>2625</td>
</tr>
<tr>
<td>2000</td>
<td>2070</td>
<td>2690</td>
<td>2135</td>
<td>2790</td>
</tr>
<tr>
<td>4000</td>
<td>2230</td>
<td>2890</td>
<td>2330</td>
<td>2985</td>
</tr>
<tr>
<td>6000</td>
<td>2395</td>
<td>3050</td>
<td>2530</td>
<td>3215</td>
</tr>
<tr>
<td>8000</td>
<td>2590</td>
<td>3280</td>
<td>2725</td>
<td>3410</td>
</tr>
</tbody>
</table>

Figure 5.14.1 - LANDING DISTANCES - 7024 lbs (3186 kg)

Corrections:
- Reduce total distances of 10% every 10 kt of headwind
- Increase total distances of 30% every 10 kt of tail wind

Other runway surfaces require the following correction factors:
- Increase by:
 - 7% on hard grass
 - 25% on high grass
 - 10% on short grass
 - 30% on slippery runway
 - 15% on wet runway
WEIGHT : 6250 lbs (2835 kg)

Associated conditions:
- Landing gear DN and flaps LDG
- Approach speed IAS = 80 KIAS
- Touch-down speed IAS = 65 KIAS
- Maximum braking without reverse
- Hard, dry and level runway
- GR = Ground roll (in ft)
- D50 = Landing distance (clear to 50 ft) (in ft)

<table>
<thead>
<tr>
<th>PRESSURE ALTITUDE ft</th>
<th>ISA - 35°C</th>
<th>ISA - 20°C</th>
<th>ISA - 10°C</th>
<th>ISA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GR</td>
<td>D50</td>
<td>GR</td>
<td>D50</td>
</tr>
<tr>
<td>0</td>
<td>1050</td>
<td>1900</td>
<td>1115</td>
<td>2000</td>
</tr>
<tr>
<td>2000</td>
<td>1115</td>
<td>2000</td>
<td>1215</td>
<td>2100</td>
</tr>
<tr>
<td>4000</td>
<td>1180</td>
<td>2100</td>
<td>1280</td>
<td>2230</td>
</tr>
<tr>
<td>6000</td>
<td>1280</td>
<td>2230</td>
<td>1380</td>
<td>2360</td>
</tr>
<tr>
<td>8000</td>
<td>1380</td>
<td>2360</td>
<td>1475</td>
<td>2490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSURE ALTITUDE ft</th>
<th>ISA + 10°C</th>
<th>ISA + 20°C</th>
<th>ISA + 30°C</th>
<th>ISA + 37°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GR</td>
<td>D50</td>
<td>GR</td>
<td>D50</td>
</tr>
<tr>
<td>0</td>
<td>1280</td>
<td>2200</td>
<td>1310</td>
<td>2300</td>
</tr>
<tr>
<td>2000</td>
<td>1345</td>
<td>2330</td>
<td>1410</td>
<td>2430</td>
</tr>
<tr>
<td>4000</td>
<td>1445</td>
<td>2460</td>
<td>1510</td>
<td>2560</td>
</tr>
<tr>
<td>6000</td>
<td>1575</td>
<td>2645</td>
<td>1640</td>
<td>2720</td>
</tr>
<tr>
<td>8000</td>
<td>1705</td>
<td>2790</td>
<td>1770</td>
<td>2885</td>
</tr>
</tbody>
</table>

Figure 5.14.2 - LANDING DISTANCES - 6250 lbs (2835 kg)

Corrections:
- Reduce total distances of 10% every 10 kt of headwind
- Increase total distances of 30% every 10 kt of tail wind

Other runway surfaces require the following correction factors:

Increase by:
- 7% on hard grass
- 25% on high grass
- 10% on short grass
- 30% on slippery runway
- 15% on wet runway
WEIGHT : 5071 lbs (2300 kg)

Associated conditions:
- Landing gear DN and flaps LDG
- Approach speed IAS = 80 KIAS
- Touch-down speed IAS = 65 KIAS
- Maximum braking without reverse
- Hard, dry and level runway
- GR = Ground roll (in ft)
- D50 = Landing distance (clear to 50 ft) (in ft)

<table>
<thead>
<tr>
<th>PRESSURE ALTITUDE ft</th>
<th>ISA - 35°C</th>
<th>ISA - 20°C</th>
<th>ISA - 10°C</th>
<th>ISA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GR</td>
<td>D50</td>
<td>GR</td>
<td>D50</td>
</tr>
<tr>
<td>0</td>
<td>885</td>
<td>1900</td>
<td>950</td>
<td>2000</td>
</tr>
<tr>
<td>2000</td>
<td>950</td>
<td>2000</td>
<td>1030</td>
<td>2100</td>
</tr>
<tr>
<td>4000</td>
<td>1000</td>
<td>2100</td>
<td>1080</td>
<td>2230</td>
</tr>
<tr>
<td>6000</td>
<td>1080</td>
<td>2230</td>
<td>1180</td>
<td>2360</td>
</tr>
<tr>
<td>8000</td>
<td>1180</td>
<td>2360</td>
<td>1245</td>
<td>2490</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSURE ALTITUDE ft</th>
<th>ISA + 10°C</th>
<th>ISA + 20°C</th>
<th>ISA + 30°C</th>
<th>ISA + 37°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GR</td>
<td>D50</td>
<td>GR</td>
<td>D50</td>
</tr>
<tr>
<td>0</td>
<td>1080</td>
<td>2200</td>
<td>1115</td>
<td>2300</td>
</tr>
<tr>
<td>2000</td>
<td>1150</td>
<td>2330</td>
<td>1200</td>
<td>2430</td>
</tr>
<tr>
<td>4000</td>
<td>1230</td>
<td>2460</td>
<td>1280</td>
<td>2560</td>
</tr>
<tr>
<td>6000</td>
<td>1345</td>
<td>2645</td>
<td>1395</td>
<td>2720</td>
</tr>
<tr>
<td>8000</td>
<td>1445</td>
<td>2790</td>
<td>1510</td>
<td>2885</td>
</tr>
</tbody>
</table>

Figure 5.14.3 - LANDING DISTANCES - 5071 lbs (2300 kg)

Corrections:
- Reduce total distances of 10% every 10 kt of headwind
- Increase total distances of 30% every 10 kt of tail wind

Other runway surfaces require the following correction factors:

Increase by:
- 7% on hard grass
- 25% on high grass
- 10% on short grass
- 30% on slippery runway
- 15% on wet runway
SECTION 6

WEIGHT AND BALANCE

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>GENERAL</td>
<td>6.1.1</td>
</tr>
<tr>
<td>6.2</td>
<td>AIRPLANE WEIGHING PROCEDURES</td>
<td>6.2.1</td>
</tr>
<tr>
<td>6.3</td>
<td>BAGGAGE LOADING</td>
<td>6.3.1</td>
</tr>
<tr>
<td>6.4</td>
<td>DETERMINING WEIGHT AND BALANCE</td>
<td>6.4.1</td>
</tr>
<tr>
<td></td>
<td>GENERAL</td>
<td>6.4.1</td>
</tr>
<tr>
<td></td>
<td>USING THE WEIGHT AND BALANCE FORM AND DIAGRAM</td>
<td>6.4.2</td>
</tr>
<tr>
<td></td>
<td>AIRPLANE LOADING FORM</td>
<td>6.4.3</td>
</tr>
<tr>
<td></td>
<td>EXAMPLE OF AIRPLANE WEIGHT AND BALANCE REPORT</td>
<td>6.4.4</td>
</tr>
<tr>
<td></td>
<td>WEIGHT AND BALANCE FORM AND DIAGRAM</td>
<td>6.4.6</td>
</tr>
<tr>
<td></td>
<td>WEIGHT AND BALANCE SAMPLES</td>
<td>6.4.8</td>
</tr>
<tr>
<td></td>
<td>DETERMINING EMPTY AIRPLANE CHARACTERISTICS</td>
<td>6.4.12</td>
</tr>
<tr>
<td>6.5</td>
<td>LIST OF EQUIPMENT</td>
<td>6.5.1</td>
</tr>
</tbody>
</table>
6.1 - GENERAL

This section is intended to provide the pilot with the procedure to determine the weight and balance of the airplane.

TBM 900 airplane allows multiple cabin seat configurations between 2 seats and 6 seats, as required by the operator - refer to Section 7.3.

A list of equipment available for this airplane is referenced at the end of this Pilot's Operating Handbook - refer to Chapter 6.5.

The list of specific optional equipment installed on your airplane as delivered from the factory can be found in the records carried in the airplane.

IT IS THE PILOT'S RESPONSIBILITY TO ENSURE THAT THE AIRPLANE IS PROPERLY LOADED AND THE WEIGHT AND BALANCE LIMITS ARE ADHERED TO.
6.2 - AIRPLANE WEIGHING PROCEDURES

Refer to Maintenance Manual for the procedures to use.

NOTE

Weighing carried out at the factory takes into account all equipment installed on the airplane. The list of this equipment and the total weight is noted in the Individual Inspection Record.
6.3 - BAGGAGE LOADING

There are two baggage compartments:

- one in fuselage non pressurized forward section, between firewall and cockpit with maximum baggage capacity of 110 lbs (50 kg),

- one located in the rear of the pressurized cabin with following characteristics:

 With 6-seat configuration

 - in the baggage compartment, behind the rear seats, with maximum loading capacity of 220 lbs (100 kg).
 - stowing straps are provided for securing parcels and baggage on compartment floor. A partition net separating the cabin from the baggage compartment is attached to frame C14.

With other allowed seat accommodations

There are two loading areas:

- one in place of the 2 removed rear seats, with maximum loading capacity of 176 lbs (80 kg),

- one, in the baggage compartment, behind the rear seats area, with maximum loading capacity of 220 lbs (100 kg)

Two types of baggage securing nets can be used:

- the Small Cargo Net is attached through nine anchoring points on seat rails, between frame C11 and frame C13bis (refer to Section 2 for limitations) (Figure 7.2.1B).

- the Large Cargo Net is attached through seven anchoring points on seat rails, between frame C11 and frame C13bis and six anchoring points on fuselage sides, at frame C14 (refer to Section 2 for limitations) (Figure 7.2.1A).
Authorized anchoring points are identified with green self-adhesive labels affixed to the inside of the rail.

A placard indicates loading limits for each securing net.

Evenly distribute the load within the cargo zone and ensure that overall weight is centered.

When using the large net, distribute the weight in each zone (delineated by the step in the floor) according to the zone limits.

WARNING

IT IS THE PILOT'S RESPONSIBILITY TO CHECK THAT ALL PARCELS AND BAGGAGES ARE PROPERLY SECURED IN THE CABIN. TRANSPORT OF DANGEROUS PRODUCT IS NORMALLY PROHIBITED, HOWEVER IF TRANSPORT OF SUCH PRODUCT IS NECESSARY, IT MUST BE PERFORMED IN COMPLIANCE WITH REGULATIONS CONCERNING TRANSPORT OF DANGEROUS PRODUCT AND ANY OTHER APPLICABLE REGULATION.

Baggage compartments loading must be done in accordance with the weight and balance limits of the airplane (Refer to Section 2 for limitations).

Generally, if rear seats are not used (or removed), first load AFT compartment, then, if required, FWD compartment. If rear seats are used, first load FWD compartment, then, if required, AFT compartment.

Compute and check the weight and balance diagram to ensure the airplane is within the allowable limits.
6.4 - DETERMINING WEIGHT AND BALANCE

GENERAL

This section is intended to provide the pilot with the procedure to determine the weight and balance of the airplane.

IT IS THE PILOT'S RESPONSIBILITY TO ENSURE THAT THE AIRPLANE IS PROPERLY LOADED AND THAT THE WEIGHT AND BALANCE LIMITS ARE ADHERED TO.

The procedure requires the following data related to the basic characteristics of the empty airplane to be obtained from the last airplane Weight and Balance Report:

- the empty weight, expressed in kg or lbs,
- the moment, expressed in m.kg or in.lbs,
- the CG, expressed in MAC %

If the airplane empty weight has varied since last Weight and Balance Report (for example, due to installation of optional equipment), refer to paragraph "DETERMINING EMPTY AIRPLANE CHARACTERISTICS" to determine new empty weight and the corresponding moment.
USING THE WEIGHT AND BALANCE FORM AND DIAGRAM

This procedure determines the airplane weight and balance characteristics for flight.

Select the units for the Weight and Balance determination, either m and kg, or lb and in, and use the dedicated form (Figures 6.4.3 or 6.4.4), appropriate to the chosen units.

1) Record the basic empty weight (1a), moment (1b) and CG (MAC %) (1c) from the last Weight and Balance Report (see sample of Weight and Balance report, Figures 6.4.1 and 6.4.2).

2) Record the expected loading (2a) and compute each associated moment (2b). Depending on seat accommodation (from 2 to 6 seats), use negative values: - 17 kg (- 37.5 lbs) per intermediate seat removed and - 24 kg (- 52.9 lbs) per rear seat removed.

3) Compute Zero Fuel Weight (3a) and moment (3b) as sum of all the above weights (1a)+(2a) and moments (1b) + (2b).

4) Check value (3a) to be below Maximum Zero Fuel Weight.

5) Compute Zero Fuel Weight arm (5) and CG (MAC %) (5c) using given formulas.

6) Record the loaded Fuel (6a) and compute associated moment (6b).

7) Compute Ramp Weight (7a) and moment (7b) as sum of Zero Fuel Weight (3a) + loaded Fuel (6a) and moments (3b) + (6b).

8) Check value (7a) to be below Maximum Ramp Weight.

9) Compute Ramp Weight arm (9) and CG (MAC %) (9c) using given formulas.

10) Record the expected Taxi Fuel (negative value) (10a) and compute associated moment (10b).

11) Compute Takeoff Weight (11a) and moment (11b) as sum of Ramp Weight (7a) + Taxi Fuel (10a) and moments (7b) + (10b).

12) Check value (11a) to be below Maximum Takeoff Weight.

13) Compute Takeoff Weight arm (13) and CG (MAC %) (13c) using given formulas.

14) Record the expected Trip Fuel (negative value) (14a) and compute associated moment (14b).

15) Compute Landing Weight (15a) and moment (15b) as sum of Takeoff Weight (11a) + Trip Fuel (14a) and moments (11b) + (14b).

16) Check value (15a) to be below Maximum Landing Weight.

17) Compute Landing Weight arm (17) and CG (MAC %) (17c) using given formulas.

18) Plot Zero Fuel Weight, Takeoff Weight and Landing Weight on Weight and Balance Diagram.

19) Check that all points are within the weight and balance limits and check that they are vertically aligned.

20) Record these data on your navigation log.
AIRPLANE LOADING FORM (m, kg)

Moment = Weight \times Arm

\[CG \, (MAC\%) = \frac{(Arm \, (m) - 4.392)}{1.51} \times 100 \]

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (kg)</th>
<th>Arm (m)</th>
<th>Moment (m.kg)</th>
<th>CG (MAC %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty Weight (kg)</td>
<td>(1a)</td>
<td>(1b)</td>
<td>(1c)</td>
<td></td>
</tr>
<tr>
<td>Baggage FWD (< 50 kg)</td>
<td>(2a)</td>
<td>3.250</td>
<td>(2b)</td>
<td>(2b)</td>
</tr>
<tr>
<td>Front Seats (kg)</td>
<td>(2a)</td>
<td>4.534</td>
<td>(2b)</td>
<td>(2b)</td>
</tr>
<tr>
<td>Inter. Seats - 17 kg per seat removed</td>
<td>(2a)</td>
<td>5.710</td>
<td>(2b)</td>
<td>(2b)</td>
</tr>
<tr>
<td>Pax</td>
<td>(2a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear bench/net - 24 kg per seat removed</td>
<td>(2a)</td>
<td>6.785</td>
<td>(2b)</td>
<td>(2b)</td>
</tr>
<tr>
<td>Pax</td>
<td>(2a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargo (< 80 kg)</td>
<td>(2a)</td>
<td></td>
<td></td>
<td>(2b)</td>
</tr>
<tr>
<td>Baggage AFT (< 100 kg)</td>
<td>(2a)</td>
<td>7.695</td>
<td>(2b)</td>
<td>(2b)</td>
</tr>
<tr>
<td>Zero Fuel Weight (< 2736 kg)</td>
<td>(3a)</td>
<td>(3b)</td>
<td>(5)</td>
<td>(3b)</td>
</tr>
<tr>
<td>Fuel (kg)</td>
<td>(6a)</td>
<td>4.820</td>
<td>(6b)</td>
<td></td>
</tr>
<tr>
<td>Ramp Weight (< 3370 kg)</td>
<td>(7a)</td>
<td>(9)</td>
<td>(7b)</td>
<td>(9b)</td>
</tr>
<tr>
<td>Taxi Fuel (kg)</td>
<td>(10a)</td>
<td>4.820</td>
<td>(10b)</td>
<td></td>
</tr>
<tr>
<td>Takeoff Weight (< 3354 kg)</td>
<td>(11a)</td>
<td>(11b)</td>
<td>(13)</td>
<td>(11b)</td>
</tr>
<tr>
<td>Trip Fuel (kg)</td>
<td>(14a)</td>
<td>4.820</td>
<td>(14b)</td>
<td></td>
</tr>
<tr>
<td>Landing Weight (< 3186 kg)</td>
<td>(15a)</td>
<td>(15b)</td>
<td>(17)</td>
<td>(15b)</td>
</tr>
</tbody>
</table>

Edition 1 - December 5, 2014
Rev. 2
EXAMPLE OF AIRPLANE WEIGHT AND BALANCE REPORT

NOTE

Airplane original report shall be kept with airplane POH

Figure 6.4.1 - Example of Weight and Balance Report and basic airplane characteristics, in kg and m
NOTE

Airplane original report shall be kept with airplane POH

Figure 6.4.2 - Example of Weight and Balance Report and basic airplane characteristics, in lb and in

<table>
<thead>
<tr>
<th>REGISTRE INDIVIDUEL DE CONTROLE INDIVIDUAL INSPECTION RECORD</th>
<th>TBM 700</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIGHT AND BALANCE REPORT</td>
<td>S/N :</td>
</tr>
<tr>
<td>6-SEAT CONFIGURATION</td>
<td>F : 6</td>
</tr>
</tbody>
</table>

WEIGHING CARRIED OUT ON JACK POINTS

<table>
<thead>
<tr>
<th>Location</th>
<th>Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left point</td>
<td>1747.4</td>
</tr>
<tr>
<td>Right point</td>
<td>1101.2</td>
</tr>
<tr>
<td>Front point</td>
<td>1618.8</td>
</tr>
<tr>
<td>Weight P0 (lbs)</td>
<td>4669.4</td>
</tr>
</tbody>
</table>

WEIGHING CARRIED OUT ON JACK POINTS

<table>
<thead>
<tr>
<th>Location</th>
<th>Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left point</td>
<td>1747.4</td>
</tr>
<tr>
<td>Right point</td>
<td>1101.2</td>
</tr>
<tr>
<td>Front point</td>
<td>1618.8</td>
</tr>
<tr>
<td>Weight P0 (lbs)</td>
<td>4669.4</td>
</tr>
</tbody>
</table>

RESULTS

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>W (lbs)</td>
<td>4729.4</td>
</tr>
<tr>
<td>D0 (lbs)</td>
<td>187.0</td>
</tr>
<tr>
<td>Moment (in-lb)</td>
<td>873360.7</td>
</tr>
<tr>
<td>Balance (MAC %)</td>
<td>59.5</td>
</tr>
</tbody>
</table>

BASIC INDEX CALCULATION

See section 6 of Pilot's Operating Handbook

1. Scratched useless mention.
2. Values not taken into account if the airplane was painted when weighed.
3. Values not taken account if the oil tank was full when the airplane was weighed.

DATE:

INSPECTION VISA:
WEIGHT AND BALANCE FORM AND DIAGRAM (m, kg)

Moment = Weight x Arm

\[CG (MAC\%) = \left(\frac{Arm (m) - 4.392}{1.51}\right) \times 100 \]

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (kg)</th>
<th>Arm (m)</th>
<th>Moment (m.kg)</th>
<th>CG (MAC %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty Weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baggage FWD (< 50 kg)</td>
<td></td>
<td>3.250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Seats (kg)</td>
<td></td>
<td>4.534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter. Seats - 17 kg per seat removed Pax</td>
<td>5.710</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear bench/net - 24 kg per seat removed Pax</td>
<td>6.785</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cargo (< 80 kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baggage AFT (< 100 kg)</td>
<td></td>
<td>7.695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Fuel Weight (< 2736 kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel (kg)</td>
<td></td>
<td>4.820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramp Weight (< 3370 kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Fuel (kg)</td>
<td></td>
<td>4.820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takeoff Weight (< 3354 kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip Fuel (kg)</td>
<td></td>
<td>4.820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landing Weight (< 3186 kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.4.3 - Weight and Balance diagram
Weight and Balance Form and Diagram

The weight and balance form and diagram (in, lbs) is used to calculate the center of gravity (CG) of the aircraft. The formula for calculating the moment is:

\[\text{Moment} = \text{Weight} \times \text{Arm} \]

The CG is calculated as:

\[\text{CG (MAC %)} = \frac{(\text{Arm (in)} - 172.93)}{59.45} \times 100 \]

Table of Weights and Arms

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (lbs)</th>
<th>Arm (in)</th>
<th>Moment (in.lbs)</th>
<th>CG (MAC %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty Weight</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baggage FWD (< 110 lbs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Seats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter. Seats (per seat removed)</td>
<td>- 37.5 lbs</td>
<td>222.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear bench/net (per seat removed)</td>
<td>- 52.9 lbs</td>
<td>267.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baggage AFT (< 220 lbs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Fuel Weight (< 6032 lbs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramp Weight (< 7430 lbs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Fuel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takeoff Weight (< 7394 lbs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip Fuel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landing Weight (< 7024 lbs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.4.4 - Weight and Balance diagram

The diagram illustrates the maximum weight and balance limits for various conditions, including:
- Max Ramp Weight (MRW)
- Max Takeoff Weight (MTOW)
- Max Landing Weight (MLW)
- Max Zero Fuel Weight (MZFW)

Edition 1 - December 5, 2014
Rev. 2
WEIGHT AND BALANCE SAMPLES (m, kg)

Caution

Loading samples (Figure 6.4.5 or 6.4.6) are only given as an example; for calculation concerning your airplane, refer to the diagram corresponding to its validity.

<table>
<thead>
<tr>
<th>1 - Airplane basic characteristics :</th>
<th>Fig. 6.4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>W = Empty weight</td>
<td>2 126 kg</td>
</tr>
<tr>
<td>Moment</td>
<td>10 073 m.kg</td>
</tr>
<tr>
<td>Balance Arm</td>
<td>4.738 m</td>
</tr>
<tr>
<td>CG (MAC %)</td>
<td>22.9 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 - Foreseen loading :</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Pilot and 1 front Passenger</td>
<td>200 kg</td>
</tr>
<tr>
<td>2 Rear Passengers</td>
<td>160 kg</td>
</tr>
<tr>
<td>AFT Cargo in baggage compartment</td>
<td>50 kg</td>
</tr>
<tr>
<td>Fuel</td>
<td>820 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 - Foreseen fuel :</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi Fuel</td>
<td>- 16 kg</td>
</tr>
<tr>
<td>Trip Fuel</td>
<td>- 600 kg</td>
</tr>
</tbody>
</table>
Moment = Weight x Arm

\[CG \text{ (MAC \%)} = \frac{(Arm \text{ (m)} - 4.392)}{1.51} \times 100 \]

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (kg)</th>
<th>Arm (m)</th>
<th>Moment (m.kg)</th>
<th>CG (MAC %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty Weight (kg)</td>
<td>2 126</td>
<td>4.738</td>
<td>10 073</td>
<td>22.9</td>
</tr>
<tr>
<td>Baggage FWD (< 50 kg)</td>
<td>0</td>
<td>3.250</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Front Seats (kg)</td>
<td>200</td>
<td>4.534</td>
<td>907</td>
<td></td>
</tr>
<tr>
<td>Inter. Seats - 17 kg per seat removed</td>
<td>0</td>
<td>5.710</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pax</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rear bench/net - 24 kg per seat removed</td>
<td>0</td>
<td>6.785</td>
<td>1 086</td>
<td></td>
</tr>
<tr>
<td>Cargo (< 80 kg)</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Baggage AFT (< 100 kg)</td>
<td>50</td>
<td>7.695</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>Zero Fuel Weight (< 2736 kg)</td>
<td>2 536</td>
<td>4.910</td>
<td>12 451</td>
<td>34.3</td>
</tr>
<tr>
<td>Fuel (kg)</td>
<td>820</td>
<td>4.820</td>
<td>3 952</td>
<td></td>
</tr>
<tr>
<td>Ramp Weight (< 3370 kg)</td>
<td>3 356</td>
<td>4.888</td>
<td>16 403</td>
<td>32.8</td>
</tr>
<tr>
<td>Taxi Fuel (kg)</td>
<td>- 16</td>
<td>4.820</td>
<td>- 77</td>
<td></td>
</tr>
<tr>
<td>Takeoff Weight (< 3354 kg)</td>
<td>3 340</td>
<td>4.888</td>
<td>16 326</td>
<td>32.8</td>
</tr>
<tr>
<td>Trip Fuel (kg)</td>
<td>- 600</td>
<td>4.820</td>
<td>- 2 892</td>
<td></td>
</tr>
<tr>
<td>Landing Weight (< 3186 kg)</td>
<td>2 740</td>
<td>4.903</td>
<td>13 434</td>
<td>33.8</td>
</tr>
</tbody>
</table>

Figure 6.4.5 - Loading sample (in kg and m)
WEIGHT AND BALANCE SAMPLES (in, lbs)

CAUTION
LOADING SAMPLES (FIGURE 6.4.5 OR 6.4.6) ARE ONLY GIVEN AS AN EXAMPLE; FOR
CALCULATION CONCERNING YOUR AIRPLANE, REFER TO THE DIAGRAM
CORRESPONDING TO ITS VALIDITY

<table>
<thead>
<tr>
<th>1 - Airplane basic characteristics :</th>
<th>2 - Foreseen loading :</th>
</tr>
</thead>
<tbody>
<tr>
<td>W = Empty weight</td>
<td>FWD compartment</td>
</tr>
<tr>
<td>4 638 lbs</td>
<td>0 lbs</td>
</tr>
<tr>
<td>Moment</td>
<td>1 Pilot and 1 front Passenger</td>
</tr>
<tr>
<td>864 173 in.lbs</td>
<td>400 lbs</td>
</tr>
<tr>
<td>Balance Arm</td>
<td>1 Intermediate Passenger</td>
</tr>
<tr>
<td>186.3 in</td>
<td>220 lbs</td>
</tr>
<tr>
<td>CG (MAC %)</td>
<td>2 Rear seats removed</td>
</tr>
<tr>
<td>22.6 %</td>
<td>- 105.8 lbs</td>
</tr>
</tbody>
</table>

Rear cargo	AFT Cargo in baggage compartment
176 lbs	220 lbs
Fuel	
1 850 lbs	

3 - Foreseen fuel :
| Taxi Fuel | - 36 lbs |
| Trip Fuel | - 1 400 lbs |
Moment = Weight x Arm

\[CG \ (MAC \%) = \frac{(Arm \times m - 4.392)}{1.51} \times 100 \]

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (lbs)</th>
<th>Arm (in)</th>
<th>Moment (in.lbs)</th>
<th>CG (MAC %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty Weight (lbs)</td>
<td>4 638</td>
<td>186.3</td>
<td>864 173</td>
<td>22.6</td>
</tr>
<tr>
<td>Baggage FWD (< 110 lbs)</td>
<td>0</td>
<td>128.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Front Seats (lbs)</td>
<td>400</td>
<td>178.5</td>
<td>71 400</td>
<td></td>
</tr>
<tr>
<td>Inter. Seats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 37.5 lbs per seat removed</td>
<td>0</td>
<td>224.8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pax</td>
<td>220</td>
<td></td>
<td>49 456</td>
<td></td>
</tr>
<tr>
<td>Rear bench/net (lbs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 52.9 lbs per seat removed</td>
<td>-105.8</td>
<td>267.1</td>
<td>-28 259</td>
<td></td>
</tr>
<tr>
<td>Pax</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cargo (< 176 lbs)</td>
<td>176</td>
<td></td>
<td>47 010</td>
<td></td>
</tr>
<tr>
<td>Baggage AFT (< 220 lbs)</td>
<td>220</td>
<td></td>
<td>66 660</td>
<td></td>
</tr>
<tr>
<td>Zero Fuel Weight (< 6032 lbs)</td>
<td>5 548</td>
<td>192.9</td>
<td>1 070 440</td>
<td>33.6</td>
</tr>
<tr>
<td>Fuel (lbs)</td>
<td>1 850</td>
<td>189.8</td>
<td>351 130</td>
<td></td>
</tr>
<tr>
<td>Ramp Weight (< 7430 lbs)</td>
<td>7 398</td>
<td>192.2</td>
<td>1 421 570</td>
<td>32.4</td>
</tr>
<tr>
<td>Taxi Fuel (lbs)</td>
<td>-36</td>
<td>189.8</td>
<td>-6 833</td>
<td></td>
</tr>
<tr>
<td>Takeoff Weight (< 7394 lbs)</td>
<td>7 362</td>
<td>192.2</td>
<td>1 414 737</td>
<td>32.4</td>
</tr>
<tr>
<td>Trip Fuel (lbs)</td>
<td>-1 400</td>
<td>189.8</td>
<td>-265 720</td>
<td></td>
</tr>
<tr>
<td>Landing Weight (< 7024 lbs)</td>
<td>5962</td>
<td>192.7</td>
<td>1 149 017</td>
<td>33.3</td>
</tr>
</tbody>
</table>

Figure 6.4.6 - Loading sample (in lbs and in)
DETERMINING EMPTY AIRPLANE CHARACTERISTICS

Empty airplane characteristics (weight and balance) may vary with regard to those indicated on weighing form according to installed optional equipment and installed seats.

List of equipment (refer to paragraph 6.5) contains the standard and optional equipment, as well as their characteristics (weight, arm), except those listed in this Chapter.

Use the chart below to compute new empty weight and corresponding balance if necessary.

<table>
<thead>
<tr>
<th>DATE</th>
<th>EQUIPMENT OR MODIFICATION DESCRIPTION</th>
<th>(+)</th>
<th>(-)</th>
<th>WEIGHT MODIFICATION</th>
<th>BASIC EMPTY WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weight</td>
<td>Arm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>lb</td>
<td>in.</td>
</tr>
<tr>
<td></td>
<td>According to delivery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.4.7 - SAMPLE WEIGHT AND BALANCE RECORD

\[CG \text{ m.a.c.\%} = \frac{(d₀ - 172.93)}{59.45} \times 100 \]

Use the above formula to express arm "d₀" in % of mean aerodynamic chord.

NOTE

Arm expressed in inches with regard to reference.

FWD baggage compartment : 128.0 in. (3.250 m)

Baggage compartment in pressurized cabin : 303.0 in. (7.695 m)

Fuel : 189.8 in. (4.820 m)
10 - PARKING, MOORING, STORAGE AND RETURN TO SERVICE

<table>
<thead>
<tr>
<th>S/R/A/O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>OPT70 or MOD70</td>
<td>WEIGHT per unit lb (kg) ARM in. (m)</td>
</tr>
<tr>
<td>S</td>
<td>Blanking caps bag</td>
<td>8.31 (3.77) 128.00 (3.250)</td>
</tr>
<tr>
<td>S</td>
<td>Towing bar</td>
<td>8.77 (3.98) 128.00 (3.250)</td>
</tr>
<tr>
<td>S</td>
<td>Control lock device</td>
<td>0.90 (0.41) 133.86 (3.400)</td>
</tr>
</tbody>
</table>

25 - EQUIPMENT AND FURNISHINGS (PARTIAL)

<table>
<thead>
<tr>
<th>A</th>
<th>0171-25</th>
<th>"Generation 2005" cabinets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Version A : L.H. low cabinet</td>
<td>WEIGHT per unit lb (kg) ARM in. (m)</td>
</tr>
<tr>
<td>A</td>
<td>9.48 (4.300) 203.74 (5.175)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Version B : R.H. low cabinet</td>
<td>9.48 (4.300) 203.74 (5.175)</td>
</tr>
<tr>
<td></td>
<td>Version C : Removable (low) insulated picnic bag</td>
<td>9.48 (4.300) 203.74 (5.175)</td>
</tr>
<tr>
<td></td>
<td>Version D : L.H. top storage cabinet</td>
<td>7.72 (3.500) 203.74 (5.175)</td>
</tr>
<tr>
<td></td>
<td>Version E : R.H. top storage cabinet</td>
<td>7.72 (3.500) 203.74 (5.175)</td>
</tr>
<tr>
<td></td>
<td>Version F : R.H. top storage cabinet + audio</td>
<td>7.94 (3.600) 203.74 (5.175)</td>
</tr>
<tr>
<td></td>
<td>Version G : L.H. top baggage cabinet</td>
<td>3.09 (1.400) 203.74 (5.175)</td>
</tr>
<tr>
<td></td>
<td>Version H : R.H. top baggage cabinet</td>
<td>3.09 (1.400) 203.74 (5.175)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>0207-00</th>
<th>Carpet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35.27 (16.000) 211.42 (5.370)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cabin furnishings</td>
<td>302.45 (137.19) 211.42 (5.370)</td>
</tr>
<tr>
<td>A</td>
<td>0207-00</td>
<td>2nd carpet (cargo use)</td>
</tr>
<tr>
<td></td>
<td>35.27 (16.000) 211.42 (5.370)</td>
<td></td>
</tr>
</tbody>
</table>
Leather seats

<table>
<thead>
<tr>
<th>S/R</th>
<th>ITEM</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>- L.H. intermediate seat (back to or in flight direction) T700G2500005</td>
<td>37.48 (17.00)</td>
<td>224.80 (5.710)</td>
</tr>
<tr>
<td>S</td>
<td>- R.H. Intermediate seat (back to or in flight direction) T700G2500005</td>
<td>37.48 (17.00)</td>
<td>224.80 (5.710)</td>
</tr>
<tr>
<td>S</td>
<td>- Double chair</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L.H. Seat T700C2500005</td>
<td>52.91 (24.00)</td>
<td>278.19 (7.066)</td>
</tr>
<tr>
<td></td>
<td>R.H. Seat T700C2500005</td>
<td>52.91 (24.00)</td>
<td>278.19 (7.066)</td>
</tr>
</tbody>
</table>

Nets

<table>
<thead>
<tr>
<th>S</th>
<th>ITEM</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0315-25 - Small cargo net GP SOCT704CC-10 SOCATA</td>
<td>15.00 (7.00)</td>
<td>/</td>
</tr>
<tr>
<td>S</td>
<td>0315-25 - Large cargo net GP SOCT704CS-10 SOCATA</td>
<td>13.00 (6.00)</td>
<td>/</td>
</tr>
<tr>
<td>S</td>
<td>25026B - Partition net at Frame 14 (between the cabin and the baggage compartment) T700B2590001 SOCATA</td>
<td>1.70 (0.77)</td>
<td>289.53 (7.354)</td>
</tr>
</tbody>
</table>
6.5 - LIST OF EQUIPMENT

The list of equipment is available in SOCATA Report reference NAV No.34/90-RJ-App 3, located at the end of this POH.

A separate list of equipment of items installed at the factory in your specific airplane is provided in your airplane file.
SECTION 7
DESCRIPTION

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>GENERAL</td>
<td>7.1.1</td>
</tr>
<tr>
<td>7.2</td>
<td>AIRFRAME</td>
<td>7.2.1</td>
</tr>
<tr>
<td>7.2.1</td>
<td>WINGS</td>
<td>7.2.1</td>
</tr>
<tr>
<td>7.2.2</td>
<td>AILERONS, SPOILERS AND PITCH TRIM TAB</td>
<td>7.2.5</td>
</tr>
<tr>
<td>7.2.3</td>
<td>WING FLAPS</td>
<td>7.2.5</td>
</tr>
<tr>
<td>7.2.4</td>
<td>EMPENNAGES</td>
<td>7.2.5</td>
</tr>
<tr>
<td>7.3</td>
<td>ACCOMMODATIONS</td>
<td>7.3.1</td>
</tr>
<tr>
<td>7.3.1</td>
<td>INSTRUMENT PANEL</td>
<td>7.3.1</td>
</tr>
<tr>
<td>7.3.2</td>
<td>DOORS, WINDOWS AND EMERGENCY EXIT</td>
<td>7.3.22</td>
</tr>
<tr>
<td>7.3.3</td>
<td>SEATS, BELTS AND HARNESS</td>
<td>7.3.28</td>
</tr>
<tr>
<td>7.3.4</td>
<td>BAGGAGE COMPARTMENTS</td>
<td>7.3.31</td>
</tr>
<tr>
<td>7.3.5</td>
<td>USE OF CARGO NETS</td>
<td>7.3.33</td>
</tr>
<tr>
<td>7.4</td>
<td>FLIGHT CONTROLS</td>
<td>7.4.1</td>
</tr>
<tr>
<td>7.4.1</td>
<td>ROLL</td>
<td>7.4.1</td>
</tr>
<tr>
<td>7.4.2</td>
<td>ROLL TRIM</td>
<td>7.4.1</td>
</tr>
<tr>
<td>7.4.3</td>
<td>ELEVATOR</td>
<td>7.4.6</td>
</tr>
<tr>
<td>7.4.4</td>
<td>PITCH TRIM</td>
<td>7.4.6</td>
</tr>
<tr>
<td>7.4.5</td>
<td>RUDDER</td>
<td>7.4.11</td>
</tr>
<tr>
<td>7.4.6</td>
<td>RUDDER TRIM</td>
<td>7.4.11</td>
</tr>
<tr>
<td>7.5</td>
<td>LANDING GEAR</td>
<td>7.5.1</td>
</tr>
<tr>
<td>7.5.1</td>
<td>HYDRAULIC PRESSURE</td>
<td>7.5.1</td>
</tr>
<tr>
<td>7.5.2</td>
<td>LANDING GEAR CONTROL</td>
<td>7.5.1</td>
</tr>
<tr>
<td>7.5.3</td>
<td>LANDING GEAR POSITION INDICATOR</td>
<td>7.5.1</td>
</tr>
<tr>
<td>7.5.4</td>
<td>SAFETY</td>
<td>7.5.4</td>
</tr>
<tr>
<td>7.5.5</td>
<td>GROUND MANEUVERS</td>
<td>7.5.6</td>
</tr>
<tr>
<td>7.5.6</td>
<td>BRAKE SYSTEM</td>
<td>7.5.9</td>
</tr>
<tr>
<td>7.5.7</td>
<td>PARKING BRAKE</td>
<td>7.5.9</td>
</tr>
<tr>
<td>7.6</td>
<td>POWERPLANT</td>
<td>7.6.1</td>
</tr>
<tr>
<td>7.6.1</td>
<td>TURBOPROP ENGINE OPERATION</td>
<td>7.6.1</td>
</tr>
<tr>
<td>7.6.2</td>
<td>ENGINE CONTROLS (LEVERS)</td>
<td>7.6.4</td>
</tr>
<tr>
<td>7.6.3</td>
<td>ENGINE INSTRUMENTS</td>
<td>7.6.6</td>
</tr>
<tr>
<td>7.6.4</td>
<td>ENGINE LUBRICATION</td>
<td>7.6.6</td>
</tr>
<tr>
<td>7.6.5</td>
<td>ENGINE STARTING</td>
<td>7.6.7</td>
</tr>
<tr>
<td>7.6.6</td>
<td>ENGINE AIR INLET</td>
<td>7.6.9</td>
</tr>
<tr>
<td>7.6.7</td>
<td>EXHAUST SYSTEM</td>
<td>7.6.9</td>
</tr>
<tr>
<td>7.6.8</td>
<td>ENGINE ACCESSORIES</td>
<td>7.6.9</td>
</tr>
<tr>
<td>7.6.9</td>
<td>PROPPELLER</td>
<td>7.6.10</td>
</tr>
</tbody>
</table>
7.7 - FUEL SYSTEM ... 7.7.1
 FUEL TANKS .. 7.7.1
 FUEL UNIT .. 7.7.1
 TANK MANUAL SELECTOR .. 7.7.1
 AUTOMATIC TANK SELECTOR ... 7.7.4
 ELECTRIC BOOST PUMP ("AUX BP") 7.7.4
 MAIN MECHANICAL BOOST PUMP .. 7.7.7
 ENGINE FUEL SYSTEM .. 7.7.7
 FUEL GAGING INSTALLATION ... 7.7.7
 FUEL SYSTEM DRAINING AND CLOGGING INDICATOR 7.7.7

7.8 - ELECTRICAL SYSTEM ... 7.8.1
 STARTER GENERATOR .. 7.8.1
 STAND-BY GENERATOR .. 7.8.1
 BATTERY ... 7.8.1
 GROUND POWER RECEPTACLE .. 7.8.2
 DISTRIBUTION .. 7.8.2
 EMERGENCY USE .. 7.8.3
 INDICATING ... 7.8.11
 PROTECTION - SAFETY .. 7.8.11
 EXTERIOR LIGHTING ... 7.8.15
 INTERIOR LIGHTING ... 7.8.15

7.9 - AIR CONDITIONING AND PRESSURIZATION - PRE-MOD70-0529-21 .. 7.9.1
 ENGINE BLEED AIR SYSTEM .. 7.9.1
 DUAL ZONES ENVIRONMENTAL CONTROL SYSTEM 7.9.2
 CABIN PRESSURIZATION CONTROL SYSTEM 7.9.4

7.9 - AIR CONDITIONING AND PRESSURIZATION - POST-MOD70-0529-21 7.9.10
 ENGINE BLEED AIR SYSTEM .. 7.9.10
 DUAL ZONES ENVIRONMENTAL CONTROL SYSTEM 7.9.11
 CABIN PRESSURIZATION CONTROL SYSTEM 7.9.13

7.10 - EMERGENCY OXYGEN SYSTEM .. 7.10.1
 FLIGHT ABOVE 15000 FT WITH EMERGENCY DESCENT 7.10.4
 WHEN REQUIRED TO REMAIN ABOVE 15000 FT DUE TO MINIMUM "EN ROUTE" ALTITUDE 7.10.5
 FLIGHT BETWEEN 15000 FT AND 10000 FT 7.10.6

7.11 - AIR DATA SYSTEM AND INSTRUMENTS 7.11.1
 STATIC PRESSURE SYSTEMS ... 7.11.1
 DYNAMIC PRESSURE SYSTEM ... 7.11.1

7.12 - VACUUM SYSTEM AND INSTRUMENTS 7.12.1
 ELECTRONIC STANDBY INDICATOR (ESI-2000) 7.12.1

7.13 - ICE PROTECTION EQUIPMENT ... 7.13.1
 WING AND EMPENNAGE DEICING .. 7.13.1
 PROPELLER DEICING ... 7.13.1
 WINDSHIELD DEICING .. 7.13.1
 HEATING OF PITOTS AND STALL WARNING SENSOR ("PITOT L HTR" AND "PITOT R & STALL HTR") 7.13.2
 TURBINE AIR INLET PROTECTION .. 7.13.2
<table>
<thead>
<tr>
<th>Section</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.14.1</td>
<td>STALL WARNING SYSTEM</td>
</tr>
<tr>
<td>7.14.1</td>
<td>STATIC DISCHARGERS</td>
</tr>
<tr>
<td>7.14.1</td>
<td>CABIN FIRE EXTINGUISHER</td>
</tr>
<tr>
<td>7.14.1</td>
<td>AUTOPILOT</td>
</tr>
<tr>
<td>7.14.2</td>
<td>GPS</td>
</tr>
<tr>
<td>7.14.2</td>
<td>WEATHER RADAR GWX 70</td>
</tr>
<tr>
<td>7.14.4</td>
<td>EMERGENCY LOCATOR TRANSMITTER</td>
</tr>
<tr>
<td>7.14.5</td>
<td>FLIGHT DECK INFORMATION SYSTEM (FS 210)</td>
</tr>
<tr>
<td>7.14.5</td>
<td>LIGHT WEIGHT DATA RECORDER (LDR 1000)</td>
</tr>
<tr>
<td>7.14.5</td>
<td>OPTIONAL EQUIPMENT</td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK
7.1 - GENERAL

This Section provides description and operation of the TBM 900 airplane and its systems.

Some of the equipment described herein is optional and may not be installed in the airplane.

Complete description and operation of the GARMIN G1000 integrated flight deck are detailed in the "GARMIN" G1000 Integrated Flight Deck Cockpit Reference Guide, No.190-00708-05, or any later version as applicable. References to this Guide are often made all along this Section to get more details about some systems.

Details of other optional systems and equipment are presented in Section 9 "Supplements" of the Pilot's Operating Handbook.
7.2 - AIRFRAME (Figures 7.2.1, 7.2.1A and 7.2.1B)

The TBM 900 is a six-place, low wing airplane.

The airplane can be changed into 2, 3, 4 or 5-seat accommodation.

The structure is a semi-monocoque all-metal construction and is equipped with a retractable tricycle landing gear.

The pressurized cabin is equipped, on the left side of fuselage, with a one-piece access door and folding stairs comprising a hand rail allowing pilot and passengers boarding. The occupants have access to cockpit and to rear seats through a central aisle.

An optional "pilot" door located forward of the cabin on the left side allows access to the cockpit by means of folding stairs.

The aft cabin section is a baggage compartment.
Figure 7.2.1 - CABIN ARRANGEMENT
6-seat accommodation
Figure 7.2.1A - CABIN ARRANGEMENT
4-seat accommodation with large securing net
Figure 7.2.1B - CABIN ARRANGEMENT
4-seat accommodation with small securing net
WINGS

The wings are monocoque, bi-spar structures. Main spars of each wing are linked to the fuselage by two integral attach fittings. Each wing contains a main landing gear well and sealed casings forming the fuel tank. The wing leading edge is equipped with a deicing system.

Each wing extremity is equipped with a winglet.

AILERONS, SPOILERS AND PITCH TRIM TAB

The ailerons located on external trailing edge of each wing are hinged on two attach fittings fixed on the rear spar. They allow airplane lateral control and are controlled mechanically through control wheel rotation.

The spoilers located in front of flaps, on top skin side, are mechanically linked to the ailerons.

Trim tab attached on the trailing edge of L.H. aileron is electrically activated by a trim knob, through an actuator.

WING FLAPS (Figure 7.2.2)

The wing flaps are large span slotted flaps with a single rotation point. They are activated by actuating rod-controlled screw jacks linked to an electric motor located under the floor, inside the fuselage.

A preselection control located on the right side of pedestal console allows the pilot to select one of the three positions (UP - TO - LDG). For each control position, a deflection angle is defined (0°, 10°, 34°).

A monitoring device interrupts flaps movement as soon as a deflection dissymmetry is detected.

EMPENNAGES

Empennages are composite structures. The horizontal empennage consists of a horizontal stabilizer (PHF), control surfaces and elevator trim tabs; the vertical empennage consists of a vertical stabilizer, the rudder and the rudder trim tab. The empennage leading edge is equipped with a deicing system.
1) Geared motor
2) Internal actuator
3) Intermediate bearings
4) Wing flap
5) External actuator
6) Rods
7) Control selector

Figure 7.2.2 (1/2) - WING FLAPS
Figure 7.2.2 (2/2) - WING FLAPS
7.3 - ACCOMMODATIONS

INSTRUMENT PANEL

The instrument panel contains instruments and controls necessary for flight monitoring. The typical instrument panel consists of all standard equipment, as well as additional optional equipment.

Upper panel (Figure 7.3.2)

The upper panel located at the top part of the windshield contains electrical generation control panels, engine starting, ancillary electrical systems, AP/TRIMS switch, ELT remote control switch and the "FUEL" control panel.

Rearwards of upper panel, the central part of cockpit overhead panel provides loud-speakers, a warning buzzer and cockpit floodlights.

Instrument panel (Figure 7.3.1)

The instrument panel consists of the G1000 integrated flight deck composed of three screens [two Primary Flight Displays (PFD) and one Multi-Function Display (MFD)] - refer to the "GARMIN" G1000 Cockpit Reference Guide for detailed description. Apart from the G1000 system, equipment listed below complete the instrument panel.

- Left area instrument panel includes (Figure 7.3.3):
 - on top: ESI-2000, MASTER CAUTION and MASTER WARNING,
 - at bottom: deicing controls and indicators, NORMAL/MASK inverter, landing gear control panel, parking brake control and left station control wheel.

- Central area instrument panel includes (Figure 7.3.4):
 - on top: surmounted by the standby compass, AFCS control unit,

Post-MOD70-0529-21

 - at bottom: GCU 475 control unit and "ECS" control panel.

Pre-MOD70-0529-21

 - at bottom: GCU 475 control unit and "A/C" and "PRESSURIZATION" panel.

Post-MOD70-0529-21

 - at bottom: GCU 475 control unit and "A/C" and "PRESSURIZATION" panel.

All

- Right area instrument panel includes (Figure 7.3.5):
 - on top: locations for optional equipment,
 - at bottom: alternate static source selector, hour meter and the right station control wheel.

- Emergency air control is located under the right area instrument panel.

An hourmeter is located on the right side of instrument panel.

An adjustable air outlet is located on both sides of instrument panel lower part.

Reception-micro jacks are located inside the recess under the arm-rest on both lateral sides of the cockpit, on R.H. side of intermediate R.H. passenger's seat and on the arm-rest of rear R.H. passenger's seat.

Pedestal console (Figure 7.3.6)

The pedestal console, under the GCU 475 control unit, comprises flaps controls, pitch trim tab control wheel, aileron trim switch, engine controls and fuel tank selector.
Circuit breakers panel (Figures 7.3.7 and 7.8.4)

Circuit breakers for all electrical equipment supplied by bus bars are located on a separate panel installed on the right side of cockpit.

General alarms warning lights and CAS messages

WARNING and **CAUTION** messages appear on the GDU 1500 MFD CAS display to alert crew about monitored systems discrepancies. As a message appears, an aural tone is heard. Refer to the GARMIN G1000 Cockpit Reference Guide to know all possible CAS messages.

A “**MASTER WARNING**” red flashing indicator and a “**MASTER CAUTION**” amber indicator located on instrument panel (see Figure 7.3.8) in front of the pilot, illuminate as soon as one or several messages of same color light on.

To cancel and reset a general alarm, press on the red or amber indicator. A pressure on the red indicator also stops red message associated aural tones.

Aural warnings (Figure 7.3.2)

The aural warnings are intended to alert the pilot during some configurations. The aural signals are heard through the loud-speakers or the buzzer installed in cockpit overhead panel.

The aural warnings consist of:
- the aural warning box,
- the buzzer and loud-speakers.

The system uses:
- the stall warning horn,
- the VMO alarm,
- the landing gear control unit,
- the flap geared motor.

Aural warning box

The aural warning box consists of a box including logic circuits, which create the signals heard in the aural warning loud-speakers.

According to the airplane configuration, different signals are produced by the logic circuits:
- gear up and idle — high-pitched sound
- gear up and extended flaps — high-pitched sound
- stall — low-pitched sound
- gear up, idle and stall — alternate high-pitched and low-pitched sounds
- gear up, extended flaps and stall — alternate high-pitched and low-pitched sounds

The aural warning box is fixed under cabin floor, on L.H. side, between frames C5 and C6.

It is electrically supplied by "ESS BUS 2" bar and protected by "AURAL WARN" circuit breaker.
Cockpit overhead panel (Figure 7.3.2)

This panel includes following elements:

- the loud-speaker of GMA # 1,
- the loud-speaker of GMA # 2,
- the VMO alarm buzzer,
- the "HORN TEST" knob,
- the emergency lighting rheostat.

It is attached to the cabin upper part between frames C6 and C7.

The VMO alarm buzzer is electrically supplied by "ESS BUS 2" bar and protected by "AURAL WARN" circuit breaker and the emergency lighting rheostat is electrically supplied by "BATT BUS" bar and protected by "PANEL EMER" circuit breaker.

Aural warning operation

The GMA # 1 and # 2 audio control panels receive signals from the aural warning box. According to the airplane configuration, these signals are low-pitched and / or high-pitched.

The "HORN TEST" knob allows to test the correct operation of aural warnings:

- Set the "SOURCE" selector to BATT or to GPU.
- Push and hold the "HORN TEST" knob:
 - the VMO buzzer emits "bips",
 - the loud-speakers emit alternate low-pitched and high-pitched sounds.
- Release the knob to stop the alarms.
General alarms warning lights and CAS messages

WARNING and **CAUTION** messages appear on the GDU 1500 MFD CAS display to alert crew about monitored systems discrepancies. As a message appears, a chime is heard. Refer to the GARMIN G1000 Cockpit Reference Guide to know all possible CAS messages.

A "**MASTER WARNING**" red flashing indicator and a "**MASTER CAUTION**" amber indicator located on instrument panel (see Figure 7.3.8) in front of the pilot, illuminate as soon as one or several messages of same color light on.

To cancel and reset a general alarm, press on the red or amber indicator. A pressure on the red indicator also stops red message associated chimes.

Aural warnings (Figure 7.3.2)

The aural warnings are intended to alert the pilot during some configurations. The aural signals are heard through the loud-speakers installed in cockpit overhead panel and through the pilot's and R.H. station headsets.

The aural warnings consist of :
- the G1000 system (GIA and GMA),
- the loud-speakers.

The system uses :
- the stall warning system,
- the airspeed indicator,
- the landing gear control unit,
- the flap geared motor,
- the idle position sensor.

Aural warning alerts

According to the airplane configuration, different aural warning alerts sound :
- gear up and idle "landing gear / landing gear"
- gear up and extended flaps "landing gear / landing gear"
- stall "stall / stall"
- gear up, idle and stall "stall / landing gear"
- gear up, extended flaps and stall "stall / landing gear"

Refer to the GARMIN G1000 Cockpit Reference Guide for description of the other aural warning alerts.
Cockpit overhead panel (Figure 7.3.2)

This panel includes following elements:

- the loud-speaker of GMA # 1,
- the loud-speaker of GMA # 2,
- the "HORN TEST" push-button,
- the emergency lighting rheostat.

It is attached to the cabin upper part between frames C6 and C7.

The emergency lighting rheostat is electrically supplied by "BATT BUS" bar and protected by "PANEL EMER" circuit breaker.

The "HORN TEST" push-button allows to test the correct operation of aural warning:

- set "SOURCE" selector to "BATT" or "GPU",
- push and hold the "HORN TEST" push-button: the loudspeaker emits "stall / landing gear" aural warning alert,
- release push-button to stop aural warning alert.
Cockpit overhead panel (Figure 7.3.2)

This panel includes following elements:

- the loud-speaker of GMA # 1,
- the loud-speaker of GMA # 2,
- the "TEST" push-button,
- the emergency lighting rheostat.

It is attached to the cabin upper part between frames C6 and C7.

The emergency lighting rheostat is electrically supplied by "BATT BUS" bar and protected by "PANEL EMER" circuit breaker.

The "TEST" push-button allows to test:

- the autopilot control panel backlighting,
- the GMA panel (audio control panel) backlighting,
- the "MASTER WARNING" and "MASTER CAUTION" indicators,
- the deicing panel led,

- the stick shaker system,

All

- the fire detection system (if installed),

- the stall aural warning alert.
Figure 7.3.1 - INSTRUMENT PANEL ASSEMBLY
(Typical arrangement)
1) L.H. instrument panel emergency lighting

Pre-MOD70-0407-00A

2) Buzzer (V_{MO} alarm)

All

3) Loud-speaker of GMA # 2

4) R.H. instrument panel emergency lighting

5) Instrument panel emergency lighting switches (rheostats)

6) R.H. cockpit floodlight

7) ELT remote control switch

8) "AP/TRIMS" switch

9) "FUEL" control panel (Figure 7.7.3)

10) "ENGINE START" switches (Figure 7.6.4)

11) "ELECTRIC POWER" switches (Figure 7.8.5)

12) "INT LIGHTS" internal lighting switches (Figure 7.8.7)

13) "EXT LIGHTS" external lighting switches (Figure 7.8.6)

14) L.H. cockpit floodlight

Pre-MOD70-0463-92

15) "HORN TEST" aural warning test knob

Post-MOD70-0463-92

15) "TEST" push-button

All

16) Loud-speaker of GMA # 1

Figure 7.3.2 (1/2) - UPPER PANEL AND COCKPIT OVERHEAD PANEL
Figure 7.3.2 (2/2) - UPPER PANEL AND COCKPIT OVERHEAD PANEL
1) L.H. GMA 1347 audio panel
2) General alarm red and amber indicators
3) GDU 1040 PFD1
4) ESI-2000
5) Landing gear configuration and control panel (Figure 7.5.1)
6) Parking brake control (Figure 7.5.6)
7) Left station control wheel tube
8) Deicing control and check panel (Figure 7.13.1)
9) L.H. station rudder pedals adjusting handle
10) Left station reception-micro jacks
11) Pitch & Yaw trim setting management
12) Push To Talk button (PTT)
13) "AP / TRIMS DISC" red push-button
14) CWS
15) Paper clip
16) Chonometer management
17) Transponder Ident sequence
18) Stormscope clear
19) COM 2 (Stand-by / active)
20) Flight conditions and instruction placard
21) Adjustable air outlet
22) Circuit breaker panel lighting switch
23) Oxygen mask microphone switch (Figure 7.10.1)

Figure 7.3.3 (1/2) - LEFT INSTRUMENT PANEL
Figure 7.3.3 (2/2) - LEFT INSTRUMENT PANEL
(Typical arrangement)
1) Stand-by compass
2) GMC 710 AFCS mode controller
3) Registration
4) "ECS" air conditioning control panel (Figure 7.9.2)
5) GCU 475 remote controller
6) GDU 1500 MFD
Post-MOD70-0455-31A
7) Micro LDR
Figure 7.3.4 (2/2) - CENTRAL INSTRUMENT PANEL - Pre-MOD70-0529-21
(Typical arrangement)
1) Stand-by compass
2) GMC 710 AFCS mode controller
3) Registration
4) "A/C" and "PRESSURIZATION" panel (Figure 7.9.2A)
5) GCU 475 remote controller
6) GDU 1500 MFD
7) Micro LDR
Figure 7.3.4A (2/2) - CENTRAL INSTRUMENT PANEL - Post-MOD70-0529-21
(Typical arrangement)
1) GDU 1040 PFD2
2) R.H. GMA 1347 audio panel
3) Right station control wheel tube
4) Crew music
5) Adjustable air outlet
6) Right station reception-micro jacks
7) Hour meter
8) R. H. station rudder pedals adjusting handle
9) Circuit breakers panel postlight
10) Cigar lighter and two USB servicing plugs
11) Cabin emergency air control ("EMERGENCY RAM AIR" control knob)
12) Static source selector
13) COM 2 (Stand-by / active)
14) Stormscope clear
15) Tansponder Ident sequence
16) Chronometer management
17) Paper clip
18) CWS
19) "AP / TRIMS DISC" red push-button
20) Push To Talk button (PTT)
21) Pitch & Yaw trim setting management
Figure 7.3.5 (2/2) - RIGHT INSTRUMENT PANEL
(Typical arrangement)
1) Throttle
2) Flaps control
3) Throttle friction adjustment
4) Manual fuel tank selector (Figure 7.7.2)
5) Roll trim tab control
6) Emergency fuel control
7) Pitch trim tab control
8) Lock for access door to landing gear emergency pump (Figure 7.5.2)
Figure 7.3.6 (2/2) - PEDESTAL CONSOLE
(Typical arrangement)
Figure 7.3.8 - GENERAL ALARMS WARNING LIGHTS
DOORS, WINDOWS AND EMERGENCY EXIT

Cabin access door (Figure 7.3.9)

The cabin one-piece access door, located on the left side of fuselage aft of the wings, opens outside. The retractable stairs and hand rail make boarding easier.

To open the door from outside the airplane (make sure the door is not locked), press on front end of the handle embedded in door (this pressure disengages the handle from its recess), then turn the handle upwards. Raise the door helping it to open. Two compensation actuators bring and maintain the door at its maximum opening position.

After door opening, tilt stairs downwards. Stairs down movement is damped by means of two gas struts and leads the hand rail to extend.

CAUTION
RETRACT STAIRS BEFORE CLOSING ACCESS DOOR AND MAKE SURE DOOR DEFLECTION AREA IS CLEAR

To retract stairs, press on locking pin located on stairs front string board (see detail "1"), raise retractable handle (see detail "2") and pull stairs inside cabin. While stairs are retracted, the hand rail folds up.

To close the door from inside the airplane, press on knob inside cabin forward of the door. The door driven by a geared motor tilts downwards up to a position near the complete closing. Pull the door until it aligns with fuselage and lock it by moving inside handle downwards. Check that all latch pins and hooks are correctly engaged (visible green marks).

The DOOR CAS message lights on as long as the door is not correctly locked.

CAUTION
BEFORE OPENING ACCESS DOOR, MAKE SURE DOOR DEFLECTION AREA IS CLEAR

To open door from inside the cabin, unlock the handle by pressing on knob located on its left side, pull the handle toward inside and move it upwards. Open the door by pushing it upwards.

After door opening, tilt stairs downwards which leads the hand rail to extend.

CAUTION
RETRACT STAIRS BEFORE CLOSING ACCESS DOOR AND MAKE SURE DOOR DEFLECTION AREA IS CLEAR

To retract stairs from outside the airplane, raise stairs by pushing them upwards from the lower part and fold them inside cabin. While stairs are retracted, the hand rail folds up.

To close the door from outside the airplane, press on knob on outside fuselage at the right side of the door. The door driven by a geared motor tilts downwards up to a position near the complete closing. Push the door until it aligns with fuselage and lock it by moving outside handle downwards, then fold handle in its recess.

Check that all latch pins and hooks are correctly engaged (visible green marks).

In case of geared motor failure, the door can be manually tilted downwards by pulling sufficiently to override action of compensating struts.
Cockpit access door (Figure 7.3.9A)

The cockpit access door, so-called "pilot" door, (if installed) located on the left side of fuselage forward of the wings, opens outside. Retractable footstep makes boarding easier.

WARNING

AS THE "PILOT" DOOR IS LOCATED IN A DANGEROUS AREA, WAIT FOR COMPLETE ENGINE STOP BEFORE OPERATING THIS DOOR

To open the door from outside the airplane (make sure the door is not locked), press on front end of the handle embedded in door (this pressure disengages the handle from its recess), then turn the handle downwards. Pull the door helping it to open until it reaches its maximum opening position.

After door opening, tilt and unfold footstep.

CAUTION

RETRACT FOOTSTEP BEFORE CLOSING ACCESS DOOR

Fold and tilt footstep upwards.

To close the door from inside the airplane, pull the door until it aligns with fuselage and lock it by moving inside handle downwards. Check that each latch is correctly engaged in its recess (visible green marks).

The DOOR CAS message lights on as long as cabin access door and "pilot" access door (if installed) are not correctly locked.

To open door from inside the cockpit, unlock the handle by pressing on knob located on its right side, pull the handle inwards and move it upwards. Open the door helping it to open until it reaches its maximum opening position.

After door opening, tilt and unfold footstep.

CAUTION

RETRACT FOOTSTEP BEFORE CLOSING ACCESS DOOR

Fold and tilt footstep upwards.

To close the door from outside the airplane, push the door until it aligns with fuselage and lock it by moving outside handle upwards, then fold handle in its recess.

FWD compartment door

The FWD compartment door is located on the airplane left side between the firewall and the front pressure bulkhead. It is hinged at the top. It is maintained in the up position by a compensation rod. Two interlocking-type latches ensure its closing and it is equipped with a lock [same key as for the access door and the "pilot" door (if installed)]. When the door is closed, latches are flush with the fuselage profile.

The FRONT CARGO DOOR CAS message lights on as long as FWD compartment door is not locked.

Windows

Windows do not open. The windshield consists of two parts electrically deiced.
Figure 7.3.9A - COCKPIT ACCESS DOOR ("PILOT" DOOR)
Emergency exit (Figure 7.3.10)

The emergency exit is installed on the right side of the fuselage and opens towards the inside. It is equipped with two handles, one inside and the other outside, each located on the upper frame.

When the airplane is parked, the closing system may be locked by a safety pin provided with a flag marker. The handle is then inoperable.

WARNING

TAXIING AND FLYING WITH THIEF-PROOF SAFETY PIN INSTALLED IS FORBIDDEN.

To open the emergency exit, pull one of the two handles and tilt the emergency exit from top to bottom towards inside of airplane.
Figure 7.3.10 - EMERGENCY EXIT
SEATS, BELTS AND HARNESSSES

Cockpit seats (Figure 7.3.11)

L.H. and R.H. front seats are mounted on rails attached to the structure. Longitudinal position, height and back-rest tilting of each seat can be adjusted and the arm-rest is hinged.

Pull up the handle located forward for longitudinal setting.

The seat height is adjusted by pulling up side forward handle while relieving the seat from the body weight.

The seat back angle is adjusted by pulling up side rearward handle.

Passengers’ seats (Figures 7.3.11 and 7.3.11A)

With 6-seat accommodation

The accommodation consists of:

- two individual seats, installed back to the flight direction, mounted on the same rails as the front seats.
 The seat back angle is adjusted by pulling up side handle.

- two rear seats arranged as a bench, mounted on the same rails as the front seats.
 The seat back-rests tilt forward by pulling up the handle located forward on L.H. side of each seat which may tilt forwards by pulling up a rear handle to ease baggage loading in baggage compartment.
 For longitudinal setting pull up the handle located forward, on R.H. side.

With 4-seat accommodation

The accommodation consists of:

- two individual seats, installed facing flight direction, mounted on the same rails as the front seats.
 The seat back angle is adjusted by pulling up side handle.
Many accommodations are possible. They are described hereafter.

ONLY zone B and zone C can be modified for seat configurations.

For all configurations, verify that your luggages are stowed and attached in the appropriate areas.

If installed, cabinets can be removed or added by Service Center.

For the MID Seat zone B:
ONLY the Middle Seats can be installed in MID Seat Zone. This zone accepts Fwd and Aft Facing Mid Seat when rear seats are installed.

The zone B accepts zero or 1 or 2 seats. (The zone B is not a luggage area).

<table>
<thead>
<tr>
<th>Location number</th>
<th>FWD Facing</th>
<th>AFT Facing</th>
<th>Number of seat can be installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>YES</td>
<td>YES</td>
<td>1 or 0</td>
</tr>
<tr>
<td>2</td>
<td>YES</td>
<td>YES</td>
<td>1 or 0</td>
</tr>
</tbody>
</table>

For the REAR Seat zone C:
ONLY the Rear Seat can be installed in Rear Seat Zone.

The Zone C accepts zero or 1 or 2 seats.

<table>
<thead>
<tr>
<th>Location number</th>
<th>FWD Facing</th>
<th>Number of seat can be installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>YES</td>
<td>1 or 0</td>
</tr>
<tr>
<td>4</td>
<td>YES</td>
<td>1 or 0</td>
</tr>
<tr>
<td>5 *(1)</td>
<td>YES *(1)</td>
<td>1 or 0 *(1)</td>
</tr>
</tbody>
</table>

*(1) Centered on the fuselage axis.
Here are all the configurations possibilities

<table>
<thead>
<tr>
<th>Configuration name</th>
<th>Location number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>C1</td>
<td>X</td>
</tr>
<tr>
<td>C2</td>
<td>X</td>
</tr>
<tr>
<td>C3</td>
<td>X</td>
</tr>
<tr>
<td>C4 (1)</td>
<td>X</td>
</tr>
<tr>
<td>C5</td>
<td>X</td>
</tr>
<tr>
<td>C6</td>
<td>X</td>
</tr>
<tr>
<td>C7</td>
<td>X</td>
</tr>
<tr>
<td>C8</td>
<td>X</td>
</tr>
<tr>
<td>C9</td>
<td>X</td>
</tr>
<tr>
<td>C10 (1)</td>
<td>X</td>
</tr>
<tr>
<td>C11</td>
<td>X</td>
</tr>
<tr>
<td>C12</td>
<td>X</td>
</tr>
<tr>
<td>C13</td>
<td>X</td>
</tr>
<tr>
<td>C14</td>
<td>X</td>
</tr>
<tr>
<td>C15 (1)</td>
<td>X</td>
</tr>
<tr>
<td>C16</td>
<td></td>
</tr>
<tr>
<td>C17</td>
<td></td>
</tr>
<tr>
<td>C18</td>
<td></td>
</tr>
<tr>
<td>C19</td>
<td></td>
</tr>
<tr>
<td>C20 (1)</td>
<td></td>
</tr>
</tbody>
</table>

(1) This configuration accepts small net or large net

Each cross indicates that you have a seat at the correspondent location number.

Belts and harnesses (Figure 7.3.12)

WARNING: INCORRECT CLOSURE OF THE SAFETY BELT MAY INTRODUCE A RISK. MAKE SURE IT IS TIGHTENED WHEN BUCKLED. TO BE MOST EFFICIENT, THE BELT MUST NOT BE TWISTED. CHECK THAT THERE IS NO CONSTRAINT WHEN OPERATED. AFTER A SERIOUS ACCIDENT, REPLACE ALL BELTS

Each cockpit seat is equipped with a four-point restraint system consisting of an adjustable lap belt and a dual-strap inertia reel-type shoulder harness.

Each passenger seat is equipped with a three-point restraint system consisting of an adjustable lap belt and an inertia reel-type shoulder harness.

BAGGAGE COMPARTMENTS

With 6-seat accommodation

There are two baggage compartments:

- An AFT compartment located in the pressurized cabin between rear passenger seats and rear pressure bulkhead.
- A FWD compartment (non-pressurized) located between firewall and fwd pressure bulkhead.

The AFT compartment is accessible through the cabin by tilting forward the L.H. rear seat and / or L.H. or R.H. rear seat back rests. Rings fitted with lashing straps are provided for securing parcels and baggage on compartment floor.

The FWD compartment is accessible by opening the external door located on the left side of the airplane.

These locations are designed for the carrying of low density loads; loading and unloading must be carried out with caution to avoid any damage to the airplane.

The cabin is separated from the baggage compartment by a partition net intended to protect the passengers from injuries that could be caused by improper tie-down of a content.

The partition net is mounted at frame C14 (Figure 7.2.1), it is secured at the bottom to 4 points of the floor and on the sides to 6 points of the structure.

Maximum loads allowable in the baggage compartments depend on airplane equipment, refer to Section 6 "Weight and balance".

WARNING

ANY PARCEL OR BAGGAGE MUST BE STOWED BY STRAPS.

IT IS THE PILOT'S RESPONSIBILITY TO CHECK THAT ALL THE PARCELS AND BAGGAGE ARE PROPERLY SECURED IN THE CABIN.

IN CASE OF TRANSPORT OF DANGEROUS MATERIALS, RESPECT THE LAW CONCERNING TRANSPORT OF DANGEROUS MATERIALS AND ANY OTHER APPLICABLE REGULATION
With 4-seat accommodation

Two cargo nets are available for the pilot to safely secure and transport baggage:

- the Small Cargo Net is attached through nine anchoring points on seat rails, between frame C11 and frame C13bis (Figure 7.2.1B).

- the Large Cargo Net is attached through seven anchoring points on seat rails, between frame C11 and frame C13bis and six anchoring points on fuselage sides, at frame C14 (Figure 7.2.1A).

NOTE

Original Partition Net must be disconnected from side walls and placed on the floor.

Authorized anchoring points are identified with green self-adhesive labels affixed to the inside of the seat rail. A placard indicates loading limits for each cargo net:

- for the Small Cargo Net, it is affixed on frame C13bis,
- for the Large Cargo Net, it is affixed on R.H. side upholstery panel, in the rear baggage compartment.

Maximum loads allowable in the baggage compartments depend on airplane equipment, refer to Section 6 "Weight and balance".

WARNING

ANY PARCEL OR BAGGAGE IN CABIN MUST BE STOWED BY CARGO NET AND STRAPS.

IT IS THE PILOT’S RESPONSIBILITY TO CHECK THAT ALL THE PARCELS AND BAGGAGE ARE PROPERLY SECURED.

IN CASE OF TRANSPORT OF DANGEROUS MATERIALS, RESPECT THE LAW CONCERNING TRANSPORT OF DANGEROUS MATERIALS AND ANY OTHER APPLICABLE REGULATION
USE OF CARGO NETS

Net inspection

Before each use, visually inspect net for :
- webbing condition,
- seam condition of tensioning strap,
- metallic part condition.

Installation instructions

Tensioning straps must be installed so that they make a V with a minimum angle of 40° between both strands attached on the net. The net must be properly tight.

Damage acceptance criteria

If any damage is detected, such as :
- damage or absence of hook, buckle or stud on tensioning strap : strap must mandatorily be discarded and replaced,
- webbing frayed or cut on less than 30 % of its surface : reduce maximum load by 50 %,
- seam of vertical net tensioning straps damaged on less than 30 % of its length : reduce maximum load by 50 %,
- seam of tensioning straps attached on the rails damaged on less than 30 % of its length : reduce maximum load by 50 %,
- beyond 30% damage for above-mentioned cases, defective element must mandatorily be discarded and replaced,
- netting cut or torn on less than 3.9 in (100 mm) : still serviceable, no impact,
- netting cut or torn on more than 3.9 in (100 mm) : do not carry small objects which dimensions are smaller than 4.9 x 4.9 x 4.9 in (125 x 125 x 125 mm)
1) Front passenger's seat
2) L. H. pilot's seat
3) R. H. intermediate passenger's seat (back to flight direction)
4) L. H. intermediate passenger's seat (back to flight direction)
5) R. H. rear passenger's seat
6) L. H. rear passenger's seat
7) Front seat(s) longitudinal shift control
8) Front seat(s) height control
9) Front seat(s) back-rest tilt control
10) Drawer for pilot's piddle pak (if installed)
 (front side : new bags, rear side : used bags)
11) Intermediate seat(s) back-rest tilt control
12) Rear bench seat(s) back-rest tilt control
13) Rear bench L.H. seat tilt control
14) Rear bench seat(s) adjustment control handle

NOTE

To have access to the baggage compartment, pull forwards the back-rest of rear bench L.H. seat, then pull forwards control (Item 13) to tilt L.H. seat assembly forwards. If necessary, pull forwards the back-rest of rear bench R.H. seat.

Figure 7.3.11 (1/2) - SEATS
With 6-seat accommodation
Figure 7.3.11 (2/2) - SEATS
With 6-seat accommodation
1) Front passenger's seat
2) L. H. pilot's seat
3) R. H. intermediate passenger's seat (facing flight direction)
4) L. H. intermediate passenger's seat (facing flight direction)
5) Front seat(s) longitudinal shift control
6) Front seat(s) height control
7) Front seat(s) back-rest tilt control
8) Intermediate seat(s) back-rest tilt control
Figure 7.3.11A (2/2) - SEATS
With 4-seat accommodation
Figure 7.3.12 - FRONT AND REAR SEAT BELTS (with movable straps) AND HARNESS
7.4 - FLIGHT CONTROLS

Flight controls consist of roll, pitch and rudder controls, as well as roll trim tab, pitch trim tab and rudder trim tab controls.

NOTE: During airplane parking, it is recommended to lock flight controls (see Figure 8.6.2)

ROLL (Figure 7.4.1)

The roll control is activated by an assembly of rods and cables which links control wheels with the ailerons and the spoilers.

Aileron displacement is combined with that of spoilers, located at upper surface of each wing forward of flaps.

The spoiler rises from wing upper surface profile, when the aileron is deflected upwards and remains in wing profile, when the aileron is deflected downwards.

Control wheel movement is transmitted through rods to fuselage roll lever located under the floor. The movement is then transmitted through cables to the spoiler mechanism and from the spoiler mechanism to wing roll lever which activates the aileron through a rod.

A rudder / roll combination spring-type system induces roll deflection at the time of pedals movement and vice versa.

ROLL TRIM (Figure 7.4.2)

The roll trim is controlled by a trim tab attached at trailing edge of the L.H. aileron. The trim tab is connected through two links to an electric actuator located in the aileron. A trim switch located on pedestal controls the roll trim tab maneuver.

Roll trim tab electrical circuit is protected by the "AIL TRIM" circuit breaker.
1) Pedestal assembly
2) Control wheels
3) Fuselage roll lever
4) Spoiler
5) Aileron
6) Aileron control in wing
7) Spoiler control

Figure 7.4.1 (1/2) - ROLL
1) Roll trim tab
2) Aileron
3) Adjustable rods
4) Actuator
5) Trim tab control wiring
6) Trim switch on pedestal console

Figure 7.4.2 (1/2) - LATERAL TRIM
Figure 7.4.2 (2/2) - LATERAL TRIM
ELEVATOR (Figure 7.4.3)

Both elevators are activated simultaneously by the same control. Each control surface is hinged at three points to the rear part of horizontal stabilizer.

The control wheel controls the two elevators through rods, bearings and bellcranks.

Post-MOD70-0510-27

A stick shaker is fixed on the pitch lever linked to the pilot control column lever. This is a mechanical device to vibrate the control wheel to warn the pilot in case of an imminent stall. When the data received from the AoA (angle of attack) sensor indicates an imminent stall, the AoA computer actuates both the stick shaker and the stall warning.

A spring actuator creates a "nose-down" artificial force which allows a better static stability.

Each control surface is provided with an automatic anti-tab (automaticity about 0.3), which is also used as trim tab.

PITCH TRIM (Figure 7.4.4)

The pitch trim is accomplished through the two anti-tabs located on left and right elevators.

The trim tab can be controlled electrically or manually. It is activated through cables and a chain on two screw actuators attached to the horizontal empennage.

The electrical control consists of a switch (NOSE UP - NOSE DOWN) located on the pilot control wheel and a servo-motor attached under the pedestal.

The electrical circuit for pitch trims is protected by the "AP SERVOS" circuit breaker.

Manual control wheel is installed vertically on left side of pedestal console.
1) Control wheel assembly

2) Elevators

3) Lever assembly, fuselage rear part

4) Elevator bellcrank

5) Rod with presseal connection

6) Lever assembly under floor

7) Pedestal assembly

8) Actuator

9) Stick shaker (Post-MOD70-0510-27)
Figure 7.4.3 (2/2) - ELEVATOR
1) Cables
2) Pulleys
3) Pitch trim tabs
4) Actuating rods
5) Actuator
6) Pitch trim manual control wheel
7) Electric pitch trim control
Figure 7.4.4 (2/2) - PITCH TRIM
RUDDER (Figure 7.4.5)

The rudder is hinged on three fittings attached to the vertical stabilizer rear spar.

The rudder pedals / rudder linkage is ensured through cables and a rod.

Pilot and R.H. station rudder pedal positions are adjustable at each station. The rudder pedal adjustment mechanism (for piloting comfort purposes) includes a manual control located against the external bulkhead beneath the instrument panel and a locking device on the rudder pedals. This ball locking device allows selecting six different positions.

When landing gear is down, rudder pedals are linked to nose gear steering system.

Spring system of rudder / roll combination induces aileron deflection at the time of pedal displacement and vice versa.

RUDDER TRIM (Figure 7.4.6)

A trim tab hinged at two points located at rudder trailing edge provides rudder trim.

Trim tab is linked by two rods to an electric actuator attached to rudder. It is controlled by rudder trim switch (Y L / Y R) located on pilot control wheel.

Electrical circuit of rudder trim tab is protected by “RUD TRIM” circuit breaker.
1) Roll / rudder combination bellcrank installation

2) Rudder pedals assembly

3) Control cables

4) Pulleys

5) Rudder lever assembly

6) Rod

7) Rudder

8) Nose gear steering rod

Figure 7.4.5 (1/2) - RUDDER
1) Trim switch on control wheel
2) Actuator
3) Rudder trim tab
4) Rods
5) Rudder trim control wiring
Figure 7.4.6 (2/2) - RUDDER TRIM
7.5 - LANDING GEAR

The TBM 900 is equipped with electro-hydraulically actuated, fully retractable tricycle landing gear.

Each landing gear is equipped with one wheel and an oil-air shock absorber integrated in the strut.

Main landing gears swivel on two ball joints installed on wing spars. Each landing gear retracts toward airplane centerline. The operation is accomplished by a hydraulic actuating cylinder which also provides up and down locking.

Nose gear swivels on two ball joints installed on a tubular steel mount frame. Its operation is accomplished by a hydraulic actuating cylinder which also provides up and down locking. The nose wheel is steerable. It is connected to pedals through a spring rod and is provided with a shimmy damper. In UP position, nose wheel is automatically disconnected.

Actuating cylinders have a locking device integrated at both ends. This device maintains landing gear in up or down position.

Landing gear doors, two on the nose gear, two on each main landing gear, are driven and kept in UP position by the landing gear itself.

All doors are mechanically kept in down position.

HYDRAULIC PRESSURE

Hydraulic pressure required for landing gear operation is provided:

- during normal operation, by an electro-hydraulic generator with integrated reservoir,
- during emergency extension operation by a hand pump supplied with an auxiliary reservoir.

LANDING GEAR CONTROL (Figure 7.5.1)

Landing gear control, located on "LANDING GEAR" panel at the bottom of instrument panel left part, is accomplished by an electric selector actuated through a lever ending with a knob representing a wheel. Operation is carried out by pulling on lever and by putting it in the desired "UP" (retracted) or "DN" (extended) position. This selector controls hydraulic generator.

LANDING GEAR POSITION INDICATOR (Figure 7.5.1)

Landing gear position indication is accomplished by 5 lights:

- On landing gear control panel
 - 3 green indicator lights (one per landing gear),
 - 1 red warning light “GEAR UNSAFE”
 - 1 amber light on the lever knob.
- On MFD CAS window:
 - 1 warning CAS message: "GEAR UNSAFE"

NOTE

The amber light flashes while the hydraulic pump is operating to extend or retract the landing gear.

When landing gear is correctly retracted, all lights are OFF.
Down-locked correct indication is when there are 3 green indicator lights ON, the "GEAR UNSAFE" red warning light is OFF, the "GEAR UNSAFE" CAS message is OFF and the amber caution light is OFF. All other cases mean the gear is not down-locked.

In case of doubt about "landing gear down-locked" position, an independent electrical circuit provides a countercheck capability of the indication system. Pressing the "CHECK DOWN" push-button, located on the landing gear panel, checks the down-lock of the gear making twinkle, at 16 hertz, the green indicator lights corresponding to the down-locked gear.

Pressing the "LIGHT TEST" push-button allows testing all landing gear panel lights making them flash at 1 hertz.
1) Green indicator light
2) Red warning light
3) Landing gear control selector
4) Check-down test push-button
5) Light test push-button
6) Amber light
SAFETY

Safety switch (landing gear retraction)

A safety switch installed on each main landing gear prevents, by detecting shock strut compression, landing gear accidental retraction when airplane is on ground.

Pre-MOD70-0407-00

Landing gear horn

Landing gear horn is controlled by throttle and / or flaps. It sounds (continuous high-pitched sound) when:

- throttle is on IDLE position and landing gear is not down-locked,
- flaps are beyond "TO" position (Takeoff) and landing gear is not down-locked.

NOTE

If one of above conditions exists and airplane is in stall configuration, the audio-warning signal becomes alternated (high-pitched sound / low-pitched sound).

Post-MOD70-0407-00 and Pre-MOD70-0510-27

Landing gear aural warning

"Landing gear / Landing gear" aural warning alert sounds when:

- throttle is on IDLE position and landing gear is not down-locked,
- flaps are beyond "TO" position (Takeoff) and landing gear is not down-locked.

NOTE

If one of above conditions exists and airplane is in stall configuration, the “Stall/landing gear” aural warning alert sounds.

Post-MOD70-0407-00 and Post-MOD70-0510-27

Landing gear aural warning

"Landing gear / Landing gear" aural warning alert sounds when:

- throttle is on IDLE position and landing gear is not down-locked,
- flaps are beyond "TO" position (Takeoff) and landing gear is not down-locked.

NOTE

If one of above conditions exists and airplane is in stall configuration, the “Stall/landing gear” aural warning alert sounds and the control wheel vibrates.

All

Emergency landing gear extension control (Figure 7.5.2)

Emergency landing gear extension control consists of a hand pump and a by-pass selector.

This control is accessible by removing the floor panel located aft of the pedestal.

After bypass selector closing, hand pump operation sends hydraulic fluid directly into landing gear actuators; landing gear full extension and locking requires up to 110 cycles.
By-pass selector

Emergency pump handle

Figure 7.5.2 - EMERGENCY LANDING GEAR EXTENSION CONTROL
GROUND MANEUVERS

Nose gear steering control (Figures 7.5.3 and 7.5.4)

Nose gear steering control is combined with rudder pedals and is fitted with a shimmy damper. When one of rudder pedals is fully pushed, nose wheel swivels about 20°. Steering may be increased up to 28° by applying differential braking to each side.

Airplane may be towed by attaching a steering or towing bar on nose gear (Refer to Chapter 8.6 for operation). In that case nose wheel steering angle is limited to ± 28°.

Minimum turn diameter

Minimum turn diameter, Figure 7.5.4, is obtained by using nose gear steering and differential braking. Since tight turns lead to untimely tire wear, turns should be made using the largest possible turning radius.
Figure 7.5.3 - MINIMUM TURN DIAMETER
(Full rudder pedals travel without using differential braking)
Figure 7.5.4 - MINIMUM TURN DIAMETER
(Full rudder pedals travel by using differential braking)
BRAKE SYSTEM (Figure 7.5.5)

Airplane is equipped with a hydraulically actuated disc braking system installed on the main landing gear wheels.

Each toe brake at L.H. and R.H. stations is equipped with a master cylinder which sends hydraulic pressure to the corresponding disc brake: L.H. pedals L.H. brake; R.H. pedals R.H. brake. This differential braking helps maneuvering during taxiing.

PARKING BRAKE (Figures 7.5.5 and 7.5.6)

Parking brake control consists of a control knob located on pilot's side lower instrument panel and a valve which regulates brake pressure.

To apply parking brake, press on toe brake of rudder pedals and position control knob on ON.

"PARK BRAKE" CAS message lights on when control knob is positioned on ON.

NOTE

Operating the parking brake knob without applying pressure on rudder pedals does not cause the wheels to be braked.

To release the parking brake, turn the selector to the left in order to set the index upwards to OFF position and check at the same time that the "PARK BRAKE" CAS message disappears.
1) Reservoir
2) Vent
3) R.H. station master cylinders
4) Parking brake control knob
5) Parking brake valve
6) Drain
7) Pilot's station master cylinders
8) L.H. brake assembly
9) R.H. brake assembly

Figure 7.5.5 (1/2) - BRAKE SYSTEM
Figure 7.5.5 (2/2) - BRAKE SYSTEM
Figure 7.5.6 - PARKING BRAKE
7.6 - POWERPLANT

TURBOPROP ENGINE OPERATION (Figure 7.6.1)

The PRATT & WHITNEY CANADA turboprop engine (PT6A-66D model) is a free turbine engine rated at 850 SHP and developing a thermodynamic power of 1825 ESHP.

Intake air enters engine through an annular casing and is then ducted toward compressor. The latter consists of four axial stages and one single centrifugal stage assembly to form a whole assembly. Compressed air and fuel are mixed and sprayed into combustion chamber by fuel nozzles. The mixture is first ignited by two spark igniter plugs, then combustion continues as a result of air-fuel mixture flow. Gases resulting from combustion expand through a series of turbines. The first one (gas generator turbine) drives compressor assembly and accessories, the two other ones (power turbines), independent from the first one, drive propeller shaft through a reduction gear box. Hot gases are evacuated through two exhaust stubs located laterally on both sides forward of engine cowling.

All engine driven accessories, except power turbine tachometer, propeller governor and overspeed governor are installed on accessory gearbox located rearward of engine.
1) Propeller governor
2) Exhaust stub
3) Axial compressors
4) Accessory gearbox
5) FCU Fuel control unit
6) Oil to fuel heater
7) Input coupling shaft
8) Air intake
9) Centrifugal impeller
10) Combustion chamber
11) Compressor turbine
12) Power turbine 1st stage
13) Power turbine 2nd stage
14) Power turbine shaft

Figure 7.6.1 (1/2) - POWERPLANT
ENGINE CONTROLS (LEVERS) (Figure 7.6.2)

Engine operation requires use of two levers located on pedestal console in cabin:

- Throttle (Item 1), and its detent for reverse (Item 4)
- "MAN OVRD" emergency fuel regulation lever (Item 3).

NOTE

Thumbwheel for lever friction (Item 2)
Throttle (Figure 7.6.3)

The throttle has two operating modes: Thrust mode and Condition mode.

- **Thrust mode**
 The throttle is in vertical position. It modulates engine power from full reverse to max power.
 - Engine running, the throttle rearward displacement, past the lock using the detent, allows to control:
 - the engine power in the Beta range from idle to maximum reverse,
 - the Beta valve to select the propeller pitch in reverse.
 Return to idle position is accomplished by pushing the throttle forward.

CAUTION

DO NOT MOVE THE COCKPIT THROTTLE INTO THE PROPELLER REVERSE POSITION OR DAMAGE TO THE LINKAGE WILL RESULT. REVERSE MAY ONLY BE SELECTED WITH ENGINE RUNNING AND PROPELLER TURNING

When engine is shutdown, there is no oil pressure in the propeller and the feathering spring locks the Beta ring and the propeller reversing interconnect linkage on the engine.
All rearward effort on the throttle, past the idle stop, may damage or break the flexible control cable.

- **Condition mode**
 The throttle is moved to the condition side by lifting the knob.
 As long as the throttle is in condition mode, the propeller is in feather position. The throttle can be positioned to CUT OFF, idle LO / IDLE or idle HI / IDLE.
 Change from idle "HI / IDLE" to "LO / IDLE" position requires moving the throttle rearwards.
 Change from idle "LO / IDLE" to CUT OFF position is only possible after having overridden the idle gate. To override idle gate, raise the throttle and move it rearwards.

Figure 7.6.3 - THROTTLE
"MAN OVRD” emergency fuel regulation lever (Figure 7.6.2)

Emergency fuel regulation lever (3) is normally in OFF position. In case of FCU or throttle failure, it allows setting engine power manually.

To quit OFF position, move the lever forward overriding the indexation.

NOTE
The power available if the throttle fails will be limited by the position of the lever.

Lever friction (Figure 7.6.2)

A thumbwheel (Item 2) located on right side of pedestal console increases friction to avoid control slip of the throttle after setting.

ENGINE INSTRUMENTS

Engine indicating consists of:
- engine torque expressed in percent (%),
- propeller speed in RPM,
- generator rotation speed expressed in percent (%),
- ITT expressed in °C,
- oil pressure expressed in PSI.
- oil temperature expressed in °C.

NOTE
Engine monitoring is ensured by CAS messages: "ITT" and "OIL PRESS". Refer to the "GARMIN" G1000 Cockpit Reference Guide for further details.

ENGINE LUBRICATION

Engine oil is in a tank incorporated into the powerplant. It ensures lubrication and engine cooling. A cooler located on left side in engine compartment maintains oil temperature within limits. Oil flow into the cooler is metered by a thermostatic valve. Engine oil also supplies propeller governor and engine torquemeter.

A chip detection system enables the monitoring of engine oil system. The system includes one chip detector installed on propeller reduction gear box and a second chip detector installed on engine accessory gear box. In case of chip detection an amber CAS message "CHIP" on G1000 system screen goes on.

Lubrication system content, cooler included, is 12.7 quarts (12 litres). A graduated dipstick allows checking oil quantity in system. A visual oil sight glass, located on engine left side, allows a rapid checking of oil level.

NOTE
For checking and oil filling-up, refer to Section 8.
ENGINE STARTING (Figure 7.6.4)

Ignition function

Ignition system consists of an ignition unit and two spark igniter plugs in powerplant, a three-position "IGNITION" switch OFF - AUTO - ON located on "ENGINE START" panel at upper panel.

Ignition unit supplies, from 28-Volt source, high voltage current necessary to spark igniter plugs. When "IGNITION" switch is positioned to AUTO, ignition unit supply is ensured during the engine start. "IGNITION" CAS message lights on as long as ignition unit is supplied.

Starter function

Starting system consists of "STARTER" switch located on "ENGINE START" panel, starter generator and ignition circuit (Refer to Paragraph "Ignition function").

Starting procedure is semi-automatic. Setting "STARTER" switch to ON connects the starter generator which drives powerplant. "STARTER" CAS message lights on indicating that the starter generator is operating.

Starter operation is stopped automatically by the Electrical Power System once a sufficient starter-generator speed is reached or after 60 s. The pilot has the capability to interrupt the start process anytime by setting momentarily the "STARTER" switch to the "ABORT" position.

WARNING

POWERPLANT STARTING MUST BE PERFORMED BY QUALIFIED PERSONNEL AND FOLLOWING PROCEDURES AND PARAMETERS DESCRIBED IN SECTION 4 "NORMAL PROCEDURES"
Figure 7.6.4 - ENGINE STARTING
ENGINE AIR INLET

Engine air inlet is located at front lower section of engine cowling. Air inlet port is protected against icing by a hot air flux provided by engine. Air is driven throughout a duct in engine casing before entering engine through a protective screen. An inertial separator system inside the air duct protects the engine from ingesting dense particles (water, ice, fine gravels, sand).

Separator consists of two movable vanes. During normal operation, air is conducted directly towards engine air inlet. To separate particles suspended in the air, vanes are positioned to force engine induction air to execute a sharp turn: under the effect of centrifugal force denser particles separate from the air and are discharged overboard through two apertures located under engine cowling.

Operation of inertial separator vanes is electrically controlled by "INERT SEP" inverter located on "DE-ICE SYSTEM" panel. When inverter is set to ON, an electric actuator activates vanes; "INERT SEP ON" CAS message lights on when vanes have reached their maximum deflection and remains visible as long as switch remains ON. Full deflection takes about 30 seconds.

EXHAUST SYSTEM

Exhaust gases are evacuated through exhaust stubs located on sides of engine cowlings.

ENGINE ACCESSORIES

All engine driven accessories [except power turbine tacho-generator (Np), propeller governor and overspeed governor] are installed on accessory gearbox located rearwards of engine.

Oil pump

Oil pump is a self-controlled gear pump located at the bottom of oil casing.

Fuel high pressure pump (HP)

Fuel high pressure pump is installed on accessory gearbox. It supplies fuel nozzles, flow being controlled by fuel regulator (FCU). Fuel provided by engine driven main pump (mechanical) enters high pressure pump through a filter, then it is discharged under pressure into fuel regulator (FCU) through a second filter. In case of contamination of this second filter, a by-pass valve allows fuel to go directly from high pressure pump to the regulator.

Compressor turbine tacho-generator (Ng)

Compressor turbine tacho-generator (Ng) is attached on accessory gearbox. It supplies a voltage which is transmitted to the G1000 system for display on the MFD (under normal display conditions).

Power turbine tacho-generator (Np)

Power turbine tacho-generator is attached on the right side of the reduction gearbox. It supplies a voltage which is transmitted to the G1000 system for display on the MFD (under normal display conditions).

Torque transmitter

Torque transmitter is attached on the torque limiter, it measures torque produced by the power turbine by comparing oil pressures (reduction gear and power turbine) and converts pressure difference into a voltage. This voltage is transmitted to the G1000 system for display on the MFD (under normal display conditions).
Propeller overspeed limiter

Propeller overspeed limiter is installed on left side of the reduction gear box. It prevents a propeller overspeed in case of main propeller governor failure.

Propeller overspeed limiter is equipped with a solenoïd which makes feather the propeller when the throttle is in condition mode.

Torque limiter

Torque limiter is located on right side of the reduction gear box. It is rated to limit engine torque to 109-110 % at sea level.

PROPELLER

Airplane is equipped with a composite five-bladed, constant-speed and full-feathering propeller.

Regulation

Propeller governor located on engine maintains rotation speed to the nominal value of 2000 RPM. Regulation is obtained through propeller blade pitch variation: counterweights drive propeller blades toward high pitch (low RPM) whereas oil pressure delivered by governor drives back blades toward low pitch (high RPM).

Propeller governor allows feathering either by voluntary pilot action via throttle (Condition mode) or automatically in case of engine failure or shutdown.

Propeller reverse pitch allows reduced taxiing speed or landing roll. Change from idle to reverse position is performed with throttle (Thrust mode) (Refer to Paragraph “ENGINE CONTROLS”).
7.7 - FUEL SYSTEM (Figure 7.7.1)

The fuel system comprises fuel tanks, fuel unit, selectors (manual and automatic), electric and mechanical boost pumps, engine fuel system, gaging installation, monitoring installation and drains.

FUEL TANKS

Fuel tanks are formed by sealed casings in each wing. Each fuel tank comprises a filling port located at the end of wing upper surface, two drain valves located at the lower surface (one near main landing gear, at trailing edge side, the second one near wing root side, at leading edge), a vent valve located on the lower surface, a suction strainer and three level gages.

FUEL UNIT

The fuel unit combines shut-off valve, tank selector and filter functions. It is connected to the manual selector through a mechanical control. The fuel filter is located in a bowl at the lower part of the unit. It is fitted with a by-pass valve, a clogging indicator and a drain valve.

TANK MANUAL SELECTOR (Figure 7.7.2)

The tank manual selector is located on the pedestal rear face. It allows selecting the tank (R or L) to be used and setting unit to OFF. To change from L position to OFF position, turn the selector clockwise (L → R → OFF) ; change from R position to OFF position requires a voluntary action from the pilot (pull and turn). The “pull and turn” maneuver prevents involuntary operation. When the unit is set to OFF, the “FUEL OFF” CAS message remains visible.
1) Flow divider
2) Flowmeter
3) Collector tank
4) Fuel regulator
5) High pressure pump (HP)
6) Oil to fuel heater
7) Low pressure switch
8) Fuel jet
9) Main mechanical boost pump
10) Electric boost pump
11) Fuel filter
12) Filter clogging by-pass valve
13) Filter clogging indicator
14) Fuel unit
15) Filter drain
16) Fuel return pipe
17) Filling port
18) NACA scoop
19) Tank vent valve
20) Fuel level gages
21) Tank drain valve
22) Check-valve
23) Low level detector
24) Suction strainer
25) Fuel amplifier
26) Sequencer
AUTOMATIC TANK SELECTOR (Figures 7.7.2 and 7.7.3)

Automatic tank selection allows, without pilot’s intervention, feeding the engine from one tank or the other in predetermined sequences. These sequences depend on airplane configuration (ground, in-flight, fuel low level CAS messages appearance).

Automatic tank selection system comprises an electronic sequencer, an actuator attached on the fuel unit, “FUEL SEL” two-position selector (AUTO, MAN) and “SHIFT” push-knob located on “FUEL” panel.

To operate the automatic selector, set “FUEL SEL” switch to AUTO position and manual selector to R or L.

Selector operation

When the system is operated, ”AUTO SEL” CAS message disappears ; the sequencer chooses a tank (R or L) and through the actuator, positions the fuel unit selector on the selected tank. The sequencer controls the time during which the selected tank will operate. This time varies, depending on airplane conditions.

Airplane on ground : tank is changed every minute and 15 seconds.

Airplane in flight : tank is changed every five minutes, as long as a fuel low level ”FUEL LOW L” or ”FUEL LOW R” CAS message does not appear. When the first low level CAS message lights on, the sequencer immediately selects the other tank. The selected tank will operate until the second low level CAS message lights on. When both low level ”FUEL LOW L-R” CAS messages are visible, the sequencer changes tanks every minute and 15 seconds.

NOTE

The manual selector is driven by the fuel unit and is positioned on R or L mark corresponding to the tank selected by the sequencer. Therefore, the pilot continuously knows the tank which is operating.

Test for system proper operation

“SHIFT” push-knob allows the pilot to test system proper operation anytime.

When the system operates, the fuel tank is changed when “SHIFT” push-knob is pressed once.

If airplane is on ground or in flight, low level CAS messages not visible, the new selected tank remains operating and a new sequence is initiated.

NOTE

This procedure allows the pilot to preferably choose the tank from which he wants to take fuel.

In all cases, proper system operation is indicated by rotation of the manual selector.

Setting ”FUEL SEL” switch to MAN position or setting manual selector to OFF position leads to system de-activating and appearance of ”AUTO SEL” CAS message. ”AUTO SEL” CAS message also lights on when order given by the sequencer has not been executed after 12 seconds.

ELECTRIC BOOST PUMP (”AUX BP”)

Electric boost pump is an auxiliary pump located between fuel unit and main mechanical boost pump. It is controlled through ”AUX BP” switch located on “FUEL” panel. This switch allows stopping or selecting the two pump operating modes :

- when set to ON, electric boost pump operates permanently
- when set to AUTO, electric boost pump is automatically operated in case of fuel pressure drop at the mechanical boost pump outlet.
Figure 7.7.2 - MANUAL SELECTOR OF FUEL TANKS
1) Electric boost pump switch
2) Fuel selector
3) "SHIFT" push-knob

Figure 7.7.3 - FUEL CONTROL PANEL
MAIN MECHANICAL BOOST PUMP
The mechanical boost pump is attached to accessory gearbox and supplies fuel necessary for engine operation.

ENGINE FUEL SYSTEM
The engine fuel system consists of a fuel regulator, pumps, filters, a fuel divider and fuel nozzles. The system provides the fuel flow necessary to satisfy the engine power and rating needs.

The fuel coming from airplane system goes through a heater which is automatically controlled by a thermostatic valve.

FUEL GAGING INSTALLATION
Fuel gaging installation is a capacitive type. Fuel data are displayed in us gallons. Three fuel level gages are installed in each tank. The wing root side fuel level gage is equipped with a low level detector which leads to fuel low level CAS messages appearance, when usable fuel quantity remaining in the concerned fuel tank is under about 9 USG (34 Litres).

FUEL SYSTEM MONITORING
Fuel system monitoring is ensured by CAS messages:

- "FUEL OFF" : Fuel tank selector set to OFF
- "FUEL PRESS" : Fuel pressure at mechanic pump outlet under 10 psi (± 2 psi)
- "AUX BOOST PMP ON" : Electric fuel pump running (manual or automatic mode)
- "FUEL LOW L-R" : Fuel quantity less than or equal to 9 USG (34 Litres) of usable fuel in specified tank
- "AUTO SEL" : Sequencer inactive or operating defect
- "FUEL IMBALANCE" : Fuel tanks imbalanced by more than 15 USG (57 Litres) for more than 30 seconds
* Only affected side (L, R or L-R) displayed in CAS message

FUEL SYSTEM DRAINING AND CLOGGING INDICATOR (Figure 7.7.4)
The fuel system comprises five drain points, a drain on the filter bowl, two drain valves on each tank, located on wing lower surface, one at wing root and the other past main landing gear well.

These drains allow draining water or sediments contained in fuel.

Fuel tank drain valves are provided with a slot which allows opening them with a screwdriver.

Fuel system draining shall be performed prior to the first flight of the day and after each tank refueling, using a sampler to pick off fuel at the two drain valves of each tank and at the filter vent valve.

A red filter bypass flag on the fuel unit and visible from outside, when an inspection door located on L.H. side under front baggage compartment is open, indicates filter clogging. A push-button, adjacent to the inspection door, controls the illumination of a light provided to improve visibility of the clogging indicator. This indicator shall be observed during preflight inspection.

NOTE

When filter gets clogged in flight, the filter is by-passed in order not to deprive power plant from fuel. The power plant is then supplied with non-filtered fuel.
1) Lighting switch
2) Mirror door
3) Clogging indicator
4) Central access door
5) Filter drain
6) Tank drain
7) Drain bowl

Figure 7.7.4 - FUEL SYSTEM DRAINING POINTS AND CLOGGING INDICATOR
7.8 - ELECTRICAL SYSTEM (Figures 7.8.1, 7.8.2 and 7.8.5)

The airplane is fitted with a 28-Volt direct-current electrical system.

Electrical supply is obtained from various power supplies:
- a starter generator
- a stand-by generator
- a battery
- a ground power unit, via a plug, located on L.H. side.

Connection relays, main bus bar, generator regulation and protection systems and control logic systems are grouped in Electrical Power System box located in front baggage compartment upper section.

Electrical system indicating is displayed on the GDU 1500 MFD and monitoring is ensured by CAS messages.

On ground, when the crash lever is positioned in the UP position ("SOURCE" selector in the "OFF" position), the battery supplies the electrical power system through the "BATT BUS". A Power Up Built In Test (P-BIT) of the EPS internal functions is performed to verify the operating status. In case of failure detection, a white message "EPS SERVICE REQUIRED" appears in the message window on the PFD.

STARTER GENERATOR

The starter generator is the main electrical power source. It only performs its generator function when starting sequence is completed.

Generator connection with main bus bar is controlled through "GENERATOR" selector set to MAIN position. It will be effective when connection conditions are met. Generator connection is indicated by "MAIN GEN" CAS message disappearance.

NOTE

STARTER GENERATOR will not supply airplane if source switch is on GPU.
On ground, generator load should be maintained below 200 amps.

STAND-BY GENERATOR

Stand-by generator supplies a 28-volt stand-by direct current which may be used in case of main generator failure.

Generator connection with main bus bar is controlled through "GENERATOR" selector set to ST-BY, it will be effective when connection conditions are met.

NOTE

STAND-BY GENERATOR will not supply airplane if source switch is on GPU.
In order to prevent possible errors during flight, access to ST-BY position requires a double action from the pilot (pull to unlock). On ground, avoid using stand-by generator at full load.

BATTERY

The battery provides the power required for starting when no ground power unit is available and is a power supply source when engine driven generators are stopped.

The battery is always connected to "BATT BUS" bus bar except when crash lever is pulled down.

Battery connection to main bus bar is controlled through "SOURCE" selector set to BATT position.

"BAT OFF" CAS message lights on when battery is isolated from the main bus and when main bus is supplied through another source.
GROUND POWER RECEPTACLE

The ground power receptacle allows connection to a ground power unit.

Ground power receptacle connection with main bus bar is controlled through "SOURCE" selector when set to GPU position, it will be effective when connection conditions are met.

When "SOURCE" selector is set to GPU position, the battery and ground power unit are connected simultaneously on main bus bar.

Ground power receptacle door opening is indicated by "GPU DOOR" CAS message appearance.

NOTE

Before connecting a GPU to the airplane, ensure that the voltage of the GPU is regulated between 27.5 Volts and 28.5 Volts.

The amperage output needs to be consistent with the airplane placard in front of compartment door: GPU shall provide a current limiting function, and current limit shall be set per placard.

Use of a ground power source with voltage in excess of 28.5 volts or current exceeding current limit indicated on placard may damage the airplane electrical system.

Do not use batteries pack as GPU sources.

DISTRIBUTION

Airplane electrical systems are connected to "BUS" bars and protected by "pull-off" type circuit breakers located on R.H. side panel (See Figure 7.8.4). In case of overload of a system, the circuit breaker triggers and switches the system off.

If a circuit breaker corresponding to a non essential system trips, do not reset in flight.

If a circuit breaker corresponding to an essential system trips:

- allow it to cool for about three minutes, then the circuit breaker may be reengaged (pressed down)
- if the circuit breaker trips again, do not reset.

"BUS 1", "BUS 2", "BUS 3" and "BUS 4" bus bars are directly connected to main bus bar and protected by fuses located in electrical power system.

The "ESS BUS 1" and "ESS BUS 2" essential bus bars are connected to main bus bar through "ESS BUS TIE" switch set to NORM position. "ESS BUS TIE" switch is attached to circuit breaker panel; NORM position is protected and locked by a cover. Common power supply to both essential bus bars is protected by a fuse (located in EPS box) and a circuit breaker (located in the front cargo compartment on C2 frame right side), each bar being individually protected by a circuit breaker.

"BATT BUS" bar is directly connected to the battery; it is protected by a fuse (located in EPS box) and a circuit breaker (located in the front cargo compartment on C2 frame left side).

NOTE

The electrical distribution of bus bars is described in Figure 7.8.3.
EMERGENCY USE

With both generators de-activated in flight, it is still possible to use battery power to supply all airplane systems maintaining "SOURCE" selector on "BATT" position.

In order to save battery power, it is possible to shed the charges which are not essential for flight safety, for that set:
- "ESS BUS TIE" switch to EMER position

In this configuration, only "ESS BUS 1", "ESS BUS 2" and "BATT BUS" bars are supplied.

NOTE

Supplying “BUS 1”, “BUS 2”, “BUS 3” and “BUS 4” bars is always possible, resetting temporarily "ESS BUS TIE" switch to NORM position.
Figure 7.8.1 - ELECTRICAL DIAGRAM
<table>
<thead>
<tr>
<th>CRASH LEVER</th>
<th>SOURCE</th>
<th>GENERATOR</th>
<th>ESS BUS TIE</th>
<th>BAT BUS</th>
<th>ESS BUS 1</th>
<th>ESS BUS 2</th>
<th>BUS 1 TO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP</td>
<td>BAT</td>
<td>OFF</td>
<td>NORM</td>
<td>Battery</td>
<td>Battery</td>
<td>Battery</td>
<td>Battery</td>
</tr>
<tr>
<td>UP</td>
<td>BAT</td>
<td>MAIN</td>
<td>NORM</td>
<td>Battery & MAIN</td>
<td>Battery & MAIN</td>
<td>Battery & MAIN</td>
<td>Battery & MAIN</td>
</tr>
<tr>
<td>UP</td>
<td>BAT</td>
<td>ST/BY</td>
<td>NORM</td>
<td>Battery & ST/BY</td>
<td>Battery & ST/BY</td>
<td>Battery & ST/BY</td>
<td>Battery & ST/BY</td>
</tr>
<tr>
<td>UP</td>
<td>OFF</td>
<td>MAIN</td>
<td>NORM</td>
<td>MAIN</td>
<td>MAIN</td>
<td>MAIN</td>
<td>MAIN</td>
</tr>
<tr>
<td>UP</td>
<td>OFF</td>
<td>ST/BY</td>
<td>NORM</td>
<td>ST/BY</td>
<td>ST/BY</td>
<td>ST/BY</td>
<td>ST/BY</td>
</tr>
<tr>
<td>UP</td>
<td>BAT</td>
<td>OFF</td>
<td>EMER</td>
<td>Battery</td>
<td>Battery</td>
<td>Battery</td>
<td>None</td>
</tr>
</tbody>
</table>

(*) **NOTE**: In that case, power is done by MAIN or ST/BY and battery is used as a floated battery.

Figure 7.8.2 - BUS BARS SUPPLY CONFIGURATIONS
Figure 7.8.3 (1/5) - ELECTRICAL DISTRIBUTION OF BUS BARS
Figure 7.8.3 (2/5) - ELECTRICAL DISTRIBUTION OF BUS BARS

Bus 1
- AP CTRL
- PFD 2
- COM 2
- GPS/NAV 2
- ADC 2
- XPD 2 (if installed)
- Airframe DE ICE
- INERT DE ICE
- R WS DE ICE
- PITOT L

Bus 2
- PROP DE ICE
- ICE LIGHT
- FLAPS SIG
- CAB BLEED
- AIR COND
- CABIN DOORS
- NAV RECOG LIGHT
- MFD
- CABIN

Bus 3
- OXYGEN PRESS
- L WS DE ICE
- PITOT R & STALL
- AoA
- RADIO ALTI (if installed)
- DME (if installed)
- FUEL SEL

Bus 3
- AUX BP
- ADF (if installed)
- TAXI LIGHT
- LH LDG LIGHT
- RH LDG LIGHT
- PULSE SYST (if installed)
Figure 7.8.3 (3/5) - ELECTRICAL DISTRIBUTION OF BUS BARS

NOTE: CIRCUIT BREAKERS ON C13 BIS FRAME
Figure 7.8.3 (4/5) - ELECTRICAL DISTRIBUTION OF BUS BARS
Figure 7.8.3 (5/5) - ELECTRICAL DISTRIBUTION OF BUS BARS
Up to S/ N 1105

<table>
<thead>
<tr>
<th>Description</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS BUS TIE</td>
<td>Essential bus NORM & EMER switch</td>
</tr>
<tr>
<td>BUS 1</td>
<td></td>
</tr>
<tr>
<td>AP SERVOS</td>
<td>Autopilot servo protection</td>
</tr>
<tr>
<td>FLAPS</td>
<td>Flaps protection</td>
</tr>
<tr>
<td>AIL TRIM</td>
<td>Aileron trim protection</td>
</tr>
<tr>
<td>RUD TRIM</td>
<td>Pitch trim protection</td>
</tr>
<tr>
<td>BUS 2</td>
<td></td>
</tr>
<tr>
<td>LDG GEAR</td>
<td>Landing gear general supply protection</td>
</tr>
<tr>
<td>ESS BUS 1</td>
<td>Essential bus 1 circuit protection</td>
</tr>
<tr>
<td>PFD 1</td>
<td>Primary Flight Display 1 protection</td>
</tr>
<tr>
<td>COM 1</td>
<td>VHF 1 protection</td>
</tr>
<tr>
<td>GPS/NAV 1</td>
<td>GPS NAV 1 protection</td>
</tr>
<tr>
<td>ADC 1</td>
<td>Air Data Computer 1 protection</td>
</tr>
<tr>
<td>ENGINE</td>
<td>Powerplant cont. protec. : Oil temp. & pres., torque, propeller</td>
</tr>
<tr>
<td>AIRFRAME 1</td>
<td>Powerplant cont. protection : Ng, flowmeter & ITT</td>
</tr>
<tr>
<td>ESS BUS 2</td>
<td>Essential bus 2 circuit protection</td>
</tr>
<tr>
<td>FUEL GAGE 1</td>
<td>L.H. fuel gage protection</td>
</tr>
<tr>
<td>FUEL GAGE 2</td>
<td>R.H fuel gage protection</td>
</tr>
</tbody>
</table>

(Cont'd on next page)
<table>
<thead>
<tr>
<th>BUS 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPELLER DE ICE</td>
</tr>
<tr>
<td>ICE LIGHT</td>
</tr>
<tr>
<td>FLAPS SIG</td>
</tr>
<tr>
<td>CAB BLEED</td>
</tr>
<tr>
<td>AIR COND</td>
</tr>
<tr>
<td>CABIN DOORS</td>
</tr>
<tr>
<td>NAV/RECOG LIGHT</td>
</tr>
<tr>
<td>PLUGS</td>
</tr>
<tr>
<td>PLUGS</td>
</tr>
<tr>
<td>MFD</td>
</tr>
<tr>
<td>CABIN</td>
</tr>
<tr>
<td>PANEL LIGHT</td>
</tr>
<tr>
<td>TAS</td>
</tr>
<tr>
<td>WXR</td>
</tr>
<tr>
<td>DATA LINK</td>
</tr>
<tr>
<td>LDG CONT</td>
</tr>
<tr>
<td>SATCOM</td>
</tr>
<tr>
<td>SATCOM HEATER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUS 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXYGEN PRESS</td>
</tr>
<tr>
<td>L WS DE ICE</td>
</tr>
<tr>
<td>PITOT R & STALL</td>
</tr>
<tr>
<td>FUEL SEL</td>
</tr>
<tr>
<td>AUX BP</td>
</tr>
<tr>
<td>XPDR 2</td>
</tr>
<tr>
<td>DME</td>
</tr>
<tr>
<td>RADIO ALTI</td>
</tr>
<tr>
<td>ADF</td>
</tr>
<tr>
<td>PULSE SYST</td>
</tr>
<tr>
<td>LH LDG LIGHT</td>
</tr>
<tr>
<td>RH LDG LIGHT</td>
</tr>
<tr>
<td>TAXI LIGHT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BATT BUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMER LIGHT</td>
</tr>
<tr>
<td>GND CLR</td>
</tr>
<tr>
<td>ACCESS</td>
</tr>
<tr>
<td>EPS</td>
</tr>
</tbody>
</table>
Figure 7.8.4 (3/6) - CIRCUIT BREAKER PANEL (Typical arrangement)
| ESS BUS TIE | Essential bus NORM & EMER switch |
| BUS 1 AP SERVOS | Autopilot servo protection |
| FLAPS | Flaps protection |
| AIL TRIM | Aileron trim protection |
| RUD TRIM | Pitch trim protection |

| BUS 2 LDG GEAR | Landing gear general supply protection |

ESS BUS 1	Essential bus 1 circuit protection
PFD 1	Primary Flight Display 1 protection
COM 1	VHF 1 protection
GPS/NAV 1	GPS NAV 1 protection
ADC 1	Air Data Computer 1 protection
ENGINE	Powerplant cont. protec. : Oil temp. & pres., torque, propeller
AIRFRAME 1	Powerplant cont. protection : Ng, flowmeter & ITT
AIRFRAME 2	
FUEL GAGE 1	L.H. fuel gage protection
FUEL GAGE 2	R.H fuel gage protection

ESS BUS 2	Essential bus 2 circuit protection
PASS MASKS	Passengers' oxygen masks protection
STBY INSTR	Electronic Standby Indicator (ESI-2000) protection
KEYPAD	Keypad protection
AUDIO 1	Audio control panel 1 protection
AHRS 1	Attitude and Heading Reference System 1 protection
XPDR 1	Transponder 1 protection
LDG SIG	Landing gear indicating system protection
NP/NG	Tachometer signal conditioner protection
FEATHER	Propeller feather protection
TORQUE	Torque control protection
IGNITION	Powerplant ignition protection

BUS 1	Flight controller protection
PFD 2	Primary Flight Display 2 protection
COM 2	VHF 2 & radio protection
GPS/NAV 2	GPS NAV 2 protection
ADC 2	Air Data Computer 2 protection
BLUETOOTH	Flight stream (FS 210) protection
XPDR 2	Transponder 2 (if installed) protection
AIRFRAME DE ICE	Empennage and wing leading edges deicing
INERT DE ICE	Inertial separator protection
R WS DE ICE	R.H. windshield deicing protection
PITOT L	Pitot L heating protection
AUDIO 2	Audio control panel 2 protection
AHRS 2	Attitude and Heading Reference System 2 protection
STORM	Stormscope protection (if installed)
STROBE LIGHT	Strobe lights protection
SHAKER	Stick shaker protection (if installed)

(Cont'd on next page)
<table>
<thead>
<tr>
<th>BUS 2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROP DE ICE</td>
<td>Propeller deicing protection</td>
</tr>
<tr>
<td>ICE LIGHT</td>
<td>L.H. wing leading edge lighting and lighting test protection</td>
</tr>
<tr>
<td>FLAPS SIG</td>
<td>Trim and flaps regulator protection</td>
</tr>
<tr>
<td>CAB BLEED</td>
<td>Cabin pressurization protection</td>
</tr>
<tr>
<td>AIR COND</td>
<td>Cabin ventilation and vapor cycle system protection</td>
</tr>
<tr>
<td>CABIN DOORS</td>
<td>Cabin doors opening protection</td>
</tr>
<tr>
<td>NAV/RECOG LIGHT</td>
<td>Navigation and recognition lights protection</td>
</tr>
<tr>
<td>PLUGS</td>
<td>12 VDC plugs protection</td>
</tr>
<tr>
<td>PLUGS</td>
<td>USB plugs protection</td>
</tr>
<tr>
<td>MFD</td>
<td>Multifunction display protection</td>
</tr>
<tr>
<td>CABIN</td>
<td>Passenger's reading lamps protection</td>
</tr>
<tr>
<td>PANEL LIGHT</td>
<td>Instruments lighting protection</td>
</tr>
<tr>
<td>TAS</td>
<td>TAS (if installed) protection</td>
</tr>
<tr>
<td>WXR</td>
<td>Weather radar protection</td>
</tr>
<tr>
<td>DATA LINK</td>
<td>Data Link (if installed) protection</td>
</tr>
<tr>
<td>LDG CONT</td>
<td>Landing gear control protection</td>
</tr>
<tr>
<td>SATCOM</td>
<td>SATCOM protection (if installed)</td>
</tr>
<tr>
<td>SATCOM HEATER</td>
<td>SATCOM heater protection (if installed)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUS 3</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXYGEN PRESS</td>
<td>Oxygen/Pressure indication protection</td>
</tr>
<tr>
<td>L WS DE ICE</td>
<td>L.H. windshield deicing protection</td>
</tr>
<tr>
<td>PITOT R & STALL</td>
<td>Pitot R and stall warning heating protection</td>
</tr>
<tr>
<td>AoA</td>
<td>Angle of attack (if installed) protection</td>
</tr>
<tr>
<td>RADIO ALTI</td>
<td>RADIO ALTI (if installed) protection</td>
</tr>
<tr>
<td>DME</td>
<td>DME protection (if installed)</td>
</tr>
<tr>
<td>FUEL SEL</td>
<td>Tank selector timer protection</td>
</tr>
<tr>
<td>AUX BP</td>
<td>Electrical fuel pump protection</td>
</tr>
<tr>
<td>ADF</td>
<td>ADF protection (if installed)</td>
</tr>
<tr>
<td>TAXI LIGHT</td>
<td>Taxi light protection</td>
</tr>
<tr>
<td>LH LDG LIGHT</td>
<td>L.H. landing light protection</td>
</tr>
<tr>
<td>RH LDG LIGHT</td>
<td>R.H. landing light protection</td>
</tr>
<tr>
<td>PULSE SYST</td>
<td>Pulse lite system protection (if installed)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BATT BUS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMER LIGHT</td>
<td>Instrument panel emergency lighting protection</td>
</tr>
<tr>
<td>GND CLR</td>
<td>Ground clearance protection</td>
</tr>
<tr>
<td>ACCESS</td>
<td>Cabin access lighting protection</td>
</tr>
<tr>
<td>EPS</td>
<td>Electrical power system protection</td>
</tr>
<tr>
<td>REC</td>
<td>Lightweight data recorder protection</td>
</tr>
</tbody>
</table>

Figure 7.8.4 (5/6) - CIRCUIT BREAKER PANEL (Typical arrangement)
Figure 7.8.4 (6/6) - CIRCUIT BREAKER PANEL (Typical arrangement)
INDICATING

Electrical system indicating consists of voltage and ampere indicating - refer to GARMIN G1000 Cockpit Reference Guide for further details.

Following CAS messages may appear on the MFD CAS display:

"BAT OFF" : Battery is not connected to main bus bar
"MAIN GEN" : Starter generator is not connected to main bus bar
"LOW VOLTAGE" : Battery voltage is below the minimum value
"GPU DOOR" : Ground power receptacle access door is not closed

PROTECTION - SAFETY (Figures 7.8.2 and 7.8.5)

The electrical power system provides systems protection in case of:

- overvoltage
- short-circuits

In case of disconnection of starter generator or stand-by generator following a failure, "MAIN" or "ST-BY" reset can be done by pressing corresponding "MAIN" or "ST-BY" knob.

A battery reset is done by setting the "SOURCE" selector to OFF and back to BATT.

In case of disconnection of ground power unit following a failure, it is possible to re-activate the system by turning the "SOURCE" selector to OFF and setting it again to GPU position to reset the protection.

A crash lever located on upper panel center part allows isolating simultaneously "BATT BUS" bar and setting to OFF "SOURCE" and "GENERATOR" selectors when lowered. In this case all bus bars are isolated from generators.
1) "MAIN" reset knob
2) "ST-BY" reset knob
3) Crash lever
4) "SOURCE" selector
5) "GENERATOR" selector
EXTERIOR LIGHTING (Figure 7.8.6)

The airplane is equipped with two navigation lights, three strobe lights, two landing lights, two taxi lights, two recognition lights and a wing leading edge icing inspection light.

Landing lights

Landing lights are embedded in the winglets and located in leading edges. Lights illumination is controlled by setting to LDG, a switch located on upper panel.

The Pulse lite system (if installed) enables the pilot to control landing light flashing to be seen by the control tower or in heavy traffic areas.

Taxi lights

The taxi lights are embedded in the winglets and located in leading edges. They are controlled by setting to TAXI, a switch located on upper panel.

Navigation lights and strobe lights

Navigation lights are embedded in the winglets.

Two strobe lights are installed in the winglets and one on the tail cone.

They are controlled by "NAV" and "STROBE" switches located on upper panel.

NOTE: By night, do not use anticollision lights in fog, clouds or mist as light beam reflexion may lead to dizziness and loss of sense of orientation.

Recognition lights

Recognition lights are embedded in the winglets.

They are automatically switched on when the airplane is on ground.

Leading edge icing inspection light

The leading edge icing inspection light is installed on fuselage L.H. side, its beam illuminates the wing leading edge. It is controlled by the "ICE LIGHT" switch installed on "DE-ICE SYSTEM" panel (Figure 7.13.1).

FWD compartment light

The dome light illumination of the FWD compartment is controlled by the switch located in the upper section of the door frame.

Fuel unit compartment light

The lighting of the fuel unit compartment allows improving the visibility of the clogging indicator by pressing the push-button located besides the inspection door.
1) Taxi and landing light switch
2) Pulse system switch
3) Navigation lights switch
4) Strobe lights switch
INTERIOR LIGHTING (Figure 7.8.7)

Interior lighting consists of access, cabin, instrument panel, instruments, baggage compartment and emergency lighting.

Access lighting

Access lighting consists of two floodlights located on the ceiling upholstery (one at the level of the access door, the other at the level of the storage cabinet) and the L.H. dome light of baggage compartment. "ACCESS" push-button on "INT LIGHTS" panel and the push-button located on access door rear frame control these 3 lights via a delayed breaker.

If the crash lever is down, access lighting is automatically cut out after 3 minutes.

If the crash lever is up, there is no access lighting automatic cut out.

Cabin lighting

Cabin lighting consists of two swiveling floodlights for front seats, six individual floodlights for rear passenger seats and the baggage compartment R.H. dome light. Each floodlight is controlled by a push-button located near. The floodlight above the table is controlled by two switches which are two-way type switches. The pilot can switch off the cabin floodlights and the baggage compartment dome light with the "CABIN" switch.

Instrument panel lighting

Instrument panel lighting is controlled by the "PANEL" rheostat located on "INT LIGHTS" panel. This lighting consists of visor lighting tubes and a led lighting for the pedestal.

Circuit breaker panel lighting

Circuit breaker panel lighting is controlled by a switch located on the instrument panel near the pilot’s control wheel.

Emergency lighting

Emergency lighting consists of two swiveling floodlights located on both sides of the cockpit overhead panel above front seats. It illuminates instrument panel assembly in case of visor lighting tubes and / or instrument integrated lighting failure.

A rheostat located on the cockpit overhead panel controls emergency lighting operation and intensity. Forward rotation of control knob allows changing from OFF position to minimum lighting then increasing lighting to maximum brightness.
1) Instrument panel lighting switch (rheostat)
2) "DIMMER" switch
3) Cabin lighting switch (rear seats reading light)
4) Access door, baggage compartment and FWD dome light (delayed breaker) push-button
5) Emergency lighting switch
6) Circuit breaker panel lighting switch

Figure 7.8.7 - INTERNAL LIGHTING CONTROLS
7.9 - AIR CONDITIONING AND PRESSURIZATION

The airplane is equipped with a Global Air System (GAS), which ensures air conditioning and pressurization (Figure 7.9.1).

GAS controls are located on "ECS" panel at the L.H. side of the R.H. side control wheel and above the arm rest of the L.H. passenger's seat (Figure 7.9.2).

The system is monitored through CAS messages appearing on the GDU 1500 MFD.

NOTE

A list of abbreviations used in this chapter is given in Figure 7.9.1.

The GAS is composed of 3 main sub-systems:

- Engine Bleed Air System,
- Dual zones Environmental Control System, including heating and cooling functions,
- Cabin Pressurization Control System.

These 3 sub-systems are managed by a single digital controller (GASC), which receives information coming from:

- the sensors set in the sub-systems,
- the human interfaces set in the airplane.

The GASC elaborates the proper commands to the sub-system actuators and indication or warning elements.

ENGINE BLEED AIR SYSTEM

The Engine Bleed Air System is designed to ensure the following functions:

- to bleed air from the engine,
- to ensure a controlled airflow in the cabin,
- to adjust the temperature of the bleed air at a compatible level, in order to control the cabin temperature in heating and cooling modes.

The "BLEED" switch allows to switch on the Engine Bleed Air System provided that the engine runs. The Ground Fan (GF) runs until takeoff, when "BLEED" switch is set to AUTO, and the MAIN GEN CAS message is OFF.

The "BLEED" switch is fitted with a blocking device between AUTO and OFF/RST positions preventing the operator from a non expected setting of "BLEED" switch to OFF/RST position.

The BLEED TEMP CAS message appears in the GDU 1500 MFD "CAS" window (in display normal conditions), when the "BLEED" switch is set to AUTO and when the Bleed Temperature switch (BTSW) or the Overheat Thermal Switch (OTSW) triggers on.

The BLEED OFF CAS message appears in the GDU 1500 MFD "CAS" window (in display normal conditions), when the engine is running and the Flow Control Shut Off Valve (FCSOV) is closed.

To reactivate the system, set "BLEED" switch to OFF/RST, then to AUTO.
To bleed air from the engine

The Engine Bleed Air System is based on 2 engine bleed ports operation. The normal operation is performed on P2.5 engine port as far as the pressure or temperature available at this port is able to comply with the needs. If one of these conditions is not fulfilled, the system automatically switches to P3 engine bleed port. The switching back to P2.5 supply is automatically performed as far as the conditions on P2.5 are restored to adapted values.

The sensor (IPPS) measures continuously the pressure at the P2.5 pressure port and sends the value to the Global Air System Controller (GASC) which manages the ports switching on condition with the Shut Off Valve (SOV). A Non Return Valve (NRV) secures the P2.5 pressure port when the P3 pressure port is opened.

To ensure a controlled airflow in the cabin

The bleed flow control operation, including bleed AUTO/bleed OFF/RST controls, is ensured by the FCSOV driven by the GASC.

To adjust the temperature of the bleed air

The bleed air outlet temperature control is ensured by the By-Pass Valve (BPV) in association with the Main Heat Exchanger (MHX).

The temperature measurement loop given by the Inlet Temperature Sensor (ITS) and the 2 Ventilated Temperature Sensors (CKVTS, CBVTS) sends the value to the GASC which compares them with the set temperature and manages the BPV position. The BPV derives a part of the bleed air through the MHX to cool it and mix it to the remaining air.

The Engine Air Bleed System is supplied by “BUS 2” bar and protected by the “CAB BLEED” CB60 circuit breaker.

DUAL ZONES ENVIRONMENTAL CONTROL SYSTEM

The Environmental Control System is based on two independent air circuits. The heating circuit uses the controlled temperature bleed air. The cooling circuit is based on a Vapor Cycle System (VCS).

The Environmental Control System is designed to ensure the following functions:

- Cockpit / Cabin Heating function
- Cockpit / Cabin Cooling function.

The Environmental Control System is supplied by “BUS 2” bar and protected by the “AIR COND” CB160 circuit breaker. Four fans are supplied by “BUS 4” bar and protected respectively by following circuit breakers : “COND FAN” CB114, “CABIN FAN” CB113, “COCKPIT FAN” CB112 and “GND FAN” CB111.

The system includes an automatic load shedding feature which:

- shuts off the Ground Fan (GF) and the Condenser Fan “COND FAN” and opens compressor clutch when MAIN GEN CAS message is ON.
- shuts off all the Vapor Cycle System (VCS) during engine start.
Heating circuit

Hot air coming from the bleed air system is mixed with the cabin recirculating air in the Mixing Ejector (MIXEJ) in order to lower the blown air temperature. The resultant air flow enters the Hot Air Distributor (HAD) and is distributed in the cockpit / cabin zones regarding the demand.

It is dispatched:
- in the cockpit through ports located on pedestal sides, under each seat or through the demisting outlets.
- in the cabin through ports located on the lower section of the L.H. and R.H. side cabin upholstery.

The "HOT AIR FLOW" distributor allows to select the windshield defog / cabin heating functions.

When the "A/C" switch is set to OFF position, the temperature is set by default by the GASC to 23°C.

Cooling circuit

There are two separate circuits: one for the cockpit and the other for the cabin.

In each circuit, air is sucked by means of a variable speed electrical fan, then it is blown through an evaporator and ducted to the different zones:
- cockpit circuit: by passing into the upper panel equipped with 2 swivelling and adjustable air outlets, through air outlets located on arm rests of pilot and R.H. front passenger stations and through ports located under instrument panel,
- cabin circuit: by passing into the overhead duct equipped with 4 swivelling and adjustable air outlets and through ports located on the floor between the Cabinets and the intermediate passenger's seats.

The VCS can be switched on, only if the fans are set at least to minimum speed. The compressor clutch and the condenser fan are controlled by the GASC.

In automatic mode, the temperature of each zone is controlled independently by the system according to the settings of the "TEMP/°C" and "CABIN TEMP/°C" selectors, which can vary from 17°C to 32°C. In this mode, the speed of each fan is automatically controlled.

In manual mode, the blown air temperature is controlled by the system according to the settings of each temperature selector. In this mode, the speed of each fan is set manually from Off to maximum speed position.

The "A/C" switch allows to switch on or off the Vapor Cycle System.
- If set to AUTO position:
 - on "ECS" panel, the "TEMP/°C" selector enables to select requested temperature of the cockpit zone,
 - above arm rest of L.H. passenger's seat, the "CABIN TEMP/°C" selector enables to select requested temperature of the cabin zone.
- If set to MANUAL position:
 - on "ECS" panel, the "TEMP/°C" selector enables to select requested temperature and the "FAN SPEED" selector enables to choose blown air speed in the cockpit zone,
 - above arm rest of L.H. passenger's seat, the "CABIN TEMP/°C" selector enables to select requested temperature and the "FAN SPEED" selector enables to choose blown air speed in the cabin zone.

The "CONTROL" selector set to COCKPIT position inhibits the operation of the controls located in the cabin zone; only the cockpit controls settings are taken into account. If set to CABIN position, each zone controls its proper values.

Emergency air control ("EMERGENCY RAM AIR" control knob), located under R.H. area instrument panel facing control wheel, enables outside air to enter the cabin through a valve. In NORMAL position, the valve is closed and the control is locked. To open emergency ventilation valve, press on locking knob and move control rearwards.
CABIN PRESSURIZATION CONTROL SYSTEM

The cabin altitude check is automatically ensured by the pressurization control system through a monitoring of the cabin pressure. The opening of the Outflow Valve (OFV) is controlled by the GASC through a torque motor fitted on the valve.

The Landing Field Elevation entered by the pilot in the MFD is used by the GASC to manage the optimal cabin altitude rate of change in order to land with a cabin altitude equal to LFE minus 200 ft.

The Landing Field Elevation selection is done using :
- Destination airport of the flight plan pressing "SYSTEM" and then "FMS LFE" on the MFD
- A manual entry pressing "SYSTEM" then "MAN LFE" on the MFD.

The cabin altitude is automatically calculated by the GASC using the data sent by GDU 1500 MFD.

In flight, the GASC controls the opening of the OFV in order to reach the automatic computed cabin altitude. The "PRES MODE" switch allows to select 2 pressurization modes :
- if set to AUTO, the GASC controls the cabin altitude rate of change in order to optimize comfort and avoid reaching maximum ΔP or negative ΔP
- if set to MAX DIFF, the cabin altitude is minimized throughout the flight. For airplane altitudes below 13500 ft, this results in cabin altitudes that could be as low as 0 ft. Above 13500 ft, the cabin altitude is minimized while maintaining $\Delta P \leq 6.0$ PSI.

The GDU 1500 MFD shows landing field altitude, cabin climb speed in Sea Level ft/min and cabin-atmosphere differential pressure (ΔP) in PSI.

Cabin is automatically depressurized as soon as the airplane is on ground through landing gear switch (airplane on ground) or, if necessary, by actuating "DUMP" switch located on "ECS" panel (in normal operation, this switch is protected and locked by a cover).

Overpressure and negative relief safety are managed by both OFV and SFV. The safety functions are ensured by independent pneumatic modules fitted on both valves, which override the GASC control when necessary.

The MAX DIFF MODE CAS message appears in the GDU 1500 MFD "CAS" window (in display normal conditions) when the "PRESS MODE" switch is set to "MAX DIFF".

The CABIN ALTITUDE CAS message appears in the GDU 1500 MFD "CAS" window (in display normal conditions) when the cabin altitude is over 10000 ft.

The CABIN DIFF PRESS CAS message appears in the GDU 1500 MFD "CAS" window (in display normal conditions) when the cabin-atmosphere differential pressure is over 6.2 psi (427 mb).

The "DUMP" switch allows the pilot to open the OFV in order to de-pressurize the cabin. The OFV is fitted with a cabin altitude limitation device which overrides the "DUMP" function and forces the closure of the OFV if the cabin altitude reaches 14500 ft.

The CPC5 BACK UP MODE CAS message appears in the GDU 1500 MFD CAS window when, due to malfunction, GASC cannot compute optimal cabin altitude.

In this case, cabin altitude is controlled by GASC to 9800 ft default value.
<table>
<thead>
<tr>
<th>1) Demisting outlets</th>
<th>24) Demisting microswitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>2) Front vents</td>
<td>25) Hot air distributor (HAD)</td>
</tr>
<tr>
<td>3) Cockpit ventilated temperature sensor (CKVTS)</td>
<td>26) (Cabin) Inlet temperature Sensor (ITS)</td>
</tr>
<tr>
<td>4) Cabin ventilated temperature sensor (CBVTS)</td>
<td>27) (Cabin) Bleed temperature switch (BTSW)</td>
</tr>
<tr>
<td>5) Air ports</td>
<td>28) Mixing ejector (MIXEJ)</td>
</tr>
<tr>
<td>6) Cabin control panel</td>
<td>29) Check valve</td>
</tr>
<tr>
<td>7) Global air system controller (GASC)</td>
<td>30) MFD unit</td>
</tr>
<tr>
<td>8) Out-flow valve (OFV)</td>
<td>31) Ground safety microswitch</td>
</tr>
<tr>
<td>9) Safety valve (SFV)</td>
<td>32) Differential pressure switch</td>
</tr>
<tr>
<td>10) Condenser fan</td>
<td>33) By-pass valve (BPV)</td>
</tr>
<tr>
<td>11) Condenser</td>
<td>34) Cabin altitude alarm switch</td>
</tr>
<tr>
<td>12) High pressure switch</td>
<td>35) Emergency air supply system (EMERGENCY RAM AIR)</td>
</tr>
<tr>
<td>13) Drier filter</td>
<td>36) Main heat exchanger (MHX)</td>
</tr>
<tr>
<td>14) Cabin fan</td>
<td>37) Ground fan (GF)</td>
</tr>
<tr>
<td>15) Cabin evaporator</td>
<td>38) Flow control shut off valve (FCSOV)</td>
</tr>
<tr>
<td>16) Cabin blown temperature sensor (CBBTS)</td>
<td>39) Bleed differential pressure sensor</td>
</tr>
<tr>
<td>17) Cabin thermostatic valve</td>
<td>40) Compressor</td>
</tr>
<tr>
<td>18) Low pressure switch</td>
<td>41) Shut-off valve (SOV)</td>
</tr>
<tr>
<td>19) ECS panel</td>
<td>42) Overheat thermal switch (OTSW)</td>
</tr>
<tr>
<td>20) Cockpit thermostatic valve</td>
<td>43) Non return valve (NRV)</td>
</tr>
<tr>
<td>21) Cockpit fan</td>
<td>44) Intermediate port pressure sensor (IPPS)</td>
</tr>
<tr>
<td>22) Cockpit evaporator</td>
<td>45) Cabin pressure sensor</td>
</tr>
<tr>
<td>23) Cockpit blown temperature sensor (CKBTS)</td>
<td></td>
</tr>
</tbody>
</table>
1) "A/C" switch
2) "BLEED" switch
3) "PRES MODE" switch
4) "DUMP" switch
5) "HOT AIR FLOW" distributor
6) "TEMP/°C" selector (cockpit/cabin)
7) "CONTROL" selector
8) "FAN SPEED" selector (cockpit)
9) "FAN SPEED" selector (cabin)
10) "CABIN TEMP/°C" selector (cabin)
Figure 7.9.2 (2/2) - GAS controls - Pre-MOD70-0529-21
7.9 - AIR CONDITIONING AND PRESSURIZATION

The airplane is equipped with a Global Air System (GAS), which ensures air conditioning and pressurization (Figure 7.9.2A).

GAS controls are located on "A/C" and "PRESSURIZATION" panel at the L.H. side of the R.H. side control wheel and above the arm rest of the L.H. passenger’s seat (Figure 7.9.2A).

The system is monitored through CAS messages appearing on the GDU 1500 MFD.

NOTE

A list of abbreviations used in this chapter is given in Figure 7.9.2A.

The GAS is composed of 3 main sub-systems:

- Engine Bleed Air System,
- Dual zones Environmental Control System, including heating and cooling functions,
- Cabin Pressurization Control System.

These 3 sub-systems are managed by a single digital controller (GASC), which receives information coming from:

- the sensors set in the sub-systems,
- the human interfaces set in the airplane.

The GASC elaborates the proper commands to the sub-system actuators and indication or warning elements.

ENGINE BLEED AIR SYSTEM

The Engine Bleed Air System is designed to ensure the following functions:

- to bleed air from the engine,
- to ensure a controlled airflow in the cabin,
- to adjust the temperature of the bleed air at a compatible level, in order to control the cabin temperature in heating and cooling modes.

The "BLEED" switch allows to switch on the Engine Bleed Air System provided that the engine runs. The Ground Fan (GF) runs until takeoff, when "BLEED" switch is set to AUTO, and the MAIN GEN CAS message is OFF.

The "BLEED" switch is fitted with a blocking device between AUTO and OFF/RST positions preventing the operator from a non expected setting of "BLEED" switch to OFF/RST position.

The BLEED TEMP CAS message appears in the GDU 1500 MFD "CAS" window (in display normal conditions), when the "BLEED" switch is set to AUTO and when the Bleed Temperature switch (BTSW) or the Overheat Thermal Switch (OTSW) triggers on.

The BLEED OFF CAS message appears in the GDU 1500 MFD "CAS" window (in display normal conditions), when the engine is running and the Flow Control Shut Off Valve (FCSOV) is closed.

To reactivate the system, set "BLEED" switch to OFF/RST, then to AUTO.
To bleed air from the engine

The Engine Bleed Air System is based on 2 engine bleed ports operation. The normal operation is performed on P2.5 engine port as far as the pressure or temperature available at this port is able to comply with the needs. If one of these conditions is not fulfilled, the system automatically switches to P3 engine bleed port. The switching back to P2.5 supply is automatically performed as far as the conditions on P2.5 are restored to adapted values.

The sensor (IPPS) measures continuously the pressure at the P2.5 pressure port and sends the value to the Global Air System Controller (GASC) which manages the ports switching on condition with the Shut Off Valve (SOV). A Non Return Valve (NRV) secures the P2.5 pressure port when the P3 pressure port is opened.

To ensure a controlled airflow in the cabin

The bleed flow control operation, including bleed AUTO/bleed OFF/RST controls, is ensured by the FCSOV driven by the GASC.

To adjust the temperature of the bleed air

The bleed air outlet temperature control is ensured by the By-Pass Valve (BPV) in association with the Main Heat Exchanger (MHX).

The temperature measurement loop given by the Inlet Temperature Sensor (ITS) and the 2 Ventilated Temperature Sensors (CKVTS, CBVTS) sends the value to the GASC which compares them with the set temperature and manages the BPV position. The BPV derives a part of the bleed air through the MHX to cool it and mix it to the remaining air.

The Engine Air Bleed System is supplied by “BUS 2” bar and protected by the “CAB BLEED” CB60 circuit breaker.

DUAL ZONES ENVIRONMENTAL CONTROL SYSTEM

The Environmental Control System is based on two independent air circuits. The heating circuit uses the controlled temperature bleed air. The cooling circuit is based on a Vapor Cycle System (VCS).

The Environmental Control System is designed to ensure the following functions:

- Cockpit / Cabin Heating function
- Cockpit / Cabin Cooling function.

The Environmental Control System is supplied by “BUS 2” bar and protected by the “AIR COND” CB160 circuit breaker. Four fans are supplied by “BUS 4” bar and protected respectively by following circuit breakers: “COND FAN” CB114, “CABIN FAN” CB113, “COCKPIT FAN” CB112 and “GND FAN” CB111.

The system includes an automatic load shedding feature which:

- shuts off the Ground Fan (GF) and the Condenser Fan “COND FAN” and opens compressor clutch when MAIN GEN CAS message is ON.
- shuts off all the Vapor Cycle System (VCS) during engine start.
Heating circuit

Hot air coming from the bleed air system is mixed with the cabin recirculating air in the Mixing Ejector (MIXEJ) in order to lower the blown air temperature. The resultant air flow enters the Hot Air Distributor (HAD) and is distributed in the cockpit/cabin zones regarding the demand.

It is dispatched:
- in the cockpit through ports located on pedestal sides, under each seat or through the demisting outlets.
- in the cabin through ports located on the lower section of the L.H. and R.H. side cabin upholstery.

The "HOT AIR FLOW" distributor allows to select the windshield defog/cabin heating functions.

When the "A/C" switch is set to OFF position, the temperature is set by default by the GASC to 23°C.

Cooling circuit

There are two separate circuits: one for the cockpit and the other for the cabin.

In each circuit, air is sucked by means of a variable speed electrical fan, then it is blown through an evaporator and ducted to the different zones:
- cockpit circuit: by passing into the upper panel equipped with 2 swivelling and adjustable air outlets, through air outlets located on arm rests of pilot and R.H. front passenger stations and through ports located under instrument panel,
- cabin circuit: by passing into the overhead duct equipped with 4 swivelling and adjustable air outlets and through ports located on the floor between the cabinets and the intermediate passenger’s seats.

The VCS can be switched on, only if the fans are set at least to minimum speed. The compressor clutch and the condenser fan are controlled by the GASC.

The blown air temperature is controlled by the system according to the settings of each temperature selector. The "FAN" speed selectors enable to control blow air speed of each fan of the cockpit and cabin evaporators.

The "A/C" switch allows to switch on or off the Vapor Cycle System.
- If set to "OFF" position, the VCS is switched to off.
- If set to "PILOT" position, the operation of the controls located in the cabin zone is inhibited.
- If set to "PLT + PAX" position, each zone is controlled per its own settings.

Emergency air control ("EMERGENCY RAM AIR" control knob), located under R.H. area instrument panel facing control wheel, enables outside air to enter the cabin through a valve. In NORMAL position, the valve is closed and the control is locked. To open emergency ventilation valve, press on locking knob and move control rearwards.
CABIN PRESSURIZATION CONTROL SYSTEM

The cabin altitude check is automatically ensured by the pressurization control system through a monitoring of the cabin pressure. The opening of the Outflow Valve (OFV) is controlled by the GASC through a torque motor fitted on the valve.

The Landing Field Elevation entered by the pilot in the MFD is used by the GASC to manage the optimal cabin altitude rate of change in order to land with a cabin altitude equal to LFE minus 200 ft.

The Landing Field Elevation selection is done using:
- Destination airport of the flight plan pressing “SYSTEM” and then “FMS LFE” on the MFD
- A manual entry pressing “SYSTEM” then “MAN LFE” on the MFD.

The cabin altitude is automatically calculated by the GASC using the data sent by GDU 1500 MFD.

In flight, the GASC controls the opening of the OFV in order to reach the automatic computed cabin altitude. The “MODE” pressurization switch allows to select 2 pressurization modes:
- if set to AUTO, the GASC controls the cabin altitude rate of change in order to optimize comfort and avoid reaching maximum ΔP or negative ΔP
- if set to MAX DIFF, the cabin altitude is minimized throughout the flight. For airplane altitudes below 13500 ft, this results in cabin altitudes that could be as low as 0 ft. Above 13500 ft, the cabin altitude is minimized while maintaining $\Delta P \leq 6.0$ PSI.

The GDU 1500 MFD shows landing field altitude, cabin climb speed in Sea Level ft/min and cabin-atmosphere differential pressure (ΔP) in PSI.

Cabin is automatically depressurized as soon as the airplane is on ground through landing gear switch (airplane on ground) or, if necessary, by actuating “DUMP” switch located on “A/C” and “PRESSURIZATION” panel (in normal operation, this switch is protected and locked by a cover).

Overpressure and negative relief safety are managed by both OFV and SFV. The safety functions are ensured by independent pneumatic modules fitted on both valves, which override the GASC control when necessary.

The MAX DIFF MODE CAS message appears in the GDU 1500 MFD “CAS” window (in display normal conditions) when the MODE” pressurization switch is set to “MAX DIFF”.

The CABIN ALTITUDE CAS message appears in the GDU 1500 MFD “CAS” window (in display normal conditions) when the cabin altitude is over 10000 ft.

The CABIN DIFF PRESS CAS message appears in the GDU 1500 MFD “CAS” window (in display normal conditions) when the cabin-atmosphere differential pressure is over 6.2 psi (427 mb).

The “DUMP” switch allows the pilot to open the OFV in order to de-pressurize the cabin. The OFV is fitted with a cabin altitude limitation device which overrides the “DUMP” function and forces the closure of the OFV if the cabin altitude reaches 14500 ft.

The CPCS BACK UP MODE CAS message appears in the GDU 1500 MFD CAS window when, due to malfunction, GASC cannot compute optimal cabin altitude.

In this case, cabin altitude is controlled by GASC to 9800 ft default value.
1) Demisting outlets
2) Front vents
3) Cockpit ventilated temperature sensor (CKVTS)
4) Cabin ventilated temperature sensor (CBVTS)
5) Air ports
6) Cabin control panel
7) Global air system controller (GASC)
8) Out-flow valve (OFV)
9) Safety valve (SFV)
10) Condenser fan
11) Condenser
12) High pressure switch
13) Drier filter
14) Cabin fan
15) Cabin evaporator
16) Cabin blown temperature sensor (CBBTS)
17) Cabin thermostatic valve
18) Low pressure switch
19) "A/C" and "PRESSURIZATION" panel
20) Cockpit thermostatic valve
21) Cockpit fan
22) Cockpit evaporator
23) Cockpit blown temperature sensor (CKBTS)

24) Demisting microswitch
25) Hot air distributor (HAD)
26) (Cabin) Inlet temperature Sensor (ITS)
27) (Cabin) Bleed temperature switch (BTSW)
28) Mixing ejector (MIXEJ)
29) Check valve
30) MFD unit
31) Ground safety microswitch
32) Differential pressure switch
33) By-pass valve (BPV)
34) Cabin altitude alarm switch
35) Emergency air supply system (EMERGENCY RAM AIR)
36) Main heat exchanger (MHX)
37) Ground fan (GF)
38) Flow control shut off valve (FCSOV)
39) Bleed differential pressure sensor
40) Compressor
41) Shut-off valve (SOV)
42) Overheat thermal switch (OTSW)
43) Non return valve (NRV)
44) Intermediate port pressure sensor (IPPS)
45) Cabin pressure sensor

Figure 7.9.2A (1/2) - GLOBAL AIR SYSTEM ITEMS LIST AND ABBREVIATIONS - Post-MOD70-0529-21
Figure 7.9.2A (2/2) - Global Air System - Post-MOD70-0529-21
1) "A/C" switch
2) "BLEED" switch
3) "MODE" pressurization switch
4) "DUMP" switch
5) "HOT AIR FLOW" distributor
6) "TEMP" selector (cockpit/cabin)
7) "FAN" speed selector (cockpit)
8) "FAN" speed selector (cabin)
9) "TEMP" selector (cabin)
Figure 7.9.2B (2/2) - GAS controls - Post-MOD70-0529-21
7.10 - EMERGENCY OXYGEN SYSTEM (Figure 7.10.1)

The gaseous oxygen system will be used by the crew and the passengers, when the cabin altitude is greater than 10000 ft following a loss of pressurization or in case of cabin air contamination.

Post-MOD70-0407-00

The "USE OXYGEN MASK" CAS message appears in the GDU 1200 W MFD "CAS" window (in normal conditions) and the "USE OXYGEN MASK/USE OXYGEN MASK" aural warning alert sounds when the cabin altitude is greater than 10000 ft.

All

The oxygen reserve is contained in an oxygen cylinder made of composite material and located outside of the pressurized cabin into the R.H. karman. Its capacity is 50.3 cu.ft (1425 litres) “STPD” (Standard Temperature Pressure Dry) and use limit pressures are:

- maximum pressure 1850 PSIG (127 bars) at 70° F (21° C).
 Evolution of this pressure according to the outside temperature is given in Section 8, Figure 8.7.1, as well as on a placard on the inside of the cylinder service door,
- minimum pressure 217 PSIG (15 bars).

The oxygen cylinder head is equipped with:

- a hand-controlled isolation valve to permit cylinder installation and removal,
- a microswitch causing the "OXYGEN" CAS message to light on. This message lights on, when the isolation valve is closed,
- a graduated pressure gage,
- a charging valve - refer to the replenishment procedure in Section 8,
- an overpressure system consisting of a safety disc. This disc is designed to rupture between 2500 and 2775 PSIG (172 and 191 bars) discharging the cylinder contents outboard,
- a pressure reducing valve adjusting utilization pressure to a value comprised between 64 and 85 PSIG (4.4 and 5.9 bars),
- a low pressure safety valve calibrated to 116 PSIG (8 bars).
1) Microphone switch

Figure 7.10.1 - EMERGENCY OXYGEN SYSTEM
A control panel located in the cockpit overhead panel at the disposal of the pilot includes:

- a two-position valve ON/OFF ("OXYGEN" switch) to permit the supply of the front seats occupiers masks,

Pre-MOD70-0485-11A

- a two-position valve ON/OFF ("PASSENGERS OXYGEN" switch) with guard to permit the supply of the passengers four masks, when the first valve is open.

Post-MOD70-0485-11A

- a two-position valve DEPLOY/STBY ("PASSENGERS OXYGEN" switch) with guard to permit the supply of the passengers four masks, when the first valve is open.

Oxygen pressure is displayed on the GDU 1500 MFD.

An altimetric valve provides an automatic passengers masks actuation function at a cabin altitude between 13000 and 14000 ft when "OXYGEN" switch is set to ON.

Two pressure-demand type masks allowing quick donning with only one hand, covering the nose and the mouth, as well as two pairs of smoke goggles are at disposal of the pilot and of the R.H. front seat occupier. Masks are installed in cups on the cabin walls aft of the front seats. Permanently connected to the oxygen system, they are equipped with a micro controlled by the switch ("MICRO/MASK" micro inverter) under cover located on the instrument panel near the pilot's control wheel. The cockpit masks are equipped with a microphone, a three-position selector NORMAL, 100 % and EMERGENCY and with a push-button "PRESS TO TEST". The proper flow is signaled by a flow indicator (blinker) into the oxygen tubing.

The airplane is equipped with two smoke goggles.

Four passengers constant-flow type masks, covering the nose and the mouth and permanently connected, are installed in two containers on the cabin ceiling. The opening of these containers and the descent of the masks are controlled by the pilot, when both switches at its disposal are set to ON, or automatically at a cabin altitude between 13000 and 14000 ft with the "OXYGEN" switch set to ON. The oxygen flow is obtained by pulling on the mask bounded by a lanyard cord to a pin. A proper flow is signaled by the filling of the green bag located on each passenger mask.
WARNING: DO NOT SMOKE DURING OXYGEN SYSTEM USE. OIL, GREASE, SOAP, MAKE UP, LIPSTICK AND ANY OTHER GREASY SUBSTANCES CONSTITUTE A SERIOUS FIRE OR BURNING HAZARD, WHEN ON CONTACT WITH OXYGEN.

FLIGHT ABOVE 15000 FT WITH EMERGENCY DESCENT

<table>
<thead>
<tr>
<th>NUMBER OF OCCUPANTS</th>
<th>OUTSIDE TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COCKPIT 43° C</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Conditions:
1. 4 minutes from 31000 to 15000 ft. All equipment used from 31000 ft.
2. Plus 30 minutes usage by each pilot and passenger at 15000 ft.
3. Plus 86 minutes usage by each pilot at 10000 ft.

NOTE

After a long parking time in the sunshine, increase pressures indicated in the table here above by 8 %.
WHEN REQUIRED TO REMAIN ABOVE 15000 FT DUE TO MINIMUM "EN ROUTE" ALTITUDE

<table>
<thead>
<tr>
<th>NUMBER OF OCCUPANTS</th>
<th>OUTSIDE TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>110° F/43°C</td>
</tr>
<tr>
<td>1</td>
<td>618</td>
</tr>
<tr>
<td>1</td>
<td>842</td>
</tr>
<tr>
<td>1</td>
<td>1067</td>
</tr>
<tr>
<td>1</td>
<td>1513</td>
</tr>
<tr>
<td>1</td>
<td>1513</td>
</tr>
<tr>
<td>2</td>
<td>992</td>
</tr>
<tr>
<td>2</td>
<td>1215</td>
</tr>
<tr>
<td>2</td>
<td>1439</td>
</tr>
<tr>
<td>2</td>
<td>1662</td>
</tr>
<tr>
<td>2</td>
<td>1888</td>
</tr>
</tbody>
</table>

(Values in PSIG)

Conditions:
1. Flight above 15000 ft. All equipment used.
2. 1 hour usage by each pilot and passenger.
3. Plus 1 hour usage by each pilot under 15000 ft.

NOTE

After a long parking time in the sunshine, increase pressures indicated in the table here above by 8%.
FLIGHT BETWEEN 15000 FT AND 10000 FT

<table>
<thead>
<tr>
<th>NUMBER OF OCCUPANTS</th>
<th>OUTSIDE TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>110° F/43°C</td>
</tr>
<tr>
<td>COCKPIT</td>
<td>CABIN</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

(Values in PSIG)

Conditions:
1 - Flight under 15000 ft.
2 - 90 minutes usage by each pilot and one passenger.
3 - Plus 30 minutes usage by each pilot at 10000 ft.

NOTE

After a long parking time in the sunshine, increase pressures indicated in the table here above by 8%.
7.11 - AIR DATA SYSTEM AND INSTRUMENTS (Figure 7.11.1)

Airplane air data system consists of:

- two separate static pressure systems supplying an electronic standby indicator and air data computers (ADC).

 A part of system 1 is backed up by an alternate system which operation is controlled by a switching valve (normal / alternate) attached to instrument panel under R.H. control wheel. In case of obstruction or icing of ports, this selector isolates airplane normal static system. When selector is on alternate position (pulled rearwards), static pressure is picked from a port located in airplane rear fuselage.

- two separate dynamic pressure systems supplying the electronic standby indicator and air data computers.

STATIC PRESSURE SYSTEMS

Primary systems

Two dual static ports (one on either side of the fuselage tail part) supply a dual system routed towards the cockpit.

System 1 part, which is connected to the switching valve (normal / alternate), supplies the ΔP cabin and the electronic standby indicator. The system remainder directly supplies one of the air data computers.

System 2 is directly connected to the second ADC.

Systems feature a drain valve located under the instrument panel on R.H. side.

Alternate static source

The alternate static port located in the rear fuselage supplies a system routed to the switching valve (normal / alternate) in order to replace static system 1.

The alternate line incorporates a drain plug located under the instrument panel on R.H. side.

DYNAMIC PRESSURE SYSTEM

One heated pitot probe is installed under the L.H. wing. The second one is installed under the R.H. wing. The first one supplies the electronic standby indicator and one ADC.

The second one supplies the other ADC.

Both lines incorporate a drain plug located in the root of L.H. and R.H. wings.

Pitot heating

Pitot heating is controlled by "PITOT L HTR" and "PITOT R & STALL HTR" switches, installed on "DE-ICE SYSTEM" panel. Refer to Chapter 7.13 for further details.

NOTE

Do not use heating during prolonged periods on ground to avoid pitot overheat.
1) Pitot L
2) Dynamic system drain
3) Electronic Standby Indicator (ESI-2000)
4) GDC 74B ADC
5) GDC 74B ADC
6) FWD pressure bulkhead
7) Static system drain
8) Static system drain
9) Static system drain
10) Emergency static system drain
11) Emergency static valve (Normal / Alternate)
12) Instrument panel
13) Dynamic system drain
14) Pitot R
15) Rear pressure bulkhead
16) Static port
17) Emergency static port
18) Static port

Figure 7.11.1 (1/2) - AIR DATA SYSTEM
INTENTIONALLY LEFT BLANK
7.12 - VACUUM SYSTEM AND INSTRUMENTS (Figure 7.12.1)

The airplane is fitted with a vacuum system providing the suction necessary to operate the cabin pressurization and the leading edge deicing.

Vacuum system includes:
- A pressure regulator
- An ejector
- A regulating and relief valve
- A pressure switch

Compressed air necessary for the ejector to create decompressed air is taken from the powerplant. The air flow is regulated before going into the ejector which creates necessary vacuum by venturi effect.

A relief valve fixed in cabin to frame C2, maintains the vacuum for pressurization system. In case of pressure drop, a pressure switch, installed in the system, indicates the failure by causing the "VACUUM LOW" CAS message to light on.

ELECTRONIC STANDBY INDICATOR (ESI-2000)

The L-3 Communications Avionics Systems ESI-2000 Electronic Standby Instrument System consists of an AMLCD display. An air data sensor is integral to the ESI-2000 housing. A replaceable battery assembly provides backup power. The Electronic Standby Indicator displays attitude (pitch and roll), along with altitude and airspeed. The ESI-2000 is powered from the "ESSENTIAL BUS 2", or internal battery ensuring that the airplane can continue safe flight and landing in the event of a loss of primary attitude and air data displays. Pitot and static pressures are provided to the ESI-2000 using the airplane pitot probe and static sources.
1) Pressure regulator
2) Ejector
3) Valve
4) Regulating and relief valve
5) Pressure switch
6) Failure CAS message
7.13 - ICE PROTECTION EQUIPMENT (Figure 7.13.1)

Ice protection equipment is as follows:
- Pneumatic deice system for inboard, central and outboard wing and for stabilizers: "AIRFRAME DE-ICE"
- Propeller electrical deice system: "PROP DE-ICE"
- Windshield electrical deice system: "WINDSHIELD"
- Electrical heating system for both pitots and for the stall warning sensor: "PITOT L HTR" and "PITOT R & STALL HTR"
- Turbine air inlet deice systems: "INERT SEP"

Deicing check and control panel is located on the lower L.H. side of the instrument panel.

WING AND EMPENNAGE DEICING

A pneumatic deice system assures protection of wing leading edges, horizontal stabilizer, elevator horns and vertical stabilizer. The system automatically cycles when "AIRFRAME DE-ICE" switch is set to ON. The 67-second cycle breaks down in two inflation cycles:
- a first cycle induces inflation of leading edges deicer boots in wing central and outboard sections.
- the second cycle induces inflation of leading edges deicer boots in horizontal stabilizer, elevator horns, vertical stabilizer and wing inboard section,

During each inflation cycle, one of the two corresponding warning lights located above "AIRFRAME DE-ICE" switch, remains illuminated.

Wing leading edge icing inspection light - see Chapter 7.8 Paragraph "EXTERIOR LIGHTING".

PROPELLER DEICING

Propeller deicing is accomplished through electrical heating of blade roots. This system operates cyclically and alternately on the inboard and outboard zones of all blades. Each cycle is 180 seconds long. The system operation is correct when green warning light located above "PROP DE ICE" switch illuminates. The cycles continue as long as the switch remains set to ON.

CAUTION

WHEN ENGINE IS SHUTDOWN, DO NOT SET THE "PROP DE ICE" SWITCH TO ON, DAMAGE TO THE PROPELLER BLADES COULD RESULT

WINDSHIELD DEICING

The windshields are deiced electrically by integrated heating resistors. The system includes a controller and two heat probes embedded in each windshield. They are operated by the "WINDSHIELD" switch.

When the switch is positioned to ON, the controller supplies the heating resistors, the windscreen temperature is monitored by probe # 1. When the temperature reaches 45°C (113°F), the controller cuts the electrical supply to the heating resistors and resumes supply when the temperature falls below 30°C (86°F). The cycle continues as long as the switch remains set to ON.

In the event of failure of probe # 1, the controller receives the temperature data from probe # 2. The electrical supply to the heating resistors is cut when the windscreen temperature reaches 56°C (133°F). In that case, the windscreen is no longer heated, the pilot can reset the system by setting the switch to OFF, then to ON.

Two green lights located above the "WINDSHIELD" switch go on when the corresponding heating resistors are being supplied.
HEATING OF PITOTS AND STALL WARNING SENSOR ("PITOT L HTR" AND "PITOT R & STALL HTR")

The two pitots, which supply ADCs, the airspeed indicator and the stall warning sensor are electrically heated. This deice equipment must be used even during flight into non-icing conditions.

The system condition messages ("PITOT NO HT L" or "PITOT NO HT R", "PITOT HT ON L" or "PITOT HT ON R", "STALL HEAT ON" or "STALL NO HEAT") are displayed on the GDU 1500 MFD CAS window. Refer to the "GARMIN" G1000 Cockpit Reference Guide for further details.

NOTE

Correct operation of the audible stall warning may be altered by severe or prolonged icing.

TURBINE AIR INLET PROTECTION

Operation and description are set forth in Chapter 7.6 Paragraph "ENGINE AIR INLET".
Figure 7.13.1 - DEICING CONTROL AND CHECK PANEL
INTENTIONALLY LEFT BLANK
7.14 - MISCELLANEOUS EQUIPMENT

STALL WARNING SYSTEM

The airplane is equipped with an electrically deiced stall sensor in the leading edge of the right wing. This sensor fitted with a vane is electrically connected to an audible warning. The vane senses the change in airflow over the wing and operates the warning unit, which produces an alert over the alarm speaker. This warning alert begins between 5 and 10 knots above the stall in all configurations.

Post-MOD70-0510-27

Simultaneously, the control wheel vibrates through the stick shaker.

The stall warning system should be checked during the preflight inspection by momentarily turning on the "SOURCE" selector and by manipulating the vane in the wing.

Post-MOD70-0423-34A

The stall warning system should also be checked during the preflight inspection by momentarily turning on the "SOURCE" selector and by depressing the "TEST" push-button on cockpit overhead panel.

Pre-MOD70-0407-00

The system is operational if a continuous tone (low-pitched sound) is heard on the alarms speaker.

Post-MOD70-0407-00

The system is operational if a "stall" aural warning alert is heard on the alarms speaker.

NOTE

The audible stall warning may be altered by severe or prolonged icing.

STATIC DISCHARGERS

As an aid in flight, static dischargers are installed to improve radio communications during flight by reducing interference from dust or various forms of precipitations (rain, snow or ice crystals).

Under these conditions, the build-up and discharge of static electricity from the trailing edges of the wings (flaps and ailerons), rudder, stabilator, propeller tips and radio antennas can result in loss of usable radio signals on all communications and navigation radio equipment. Usually, the ADF is first and VHF communication equipment is the last to be affected.

Installation of static dischargers reduces interference from precipitation static, but it is possible to encounter severe precipitation static conditions which might cause the loss of radio signals, even with static dischargers installed. Whenever possible, avoid known severe precipitation areas to prevent loss of dependable radio signals. If avoidance is impractical, minimize airspeed and anticipate temporary loss of radio signals while in these areas.

CABIN FIRE EXTINGUISHER

The fire extinguisher is located on R.H. front station side panel.

A pressure gage allows checking the fire extinguisher condition. Follow the recommendations indicated on the extinguisher.
AUTOPilot

Autopilot control panel is located above the GDU 1500 MFD. Refer to Section 2 "Limitations" of this Pilot's Operating Handbook and to GARMIN G1000 Cockpit Reference Guide for further details.

GPS

GPS navigation is performed through the GARMIN G1000 system. Refer to Section 2 "Limitations" and Section 4 "Normal procedures" of this Pilot's Operating Handbook and to GARMIN G1000 Cockpit Reference Guide for further details.

WEATHER RADAR GWX 70

The weather information are displayed only on the MFD (GDU 1500).

Refer to Section 2 "Limitations" of this Pilot's Operating Handbook and to GARMIN G1000 Cockpit Reference Guide for further details.

The controls for the MFD are located on both the MFD bezel and the MFD control unit (keyboard GCU 475).

1) GDU 1500 MFD
2) Radar mode
3) Area of weather display
4) Antenna stabilization status
5) MFD bezels
6) GCU 475 MFD control unit
7) Changes radar range, TILT and bearing
8) Scale for weather display

Figure 7.14.1 (1/2) - GWX 70 weather radar display and controls
Figure 7.14.1 (2/2) - GWX 70 weather radar display and controls
EMERGENCY LOCATOR TRANSMITTER

The airplane is equipped with an emergency locator transmitter which enables to locate it in case of distress. It is located in fuselage rear section with a service door on fuselage R.H. side.

The emergency locator transmitter assembly is constituted of a transmitter supplied by a battery, of an antenna attached on upper fuselage and of a remote control located on the upper panel.

NOTE

For test sequences, refer to manufacturer manual.

ELT ARTEX 1000

Operation of the emergency locator transmitter is obtained as follows:

- from the instrument panel by setting "ELT" remote control switch to "ON" (locator transmitter "ARM/OFF" switch set to "ARM/OFF"),
- from the locator transmitter by setting its "ARM/OFF" control switch to "ON",
- automatically in case of shock, when remote control switch is set to "ARM/OFF" and locator transmitter switch is set to "ARM/OFF".

A red indicator light located on "ELT" remote control switch in the cockpit indicates to the pilot the emergency locator transmitter is transmitting.

A red indicator light located above locator transmitter switch and a buzzer located in the fuselage rear section indicate the emergency locator transmitter is transmitting.

Reset after an inadvertent activation

1) Set remote control switch or ELT switch to "ON".
 a) The ELT keeps on transmitting emergency signal.
 b) On remote control box, red indicator light flashes.
 c) On ELT, red indicator light flashes.
 d) Near ELT, the buzzer sounds.

2) Wait approximately for 1 second.

3) Set remote control switch to "ARM/OFF" or ELT switch to "ARM/OFF".

 NOTE: *The ELT cannot be reset if either the remote control switch or ELT switch is in "ON" position.*
 a) The ELT does not transmit emergency signal any longer.
 b) On remote control box, red indicator light illuminates for about 1 second, then goes off.
 or
 c) On ELT, red indicator light goes off.
 d) Near ELT, the buzzer does no more sound.
FLIGHT DECK INFORMATION SYSTEM (FS 210) (If installed)

The airplane is equipped with a flight deck information system allowing portable electronics devices to stream data to and from the G1000 system.

For the system description and its utilization, refer to GARMIN G1000 Cockpit Reference Guide

LIGHTWEIGHT DATA RECORDER (LDR 1000) (If installed)

The airplane is equipped with a lightweight data recorder which is a crash-survivable system, recording both cockpit voices and flight data. These data are intended to be used after an accident or an incident.

The lightweight data recorder system includes a cockpit microphone located on instrument panel, between the ESI-2000 and the autopilot control panel.

The lightweight data recorder simultaneously records audio from both GMA #1 and #2 audio control panels, audio from the cockpit microphone, data from the GASC, and data from the GIA 63W integrated avionics unit #1 (G1000 system).

The lightweight data recorder is powered from the "BATT BUS" and controlled by a printed circuit as follows:
- If the crash lever is set upward, the lightweight data recorder starts recording.
- If the crash lever is set downward, the lightweight data recorder goes on recording for 10 minutes (audio only) and then automatically stops recording.

OPTIONAL EQUIPMENT

For optional equipment such as weather radar, stormscope, SVS or TAWS system, refer to Section 9 "Supplements".

Other optional equipment such as radio altimeter or chartview system or TAS system are described in the GARMIN G1000 Cockpit Reference Guide.

NOTE

Refer to Section 2 "Limitations" for chartview system operating limitations.
SECTION 8

HANDLING, SERVICING AND MAINTENANCE

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 GENERAL</td>
<td>8.1.1</td>
</tr>
<tr>
<td>8.2 IDENTIFICATION PLATE</td>
<td>8.2.1</td>
</tr>
<tr>
<td>8.3 PUBLICATIONS</td>
<td>8.3.1</td>
</tr>
<tr>
<td>8.4 INSPECTION PERIODS</td>
<td>8.4.1</td>
</tr>
<tr>
<td>8.5 ALTERATIONS OR REPAIRS</td>
<td>8.5.1</td>
</tr>
<tr>
<td>8.6 GROUND HANDLING</td>
<td>8.6.1</td>
</tr>
<tr>
<td>TOWING</td>
<td>8.6.1</td>
</tr>
<tr>
<td>PARKING</td>
<td>8.6.1</td>
</tr>
<tr>
<td>JACKING</td>
<td>8.6.3</td>
</tr>
<tr>
<td>LEVELING</td>
<td>8.6.3</td>
</tr>
<tr>
<td>FLYABLE STORAGE</td>
<td>8.6.3</td>
</tr>
<tr>
<td>LONG TERM STORAGE WITHOUT FLYING</td>
<td>8.6.3</td>
</tr>
<tr>
<td>8.7 SERVICING</td>
<td>8.7.1</td>
</tr>
<tr>
<td>MAINTENANCE</td>
<td>8.7.1</td>
</tr>
<tr>
<td>ENGINE OIL</td>
<td>8.7.1</td>
</tr>
<tr>
<td>FUEL</td>
<td>8.7.2</td>
</tr>
<tr>
<td>LANDING GEAR</td>
<td>8.7.5</td>
</tr>
<tr>
<td>OXYGEN</td>
<td>8.7.5</td>
</tr>
<tr>
<td>8.8 AIRPLANE CLEANING AND CARE</td>
<td>8.8.1</td>
</tr>
<tr>
<td>WINDSHIELD AND WINDOWS</td>
<td>8.8.1</td>
</tr>
<tr>
<td>PAINTED SURFACES</td>
<td>8.8.1</td>
</tr>
<tr>
<td>PROPELLER CARE</td>
<td>8.8.1</td>
</tr>
<tr>
<td>ENGINE CARE</td>
<td>8.8.1</td>
</tr>
<tr>
<td>INTERIOR CARE</td>
<td>8.8.1</td>
</tr>
<tr>
<td>8.9 UTILIZATION BY COLD WEATHER (-0°C TO -25°C) OR VERY COLD WEATHER (-25°C TO -40°C)</td>
<td>8.9.1</td>
</tr>
<tr>
<td>8.10 PREPARATION OF THE AIRPLANE (EQUIPMENT AND FURNISHINGS)</td>
<td>8.10.1</td>
</tr>
</tbody>
</table>
8.1 - GENERAL

This section contains the procedures recommended by the manufacturer for the proper ground handling and routine care and servicing of TBM 900 airplane. Also included in this section are the inspection and maintenance requirements which must be followed if your airplane is to retain its performance and dependability.

It is recommended that a planned schedule of lubrication and preventive maintenance be followed, and that this schedule be tailored to the climatic or flying conditions to which the airplane is subjected.

For this, see Manufacturer's Maintenance Manual.
8.2 - IDENTIFICATION PLATE

Any correspondence regarding your airplane should include its serial number. This number together with the model number, type certificate number and production certificate number are stamped on the identification plate attached to the left side of the fuselage beneath the horizontal stabilizer.
8.3 - PUBLICATIONS

When the airplane is delivered from the factory, it is supplied with a Pilot's Operating Handbook, the "GARMIN" G1000 Integrated Flight Deck Cockpit Reference Guide, No. 190-00708-05, or any later version as applicable, and supplemental data covering optional equipment installed in the airplane (refer to Section 9 "Supplements" and pilot's guides).

In addition, the owner may purchase the following:

- Maintenance Manual
- Illustrated Parts Catalog (Bilingual)
- Catalog of Service Bulletins, Service Letters and Service Information Letters

CAUTION

PILOT'S OPERATING HANDBOOK MUST ALWAYS BE IN THE AIRPLANE
8.4 - INSPECTION PERIODS

Refer to regulations in force in the certification country for information concerning preventive maintenance to be carried out.

A maintenance Manual must be obtained prior to performing any preventive maintenance to make sure that proper procedures are followed. Maintenance must be accomplished by licensed personnel.
8.5 - ALTERATIONS OR REPAIRS

It is essential that the Airworthiness authorities be contacted prior to any alterations or repairs on the airplane to make sure that airworthiness of the airplane is not violated. Alterations or repairs must be accomplished by licensed personnel.
8.6 - GROUND HANDLING

CAUTION

ONLY MOVE OR TOW THE AIRPLANE WITH SOMEONE IN THE COCKPIT

TOWING

CAUTION

USING THE PROPELLER FOR GROUND HANDLING COULD RESULT IN SERIOUS DAMAGE, ESPECIALLY IF PRESSURE OR PULL IS EXERTED ON BLADE TIPS

The airplane should be moved on the ground with a towing bar and a suitable vehicle in order not to damage the nose gear steering mechanism. Nose gear fork is equipped with an integrated towing fitting.

CAUTION

DO NOT TOW THE AIRPLANE WHEN CONTROLS ARE SECURED

WHEN TOWING WITH A VEHICLE, DO NOT EXCEED THE NOSE GEAR TURNING ANGLE, AS THIS MAY RESULT IN DAMAGE TO THE GEAR AND STEERING MECHANISM (see Figure 8.6.1)

PARKING

When parking the airplane, head it into the wind. Do not set the parking brake when brakes are overheated or during cold weather when accumulated moisture may freeze the brakes. Care should be taken when using the parking brake for an extended period of time during which an air temperature rise or drop could cause difficulty in releasing the parking brake or damage the brake system.

Make sure that the fuel selector is set to "OFF".

NOTE

Do not use solar screens or shields installed on the airplane inside, or leave sun visors down against windshield when airplane on ground. The reflected heat from these items causes a temperature increase which accelerates the crack growth or crazing and may cause the formation of bubbles in the inner layer of multilayer windshields.

Beyond 24 hours parking, use windshield protection screen provided with lateral and underside straps.

For long term parking, blanking covers (static ports, pitot, engine air inlet, NACAs, exhaust stubs), cockpit cover, tie-downs, wheel chocks, propeller lock and control lock are recommended.

In severe weather and high wind conditions, tie the airplane down as outlined in the following paragraph.

TIE-DOWN

Proper tie-down procedure is the best protection against damage to the airplane by gusty or strong winds. To tiedown the airplane securely, proceed as follows:

- Install control lock (see Figure 8.6.2).
- Chock all wheels.
- Tie sufficiently strong ropes or chains to hold airplane down; insert a rope in each tie-down hole located on flap hinge arm; secure each rope to a ramp tie-down or to mooring rod.
- Check that doors are closed and locked.
Figure 8.6.1 - TURNING ANGLE LIMITS
JACKING

When it is necessary to jack the airplane off the ground, refer to Maintenance Manual for specific procedures and equipment required.

LEVELING

Level the airplane as described in Maintenance Manual.

FLYABLE STORAGE

Airplanes placed in storage for a maximum of 28 days are considered in flyable storage.

Storage from 0 to 7 days:
- Engine: according to Maintenance Manual P & W C.

Airplane fueling:
- Keep fuel tanks full to minimize condensation in the tanks. Keep the battery fully charged to prevent the electrolyte from freezing in cold weather.
 Close oxygen cylinder isolation valve.

Storage from 8 to 28 days:
- Engine: according to Maintenance Manual P & W C.

Airplane fueling:
- Keep fuel tanks full to minimize condensation in the tanks. Keep the battery fully charged to prevent the electrolyte from freezing in cold weather.
 Close oxygen cylinder isolation valve.

Battery (remaining in the airplane or removed):
- Disconnect battery and check its charge level at regular intervals.

LONG TERM STORAGE WITHOUT FLYING

Refer to Maintenance Manual for the procedures to follow.
Figure 8.6.2 - CONTROL LOCK DEVICE
8.7 - SERVICING

MAINTENANCE

In addition to the preflight inspection (refer to Section 4, "Normal Procedures"), servicing, inspection and test requirements for the airplane are detailed in the Maintenance Manual.

Maintenance Manual outlines all items which require servicing, inspection, testing or overhaul.

ENGINE OIL

Oil type :

CAUTION

DO NOT MIX DIFFERENT VISCOSITIES OR SPECIFICATIONS OF OIL AS THEIR DIFFERENT CHEMICAL STRUCTURE CAN MAKE THEM INCOMPATIBLE

<table>
<thead>
<tr>
<th>Nominal Viscosity</th>
<th>Specification</th>
<th>NATO Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>5cSt</td>
<td>MIL-PRF-23699G</td>
<td>O-156 (STD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O-154 (HTS)</td>
</tr>
</tbody>
</table>

Figure 8.7.1 - RECOMMENDED ENGINE OIL TYPES

(Reference : Service Bulletin P & W C. No. 14001 at the latest revision)

Oil capacity :

System total capacity :

12.7 Quarts (12 Litres) (oil cooler included)

Usable capacity :

6 Quarts (5.7 Litres)

Servicing :

The engine oil should be changed and the oil filter cleaned/replaced at intervals recommended in Pratt & Whitney Canada Engine Maintenance Manual (EMM) (Ref. Chapter 72-00-00, Table 601, Periodic Inspection).

Oil level check :

To avoid overfilling of oil tank, and high oil consumption, an oil level check is recommended within 30 minutes after engine shutdown. Ideal interval is 15 to 20 minutes. If more than 30 minutes have passed and the dipstick indicates that oil is needed, start the engine and run at LO-IDLE for five minutes, and recheck oil level.

Check oil level against marking on dipstick and top-up as required. Normal oil level is between MAX HOT and one US quart (0.83 Imp. Quart, 0.95 litres) below MAX HOT, with engine in horizontal attitude.

NOTE : Filling the oil to the maximum level may result in high consumption rate, with the oil exiting through the accessory gearbox breather.

CAUTION

WHEN FILLER CAP ASSEMBLY IS INSTALLED AND LOCKED, NO MOVEMENT IS ALLOWED
FUEL

Total capacity each tank: 150.5 USG (570 l).

NOTE
To minimize condensation, it is recommended that airplane be refueled after each flight, respecting weight and balance limits.

CAUTION
NEVER FLY THE AIRPLANE WITH CONTAMINATED (WATER, SAND, RUST, DUST...) OR UNAPPROVED FUEL

Before each flight and after each fueling, use a sampler to bleed off some fuel through each tank and fuel filter drain to detect possible contamination and be sure that fuel used is the proper quality. If contamination is present, continue draining through all draining points until fuel is free of contamination. If quality of fuel used is not correct, defuel airplane completely and refuel with proper quality fuel.

CAUTION
DURING FUELING OPERATIONS, TAKE CARE NOT TO DAMAGE PNEUMATIC DEICER BOOTS LOCATED ON WING LEADING EDGE.

WARNING
DURING ALL FUELING OPERATIONS, FIRE FIGHTING EQUIPMENT MUST BE AVAILABLE; ATTACH GROUNDING WIRE TO AN UNPAINTED METALLIC PART OF THE AIRPLANE.

DO NOT OPERATE ANY AVIONICS OR ELECTRICAL EQUIPMENT ON THE AIRPLANE DURING FUELING. DO NOT ALLOW OPEN FLAME OR SMOKING IN THE VICINITY OF THE AIRPLANE WHILE FUELING

NOTE
Use of AVGAS must be recorded in engine module logbook

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM-D1655 JET A</td>
<td>AIR 3405C Grade F35</td>
<td>DERD 2494 Issue 9</td>
<td>F35 without additive</td>
</tr>
<tr>
<td>ASTM-D1655 JET A1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM-D1655 JET B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIL-DTL-5624 Grade JP-4</td>
<td>AIR 3407B</td>
<td>DERD 2454 Issue 4 Amdt 1</td>
<td>F40 with additive</td>
</tr>
<tr>
<td>MIL-DTL-5624 Grade JP-5</td>
<td>AIR 3404C Grade F44</td>
<td>DERD 2452 Issue 2 Amdt 1</td>
<td>F44 with additive when utilization</td>
</tr>
<tr>
<td>MIL-DTL-83133 Grade JP-8</td>
<td>AIR 3405C Grade F34</td>
<td>DERD 2453 Issue 4 Amdt 1</td>
<td>F34 with additive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S748</td>
</tr>
<tr>
<td></td>
<td>AIR 3404C Grade F43</td>
<td>DERD 2498 Issue 7</td>
<td>F43 without additive</td>
</tr>
</tbody>
</table>

Figure 8.7.2 - RECOMMENDED FUEL TYPES
(Reference: Service Bulletin P & W C. No. 14004)
Fuel additives

Fuel used must contain an anti-ice additive conforming to MIL-I-27686 or MIL-I-85470 specification.

Strict adherence to recommended preflight draining instructions as called for in Section 4 will eliminate any free water accumulations from the tank sumps. While small amounts of water may still remain emulsified in the gasoline, it will normally be consumed and go unnoticed in the operation of the engine.

One exception to this can be encountered when operating under the combined effect of use of certain fuels, with high humidity conditions on the ground followed by flight at high altitude and low temperature. Under these unusual conditions, small amounts of water emulsified can precipitate from the fuel stream and freeze in sufficient quantities to induce partial icing of the engine fuel system.

While these conditions are quite rare and will not normally be a problem to owners and operators, they do exist in certain areas of the world and consequently must be dealt with, when encountered.

Therefore, to alleviate the possibility of fuel icing occurring under these unusual conditions, it is required to add an ethylene glycol monomethyl ether (EGME or DIEGME) compound to the fuel supply.

The introduction of an EGME or DIEGME compound into the fuel provides two distinct effects:

- it absorbs the dissolved water from the fuel
- alcohol has a freezing temperature depressant effect.

EGME or DIEGME must be carefully mixed with the fuel in concentration, it must be between a minimum of 0.06 % and a maximum of 0.15 % by volume. Figure 8.7.3 provides EGME or DIEGME / fuel mixing ratio information.

CAUTION

DO NOT PERMIT THE CONCENTRATE OF EGME OR DIEGME TO COME IN CONTACT WITH THE AIRPLANE FINISH OR FUEL TANK

Mixing of the EGME or DIEGME with the fuel is extremely important. An excessive concentration (greater than 0.15 % by volume maximum) will result in detrimental effects to the fuel tanks by deterioration of protective primer, sealants and seals of system and engine components. Use only blending equipment recommended by the manufacturer to obtain proper proportioning.

Prolonged storage of the airplane will result in a water buildup in the fuel which "leeches out" the additive. An indication of this is when an excessive amount of water accumulates in the fuel tank sumps. The concentration can be checked using a differential refractometer. It is imperative that the technical manual for the differential refractometer be followed explicitly when checking the additive concentration.

Fuel and fuel additives in Ukraine and CIS countries

It is possible to use kerosene GOST 10227 RT with addition of anti-icing liquid:

- liquid "И" – GOST 8313–88

Above-mentioned liquid is added in the quantity equal to 0.3 percent per volume.

CAUTION

REFER TO SERVICE BULLETIN P & WC No. 14004 AT ITS LATEST REVISION FOR APPROPRIATE QUANTITIES
Figure 8.7.3 - ADDITIVE MIXING RATIO (EGME or DIEGME)
LANDING GEAR

Nose gear tire:
5.00-5 10 PR - Inflation pressure: 98 psi (6.7 bars) *

Main gear tires:
18 5.5 10 PR - Inflating pressure: 135 psi (9.32 bars) *

Nose gear shock absorber:
Fill with hydraulic fluid AIR 3520 B (MIL.H5606E); inflate with nitrogen to 87 psi (6 bars).

Main gear shock absorbers:
Fill with hydraulic fluid AIR 3520 B (MIL.H5606E); inflate with nitrogen to 160 psi (11 bars).

Hydraulic system:
Check every 100 hours and service with AIR 3520 B (MIL.H5606E) hydraulic fluid.

Brakes:
Service as required with AIR 3520 B (MIL.H5606E) hydraulic fluid.

NOTE

A higher inflation pressure has to be applied to tires and shock absorbers when in very cold conditions (refer to Chapter 8.9).

(*) Tire inflation pressures are given for an airplane on ground at 21°C.
An ambient temperature change of 3°C produces approximately 1% pressure change.

OXYGEN

The replenishment device of the oxygen cylinder is installed directly on the cylinder head. It consists of a charging valve and of a pressure gage graduated from 0 to 2000 PSIG. A chart - see Figure 8.7.4, located on the inside of the cylinder service door, gives the cylinder charge maximum pressure according to the environment temperature.

Figure 8.7.4 - CHARGE PRESSURE CHART
Replenishment procedure

WARNING

MAKE SURE THAT THE AIRPLANE IS FITTED WITH A GROUNディング CABLE AND IS PROPERLY GROUNDED. THE OXYGEN CART MUST BE ELECTRICALLY BONDED TO THE AIRPLANE.

DO NOT OPERATE THE AIRPLANE ELECTRICAL SWITCHES OR CONNECT/DISCONNECT GROUND POWER DURING OXYGEN SYSTEM REPLENISHMENT.

DO NOT OPERATE THE OXYGEN SYSTEM DURING REFUELING/DEFUELING OR PERFORM ANY OTHER SERVICING PROCEDURE THAT COULD CAUSE IGNITION.

INTRODUCTION OF PETROLEUM BASED SUBSTANCES SUCH AS GREASE OR OIL TO OXYGEN CREATES A SERIOUS FIRE HAZARD. USE NO OIL OR GREASE WITH THE OXYGEN REPLENISHMENT EQUIPMENT.

ALWAYS OPEN SHUT-OFF VALVE SLOWLY TO AVOID GENERATING HEAT AND REPLENISH THE SYSTEM SLOWLY AT A RATE NOT EXCEEDING 200 PSIG (13.7 BARS) PER MINUTE

CAUTION

REPLENISHMENT OF THE OXYGEN SYSTEM SHOULD ONLY BE CARRIED OUT BY QUALIFIED PERSONNEL

NOTE

The cylinder full charge is assured for a pressure of 1850 PSIG (127 bars) at a temperature of 70°F (21°C). If the cylinder temperature differs from 70°F (21°C), refer to Figure 8.7.4 which lists the required pressures according to the cylinder temperature.

Open the oxygen service door on the R.H. rear karman.

Measure the oxygen cylinder temperature.

Make sure the thermometer indication is constant. Note the indication.

Refer to the temperature/pressure chart for the correct oxygen cylinder pressure.

If the pressure on the oxygen cylinder gage is lower, fill the oxygen cylinder.

Make sure the area around the oxygen cylinder charging valve is clean. Remove the cap from the charging valve.

Make sure the oxygen supply hose is clean and connect it to the charging valve.

Slowly pressurize the oxygen cylinder to the correct pressure.

Close the oxygen supply and let the cylinder temperature become stable.

Monitor the oxygen pressure on the gage and fill to the correct pressure if necessary.

Release the pressure in the oxygen supply hose and disconnect from the charging valve.

Install the cap on the charging valve.

Make sure all the tools and materials are removed and the work area is clean and free from debris.

Close the oxygen service door.
Passengers’ masks repacking instructions

WARNING

DO NOT USE OIL OR OTHER PETROLEUM BASED LUBRICANTS ON PASSENGER OXYGEN MASK OR DEPLOYMENT CONTAINER. OIL BASED LUBRICANTS ARE A FIRE HAZARD IN OXYGEN-RICH ENVIRONMENTS

REPACKING PROCEDURES SHALL BE PERFORMED BY PERSONNEL FAMILIAR WITH THE INSTRUCTIONS AND WARNINGS IN THIS DOCUMENT. IMPROPERLY PACKED MASKS CAN DAMAGE THE MASKS OR RESULT IN FAILURE OF THE MASKS TO DEPLOY

WARNING

MASKS SHALL BE REPACKED IN AN AREA FREE OF OIL, GREASE, FLAMMABLE SOLVENTS OR OTHER CONTAMINANTS

Inspect and disinfect mask and deployment container with an aqueous solution of Zephiran Chloride ("Scott Aviation" P/N 00-2572) or with disinfection cleaners ("EROS" P/N SAN50). After disinfecting and thoroughly drying the mask, lightly dust the outside of the facepiece with Neo-Novacite powder ("Scott Aviation" P/N 00-736). Contamination can be removed with mild soap and water solution.

Fold headstrap into facepiece. Pull lanyard cord out to side of facepiece so that it does not interfere with repacking.

Lay reservoir bag on flat surface and smooth out wrinkles.
Gently fold reservoir bag lengthwise into thirds (outside edges folded inward over center of bag). Do not crease bag.

Fold reservoir bag away from breathing valves and into facepiece. Make sure bag does not cover breathing valves.

Top view

Bottom view

Breathing valves
Coil oxygen tubing inside facepiece over reservoir bag.

Connect oxygen tubing to manifold oxygen fitting.

WARNING
MAKE SURE LANYARD PIN IS INSERTED INTO CORRECT CHECK VALVE FOR MASK BEING INSTALLED. CROSS CONNECTED PINS WILL RESULT IN PASSENGERS PULLING LANYARD CORDS ONLY TO INITIATE OXYGEN FLOW TO ANOTHER MASK.

Insert lanyard pin into corresponding check valve.

Place mask facepiece - first in deployment container. Make sure that oxygen tubing and lanyard cord are free to deploy and are not caught between the container and lid.

Close and latch deployment container lid.
8.8 - AIRPLANE CLEANING AND CARE

WINDSHIELD AND WINDOWS

The windshield and windows should be cleaned with an airplane windshield cleaner.

NOTE

Refer to the Maintenance Manual for products and procedures to apply.

Apply the cleaner sparingly with soft cloths and rub with moderate pressure until all dirt, oil scum and bug stains are removed. Allow the cleaner to dry, then wipe it off with soft flannel cloth.

CAUTION

DO NOT USE ANY OF THE FOLLOWING PRODUCTS ON, OR FOR CLEANING WINDOWS:
- METHANOL
- METHYLATED ALCOHOL
- GASOLINE
- BENZENE
- XYLENE
- METHYL-ETHYL-KETONE
- ACETONE
- CARBON TETRACHLORIDE
- LACQUER PAINT THINNERS
- COMMERCIAL OR HOUSEHOLD WINDOW CLEANING SPRAYS.

IN CASE OF DOUBT CONCERNING A PRODUCT, DO NOT USE IT.

DURING CLEANING OPERATION, AVOID WEARING OBJECTS SUCH AS RING, WATCH, BRACELET AND EXERCISE CARE TO PREVENT BUTTONS, BUCKLES AND ANY HARD OBJECTS FROM TOUCHING THE WINDSHIELD AND THE WINDOWS.

ADHESIVE TAPES OTHER THAN MINNESOTA 3M TYPE 670 SHALL NOT BE USED ON ACRYLIC SURFACES.

NEVER USE BUFFING MACHINES AS EXCESSIVE FORCES OR SPEEDS MIGHT PRODUCE REDHIBITORY DEFECTS

Follow by carefully washing with a mild detergent and plenty of water. Rinse thoroughly, then dry with a clean moist chamois. Do not rub the plastic with a dry cloth since this builds up an electrostatic charge which attracts dust. Waxing will finish the cleaning operation. A thin, even coat of wax polished out by hand with clean soft flannel cloth will fill in minor scratches and help prevent further scratching.

Do not use a canvas cover on the windshield unless freezing rain or sleet is anticipated since the cover may scratch the plastic surface.

PAINTED SURFACES

Refer to Maintenance Manual for the products and procedures to apply.

PROPELLER CARE

Preflight inspection of propeller blades for nicks and cleaning them occasionally with a cloth soaked with soapy water to clean off grass and bug stains will assure long blade life. Never use an alkaline cleaner on the blades; remove grease and dirt. Refer to Maintenance Manual for the procedures to follow.

ENGINE CARE

Refer to Maintenance Manual for the procedures to follow.

INTERIOR CARE

To remove dust and loose dirt from the upholstery and carpet, clean the interior regularly with a vacuum cleaner.

For additional information, refer to Maintenance Manual.
8.9 - UTILIZATION BY COLD WEATHER (- 0°C TO - 25°C) OR VERY COLD WEATHER (- 25°C TO - 40°C)

NOTE

Check pressure values in a hangar heated at about 15°C with control equipment at room temperature.

If a landing is foreseen by cold or very cold weather or in case of airplane prolonged operation in such conditions, it is recommended to prepare the airplane as follows:

1. Smear with silicone grease the door and engine cowlings seals, as well as the leading edge deicers.
2. Apply engine oil on the engine cowling latches.
3. Inflate main landing gear shock absorbers to 247 psi (17 bars) at a room temperature of 15°C.
4. Position a 0.59 in (15 mm) shim at the bottom of the piston tube and against forward landing gear half-fork to reduce shock absorber travel. Refill with hydraulic liquid. Remove the shim and inflate shock absorber to 138 psi (9.5 bars) at a room temperature of 15°C.
5. Inflate main landing gear tires to 130 psi (8.96 bars) and nose tire to 102 psi (7 bars) at a room temperature of 15°C.

NOTE

See Table 1 hereafter to check pressure values and to inflate tires and shock absorbers.

Check pressure values and inflate, if necessary, according to following table 1 during operation in cold weather only:

<table>
<thead>
<tr>
<th>OAT (°C)</th>
<th>-40°</th>
<th>-30°</th>
<th>-20°</th>
<th>-10°</th>
<th>+15°</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>189 (13)</td>
<td>196 (13.5)</td>
<td>203 (14)</td>
<td>218 (15)</td>
<td>247 (17)</td>
</tr>
<tr>
<td>SS</td>
<td>102 (7)</td>
<td>109 (7.5)</td>
<td>116 (8)</td>
<td>123 (8.5)</td>
<td>138 (9.5)</td>
</tr>
<tr>
<td>PSI</td>
<td>144 (9.96)</td>
<td>144 (9.96)</td>
<td>130 (8.96)</td>
<td>130 (8.96)</td>
<td>130 (8.96)</td>
</tr>
<tr>
<td>Nose gear tire</td>
<td>94 (6.5)</td>
<td>94 (6.5)</td>
<td>102 (7)</td>
<td>102 (7)</td>
<td>102 (7)</td>
</tr>
</tbody>
</table>

Table 1
8.10 - PREPARATION OF THE AIRPLANE (EQUIPMENT AND FURNISHINGS)

WARNING

IN ANY ACCOMMODATION, MAKE SURE ACCESS TO EMERGENCY EXIT IS FREE.

CAUTION

REMOVED EQUIPMENT ITEMS MUST BE STOWED IN A PLACE WHICH ENSURES THEIR INTEGRITY.

Many accommodations are authorized by Daher Socata. They are enumerated in Section 7.

This procedure specifies how to change your 6-seat accommodation into 4-seat accommodation, and conversely. However, it can be used partly to remove or install an equipment item.

However, the pilot must ensure that he gets all necessary authorizations from his regulatory authority.

1 - CONVERSION OF 6-SEAT ACCOMMODATION INTO 4-SEAT ACCOMMODATION (Figures 8.10.1, 8.10.2, 8.10.3 and 8.10.4)

A - Tools and consumable materials
 - Seat protective covers

B - Preparation
 1) Make sure the "SOURCE" selector is set to "OFF" and the crash lever is down.

C - Removal of rear seats (Figure 8.10.1)
 1) To remove rear seats, perform the following operations

 CAUTION

 IN ORDER TO PREVENT CUSHION COVERING DAMAGE, PROTECTIVE COVERS SHOULD BE PUT ON SEATS.

 a) Install protective covers.
 b) Unlock backrest using backrest tilting handle (6) and fold it forward.

 NOTE

 For the R.H. rear seat, backrest tilting handle is located behind backrest.

 c) Clear the carpet from under the seat to facilitate moving in rails.
 d) Unlock seat using seat tilting handle (1) and tilt it forward.
 e) Hold the seat in tilted position and unscrew quick links (7) of strap (9) located under L.H. seatpan.

 NOTE

 This operation is specific to L.H. seat.

 f) Pull up and hold L.H. and R.H. rings (2), and turn knobs (8) by 90° in order to release and keep locks (3) in up position.
g) Move the seat in the rails to line up pads (4) with rail (5) apertures.
h) Remove the seat.

NOTE

Ensure proper storage of strap (9) with L.H. rear seat to avoid loosing part.

D - Removal of intermediate seats (Figures 8.10.2 and 8.10.3)

1) To remove intermediate seats, perform the following operations
 a) Install protective covers.
 b) Pull backrest bottom upholstery (25) to remove it.
 c) Clear the carpet from under the seat to facilitate moving in rails.
 d) Pull up locking handle (21) located under the pan, on the seat rear side, to unlock it.
 e) Move the seat in the rails to line up pads (23) with rail (24) apertures.
 f) Remove the seat.
 g) Install backrest bottom upholstery (25).

CAUTION: IN ORDER TO PREVENT DEFLECTORS DAMAGE, IT IS NECESSARY TO REMOVE THEM.

2) Remove deflector (34) maintained with Velcro-type strap.

3) If necessary, remove the cabin central carpet.

NOTE

If one of two cargo nets must be installed, it is necessary to use the carpet with appropriate cuttings.

E - Removal of a cabinet

NOTE

This operation must be carried out by a service center.

F - Cabin comfort (Figure 8.10.3)

1) Blank off the hot air outlet, located forward the large door, with blanking device assy (33) stored in storage bag - see Figure 8.10.3 Detail A.

2) Remove blanking plugs (32) located forward the large door and store them into storage bag - see Figure 8.10.3 Detail B.

3) Remove blanking plugs (31) located in line with R.H. front side window - see Figure 8.10.3 Detail C, and install them on holes located in line with card table - see Figure 8.10.3 Detail D.

G - Installation of intermediate seats (Figures 8.10.2, 8.10.3 and 8.10.4)

1) Install deflector (34), ensuring that both red marks (36) are aligned with the deflector holes (35) - see Figure 8.10.4.

NOTE

Position deflectors (34) as indicated on label, according to future position of intermediate seat.
2) Install intermediate seats.

NOTE

If seats are installed facing flight direction (frontwards), the L.H. seat must be installed on the right and the R.H. seat on the left in order to have the armrest on aisle side.

- a) Pull backrest bottom upholstery (25) to remove it.
- b) Clear the carpet from seat area to facilitate moving in rails.
- c) Position the seat and put lock (22) near the color mark (37) made on rail bottom on aisle side.

NOTE

The color mark (37) in the rail is aligned with red marks (36).

- d) Pull up locking handle (21), insert pads (23) into rail (24) apertures and then, move the seat so that lock (22) is in front of the color mark (37).
- e) Release locking handle (21) to lock the seat.

WARNING: *VERIFY THAT LOCK (22) AND ALL PADS (23) ARE ENGAGED AND LOCKED INTO RAILS, TRYING TO MOVE SEAT FORWARD AND BACKWARD.*

- f) Install backrest bottom upholstery (25).

NOTE

Adjust it properly; make sure not to obstruct deflector (34) outlet.

- g) Slide properly the carpet under the seat.
- h) Remove protective covers.

H - Final operations

1) If removed, install cabin central carpet suited to the intended use.

NOTE

Slide properly the carpet under doorstep.

2) If necessary, remove the baggage compartment partition net and install the small or large cargo net (refer to Section 7).

3) Make sure the work area is clean and free from debris.

4) Determine weight and balance (refer to Section 6).

2 - CONVERSION OF 4-SEAT ACCOMMODATION INTO 6-SEAT ACCOMMODATION (Figures 8.10.1, 8.10.2, 8.10.3 and 8.10.4)

A - Tools and consumable materials

- Seat protective covers

B - Preparation

1) Make sure the "SOURCE" selector is set to "OFF" and the crash lever is down.

2) If installed, remove the cargo net.
3) Remove intermediate seats – refer to Paragraph 1.D.

4) Remove the deflectors (34) maintained with Velcro-type strap.

5) If necessary, remove the cabin central carpet.

C - Cabin comfort (Figure 8.10.3)

1) Remove blanking plugs (32) from their storage bag and install them on holes located forward the large door - see Figure 8.10.3 Detail B.

2) Remove blanking device assy (33) from the hot air outlet, located forward the large door, and store it into storage bag - see Figure 8.10.3 Detail A.

3) Remove blanking plugs (31) located in line with card table - see Figure 8.10.3 Detail D, and install them on holes located in line with R.H. front side window - see Figure 8.10.3 Detail C.

D - Installation of cabinet

NOTE

This operation must be carried out by a service center.

E - Installation of intermediate seats

1) Install intermediate seats – refer to Paragraph 1 G.

2) If removed, install the baggage compartment partition net.

3) If removed, install cabin central carpet.

F - Installation of rear seats (Figure 8.10.1)

1) Make sure the work area is clean and free from debris.

2) Clear the carpet from seat area to facilitate moving in rails.

3) Check that knobs (8) maintain locks (3) in up position.

4) Position the seat, fold it forward, refer to Detail B, and insert pads (4) into rail (5) apertures.

5) Move the seat so that locks (3) are in front of the color mark made on rail bottom.

6) Pull up and hold L.H. and R.H. rings (2) and turn knobs (8) by 90° in order to insert locks (3) into rail (5) apertures.

7) Make sure the seat is correctly locked on rails (5).

8) Tilt seat forward, hold it and slip strap (9) around the locking control hinge pin. Screw quick links (7).

9) Tilt the seat rearward and lock it using seat tilting handle (1).

10) Fold up the backrest and lock it using backrest tilting handle (6).

11) Slide properly the carpet under the seat.

12) Remove protective covers.
G - Reconditioning

1) Make sure the work area is clean and free from debris.

2) Determine weight and balance (refer to Section 6).

3 - ADDITIONAL CONFIGURATIONS

WARNING: REMOVED SEATS CAN ONLY BE INSTALLED AT THEIR ORIGINAL LOCATION. REAR SEAT (L.H. OR R.H.) IS THE ONLY ONE WHICH CAN BE INSTALLED IN CABIN AXIS, ON BOTH CENTRAL RAILS – REFER TO SECTION 7.

NOTE
Many combinations of accommodations are authorized with seats (rear and intermediate) by pilot or service centers and cabinet(s) by service centers only. However, the pilot must ensure that he gets all necessary authorizations from his regulatory authority.

NOTE
To remove or install these elements, use Paragraph 1 or 2 – (refer to Table 1).

NOTE
After these operations, determine weight and balance with the new index (refer to Section 6).

<table>
<thead>
<tr>
<th>EQUIPMENT</th>
<th>ACTION</th>
<th>DESCRIPTION OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAR SEAT</td>
<td>REMOVAL</td>
<td>Paragraph 1.C.</td>
</tr>
<tr>
<td></td>
<td>INSTALLATION</td>
<td>Paragraph 2. F.</td>
</tr>
<tr>
<td>INTERMEDIATE SEAT</td>
<td>REMOVAL</td>
<td>Paragraph 1.D.</td>
</tr>
<tr>
<td></td>
<td>INSTALLATION</td>
<td>Paragraph 1.G.</td>
</tr>
<tr>
<td>CARGO NET</td>
<td>INSTALLATION</td>
<td>SECTION 7</td>
</tr>
</tbody>
</table>

Table 1
1) Seat tilting handle
2) Ring
3) Lock
4) Pad
5) Rail
6) Backrest tilting handle
7) Quick link
8) Knob
9) Strap

Figure 8.10.1 (1/2) - Removal/Installation of rear seat
Figure 8.10.1 (2/2) - Removal/Installation of rear seat
Figure 8.10.2 - Removal/Installation of intermediate seat
Figure 8.10.3 - Cabin comfort – Installation of blanking plugs and deflector

31 - Blanking plug
32 - Blanking plug
33 - Blanking device assy
34 - Deflector
Figure 8.10.4 - Cabin comfort – Installation of deflector

- 34 - Deflector
- 35 - Deflector hole
- 36 - Red mark
- 37 - Color mark
LIST OF SUPPLEMENTS AND VALIDITIES

<table>
<thead>
<tr>
<th>SUP No.</th>
<th>Description</th>
<th>OPT/MOD</th>
<th>Validity</th>
<th>Edition Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>General</td>
<td>/</td>
<td>From S/N 1050</td>
<td>05.12.14</td>
</tr>
<tr>
<td>6</td>
<td>"BFG" WX-500 stormscope</td>
<td>OPT70-34-056 WX-500</td>
<td>From S/N 1000, plus S/N 687</td>
<td>31.10.13</td>
</tr>
<tr>
<td>18</td>
<td>Engine fire detection system</td>
<td>OPT70-26-002G</td>
<td>From S/N 1000 to S/N 1105, plus S/N 687</td>
<td>31.10.13</td>
</tr>
<tr>
<td>18</td>
<td>Engine fire detection system</td>
<td>OPT70-26-002H</td>
<td>From S/N 1000 to S/N 1105, plus S/N 687</td>
<td>31.10.13</td>
</tr>
<tr>
<td>45</td>
<td>Mexico specifics</td>
<td>MOD70-0496-26A</td>
<td>From S/N 1106 with MOD70-0176-00</td>
<td>15.02.16</td>
</tr>
<tr>
<td>49</td>
<td>"GARMIN" G1000 TAWS SYSTEM</td>
<td>MOD70-0176-00</td>
<td>From S/N 1000, plus S/N 687</td>
<td>31.10.13</td>
</tr>
<tr>
<td>50</td>
<td>"GARMIN" G1000 SYNTHETIC VISION SYSTEM</td>
<td>MOD70-0226-00</td>
<td>From S/N 1000, plus S/N 687</td>
<td>31.10.13</td>
</tr>
<tr>
<td>56</td>
<td>"GARMIN" GSR 56 weather datalink and satellite phone</td>
<td>MOD70-0331-23</td>
<td>From S/N 1000, plus S/N 687</td>
<td>31.10.13</td>
</tr>
<tr>
<td>57</td>
<td>Public transportation for French-registered airplanes</td>
<td>MOD70-0352-11</td>
<td>From S/N 1000, plus S/N 687</td>
<td>31.10.13</td>
</tr>
<tr>
<td>59</td>
<td>Brazil specifics</td>
<td>OPT70-01004</td>
<td>From S/N 1000, plus S/N 687</td>
<td>31.03.14</td>
</tr>
<tr>
<td>60</td>
<td>ADS-B OUT function</td>
<td>MOD70-0264-34</td>
<td>From S/N 1000, plus S/N 687</td>
<td>15.03.15</td>
</tr>
<tr>
<td>62</td>
<td>Flight envelope protection</td>
<td>MOD70-0423-34 and MOD70-0488-27</td>
<td>From S/N 1000, plus S/N 687 with MOD70-0176-00</td>
<td>15.04.16</td>
</tr>
</tbody>
</table>
SUPPLEMENT

"BFG" WX-500 STORMSCOPE

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - GENERAL</td>
<td>9.6.2</td>
</tr>
<tr>
<td>2 - LIMITATIONS</td>
<td>9.6.2</td>
</tr>
<tr>
<td>3 - EMERGENCY PROCEDURES</td>
<td>9.6.2</td>
</tr>
<tr>
<td>4 - NORMAL PROCEDURES</td>
<td>9.6.2</td>
</tr>
<tr>
<td>5 - PERFORMANCE</td>
<td>9.6.2</td>
</tr>
<tr>
<td>6 - WEIGHT AND BALANCE</td>
<td>9.6.3</td>
</tr>
<tr>
<td>7 - DESCRIPTION</td>
<td>9.6.3</td>
</tr>
<tr>
<td>8 - HANDLING, SERVICING AND MAINTENANCE</td>
<td>9.6.3</td>
</tr>
</tbody>
</table>
SECTION 1
GENERAL

This supplement is intended to inform the pilot about the equipment limitations, description and operations necessary for operation when the TBM airplane is equipped with the option “BFG” WX-500 STORMSCOPE”.

SECTION 2
LIMITATIONS

The limitations hereafter supplement or replace those of the standard airplane described in Section 2 “Limitations” of the basic Pilot's Operating Handbook when the airplane is equipped with the option “BFG” WX-500 STORMSCOPE”.

The “BFG” stormscope systems signal displays are not intended for the purpose of penetrating thunderstorm areas or areas of severe turbulence; such intentional use is prohibited.

NOTE

Range selection determines receiver sensitivity and therefore relative range. Displayed range is based on signal strength and is not to be used for accurate determination of thunderstorm location.

CAUTION

THE STORMSCOPE MUST NOT BE USED FOR THUNDERSTORM PENETRATION

The WX-500 Pilot's guide, Series II, No. 009-11501-001 and the "GARMIN" G1000 Integrated Flight Deck Cockpit Reference Guide for the Socata TBM 850, No. 190-00708-05, at their latest revision shall be readily available to the pilot, whenever the operation of the “BFG” stormscope is predicted.

SECTION 3
EMERGENCY PROCEDURES

Installation and operation of “BFG” WX-500 STORMSCOPE” do not change the basic emergency procedures of the airplane described in Section 3 “Emergency procedures” of the basic Pilot's Operating Handbook.

SECTION 4
NORMAL PROCEDURES

Normal operating procedures of the “BFG” stormscope are outlined in the WX-500 Pilot's Guide, Series II, No. 009-11501-001 at its last revision for “BFG” stormscope model WX-500.

SECTION 5
PERFORMANCE

Installation and operation of “BFG” WX-500 STORMSCOPE” do not change the basic performance of the airplane described in Section 5 “Performance” of the basic Pilot's Operating Handbook.
SECTION 6
WEIGHT AND BALANCE

The weight and balance hereafter supplement or replace those of the standard airplane described in Section 6 “Weight and balance” of the basic Pilot’s Operating Handbook when the airplane is equipped with the option “BFG” WX-500 STORMSCOPE”.

<table>
<thead>
<tr>
<th>S/ R/ A/</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPT70 or MOD70</td>
<td>34 - NAVIGATION</td>
<td>Stormscope WX-500 - shared with the GARMIN G1000 system</td>
<td>4.94 (2.240)</td>
</tr>
</tbody>
</table>

SECTION 7
DESCRIPTION

Information hereafter supplement or replace those of the standard airplane described in Section 7 "Description" of the basic Pilot’s Operating Handbook when the airplane is equipped with the option “BFG” WX-500 STORMSCOPE”.

The “BFG” (Series II) stormscope, weather mapping system provides a visual screen readout of the electrical discharges associated with thunderstorms. This information with proper interpretation, will allow the pilot to detect severe thunderstorm activity. A series of green dots or of strike points will be displayed on the screen to indicate the electrical discharge areas.

Dots or strike points may be displayed on two selectable views: 360° view of surrounding airspace and 120° view of forward airspace only.

The display scope provides full scale selectable ranges of 200, 100, 50 and 25 NM.

SECTION 8
HANDLING, SERVICING AND MAINTENANCE

Installation and operation of “BFG” WX-500 STORMSCOPE” do not change the handling, servicing and maintenance procedures of the airplane described in Section 8 “Handling, Servicing and Maintenance” of the basic Pilot’s Operating Handbook.
SUPPLEMENT

ENGINE FIRE DETECTION SYSTEM

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - GENERAL</td>
<td>9.18.2</td>
</tr>
<tr>
<td>2 - LIMITATIONS</td>
<td>9.18.2</td>
</tr>
<tr>
<td>3 - EMERGENCY PROCEDURES</td>
<td>9.18.3</td>
</tr>
<tr>
<td>4 - NORMAL PROCEDURES</td>
<td>9.18.5</td>
</tr>
<tr>
<td>5 - PERFORMANCE</td>
<td>9.18.5</td>
</tr>
<tr>
<td>6 - WEIGHT AND BALANCE</td>
<td>9.18.6</td>
</tr>
<tr>
<td>7 - DESCRIPTION</td>
<td>9.18.7</td>
</tr>
<tr>
<td>8 - HANDLING, SERVICING AND MAINTENANCE</td>
<td>9.18.7</td>
</tr>
</tbody>
</table>
SECTION 1
GENERAL

This supplement is intended to inform the pilot about the equipment limitations, description and operations necessary for operation when the airplane is equipped with the option “ENGINE FIRE DETECTION SYSTEM”.

The general hereafter supplement or replace those of the standard airplane described in Section 1 "General" of the basic Pilot's Operating Handbook when the airplane is equipped with the option “ENGINE FIRE DETECTION SYSTEM”.

The fire detection system allows engine fire monitoring and indicating.

SECTION 2
LIMITATIONS

Installation and operation of “ENGINE FIRE DETECTION SYSTEM” do not change the basic limitations of the airplane described in Section 2 "Limitations" of the basic Pilot's Operating Handbook.
SECTION 3
EMERGENCY PROCEDURES

The emergency procedures hereafter supplement or replace those of the standard airplane described in Section 3 "Emergency procedures" of the basic Pilot’s Operating Handbook when the airplane is equipped with the option "ENGINE FIRE DETECTION SYSTEM".

ENGINE FIRE ON GROUND

Symptoms: ITT increasing, "ITT" CAS message, "FIRE" CAS message, smoke, ...

1 - Throttle ... CUT OFF
2 - "BLEED" switch ... OFF/RST
3 - "A/C" switch .. OFF
4 - Brakes ... AS REQUIRED
5 - Tank selector .. OFF
6 - Warn ground assistance, if necessary

7 - Crash lever ... PULL DOWN
8 - EVACUATE as soon as possible
ENGINE FIRE IN FLIGHT

Symptoms: "FIRE" CAS message

Try to confirm the fire warning by looking for other indications such as ITT increase, "ITT" CAS message, smoke from engine cowls or air conditioning system.

FLY THE AIRPLANE

If the fire warning is not confirmed:
1. Monitor the engine parameters, ITT in particular
2. Look for smoke coming from engine cowls or from air conditioning system
3. Land as soon as possible.

If the fire warning is confirmed:
1. Throttle ... CUT OFF
2. "AUX BP" fuel switch ... OFF
3. Tank selector .. OFF
4. "BLEED" switch .. OFF/RST
5. "A/C" switch .. OFF
6. If necessary, .. Set oxygen mask
7. If necessary, .. EMERGENCY DESCENT
8. Perform a ... FORCED LANDING (ENGINE CUT OFF)

WARNING

AFTER ENGINE FIRE, DO NOT ATTEMPT AN AIR START
SECTION 4
NORMAL PROCEDURES

The normal procedures hereafter supplement or replace those of the standard airplane described in Section 4 "Normal procedures" of the basic Pilot's Operating Handbook when the airplane is equipped with the option "ENGINE FIRE DETECTION SYSTEM".

- Before starting the engine
 "FIRE TEST" push-button .. DEPRESS
 The "FIRE" CAS message lights on and causes the illumination of the "MASTER WARNING" light.

SECTION 5
PERFORMANCE

Installation and operation of "ENGINE FIRE DETECTION SYSTEM" do not change the basic performance of the airplane described in Section 5 "Performance" of the basic Pilot's Operating Handbook.
SECTION 6
WEIGHT AND BALANCE

The weight and balance hereafter supplement or replace those of the standard airplane described in Section 6 "Weight and balance" of the basic Pilot’s Operating Handbook when the airplane is equipped with the option "ENGINE FIRE DETECTION SYSTEM".

<table>
<thead>
<tr>
<th>S/ R/ A/ O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPT70 or MOD70</td>
<td>26 - FIRE PROTECTION</td>
<td>Engine fire detection system L'HOTELLIER</td>
<td>1.455 (0.66)</td>
</tr>
<tr>
<td>A</td>
<td>26002G</td>
<td>Engine fire detection system L'HOTELLIER</td>
<td>1.455 (0.66)</td>
<td>96.06 (2.440)</td>
</tr>
<tr>
<td>A</td>
<td>26002H</td>
<td>Engine fire detection system L'HOTELLIER</td>
<td>1.455 (0.66)</td>
<td>96.06 (2.440)</td>
</tr>
</tbody>
</table>
SECTION 7
DESCRIPTION

Information hereafter supplement or replace those of the standard airplane described in Section 7 "Description" of the basic Pilot’s Operating Handbook when the airplane is equipped with the option "ENGINE FIRE DETECTION SYSTEM".

The engine fire detection system enables the monitoring and indication of a fire in the engine area.

The system includes:
- 7 detectors
- the test push-button
- the G1000 system.

DETECTORS

The 7 detectors are secured on supports positioned in the most sensitive engine areas. They consist of thermal switches detecting a temperature greater than 200°C.

PUSH-BUTTON

The push-button enables the pilot to test the detection system by opening the grounding circuit. It is connected in series with the 7 detectors. The push-button is located on the L.H. side instrument panel near the "FIRE TEST" indication.

DISPLAY

SECTION 8
HANDLING, SERVICING AND MAINTENANCE

Installation and operation of “ENGINE FIRE DETECTION SYSTEM” do not change the basic handling, servicing and maintenance procedures of the airplane described in Section 8 "Handling, Servicing and Maintenance" of the basic Pilot’s Operating Handbook.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - GENERAL</td>
<td>9.18.2</td>
</tr>
<tr>
<td>2 - LIMITATIONS</td>
<td>9.18.2</td>
</tr>
<tr>
<td>3 - EMERGENCY PROCEDURES</td>
<td>9.18.3</td>
</tr>
<tr>
<td>4 - NORMAL PROCEDURES</td>
<td>9.18.5</td>
</tr>
<tr>
<td>5 - PERFORMANCE</td>
<td>9.18.5</td>
</tr>
<tr>
<td>6 - WEIGHT AND BALANCE</td>
<td>9.18.6</td>
</tr>
<tr>
<td>7 - DESCRIPTION</td>
<td>9.18.7</td>
</tr>
<tr>
<td>8 - HANDLING, SERVICING AND MAINTENANCE</td>
<td>9.18.7</td>
</tr>
</tbody>
</table>
SECTION 1
GENERAL

This supplement is intended to inform the pilot about the equipment limitations, description and operations necessary for operation when the airplane is equipped with the option “ENGINE FIRE DETECTION SYSTEM”.

The general hereafter supplement or replace those of the standard airplane described in Section 1 “General” of the basic Pilot’s Operating Handbook when the airplane is equipped with the option “ENGINE FIRE DETECTION SYSTEM”.

The fire detection system allows engine fire monitoring and indicating.

SECTION 2
LIMITATIONS

Installation and operation of “ENGINE FIRE DETECTION SYSTEM” do not change the basic limitations of the airplane described in Section 2 "Limitations" of the basic Pilot's Operating Handbook.
SECTION 3
EMERGENCY PROCEDURES

The emergency procedures hereafter supplement or replace those of the standard airplane described in Section 3 "Emergency procedures" of the basic Pilot’s Operating Handbook when the airplane is equipped with the option "ENGINE FIRE DETECTION SYSTEM".

ENGINE FIRE ON GROUND

Symptoms: ITT increasing, "ITT" CAS message, "FIRE" CAS message, smoke, ...

1 - Throttle ... CUT OFF

2 - "BLEED" switch ... OFF/RST

3 - "A/C" switch .. OFF

4 - Brakes ... AS REQUIRED

5 - Tank selector ... OFF

6 - Warn ground assistance, if necessary

7 - Crash lever .. PULL DOWN

8 - EVACUATE as soon as possible
ENGINE FIRE IN FLIGHT

Symptoms: "FIRE" CAS message

Try to confirm the fire warning by looking for other indications such as ITT increase, "ITT" CAS message, smoke from engine cowls or air conditioning system.

FLY THE AIRPLANE

If the fire warning is not confirmed:
1 - Monitor the engine parameters, ITT in particular
2 - Look for smoke coming from engine cowls or from air conditioning system
3 - Land as soon as possible.

If the fire warning is confirmed:
1 - Throttle ... CUT OFF
2 - "AUX BP" fuel switch ... OFF
3 - Tank selector ... OFF
4 - "BLEED" switch ... OFF/RST
5 - "A/C" switch ... OFF
6 - If necessary, .. Set oxygen mask
7 - If necessary, ... EMERGENCY DESCENT
8 - Perform a ... FORCED LANDING (ENGINE CUT OFF)

WARNING
AFTER ENGINE FIRE, DO NOT ATTEMPT AN AIR START
SECTION 4
NORMAL PROCEDURES

The normal procedures hereafter supplement or replace those of the standard airplane described in Section 4 "Normal procedures" of the basic Pilot's Operating Handbook when the airplane is equipped with the option "ENGINE FIRE DETECTION SYSTEM".

- Before starting the engine
 "TEST" push-button .. DEPRESS
 The "FIRE" CAS message lights on and causes the illumination of the "MASTER WARNING" light.

SECTION 5
PERFORMANCE

Installation and operation of "ENGINE FIRE DETECTION SYSTEM" do not change the basic performance of the airplane described in Section 5 "Performance" of the basic Pilot's Operating Handbook.
SECTION 6
WEIGHT AND BALANCE

The weight and balance hereafter supplement or replace those of the standard airplane described in Section 6 “Weight and balance” of the basic Pilot's Operating Handbook when the airplane is equipped with the option “ENGINE FIRE DETECTION SYSTEM”.

<table>
<thead>
<tr>
<th>S/R/A/O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPT70 or MOD70</td>
<td>26 - FIRE PROTECTION Engine fire detection system L'HOTELLIER</td>
<td>1.464 (0.66)</td>
<td>96.06 (2.440)</td>
</tr>
</tbody>
</table>
SECTION 7
DESCRIPTION

Information hereafter supplement or replace those of the standard airplane described in Section 7 "Description" of the basic Pilot’s Operating Handbook when the airplane is equipped with the option "ENGINE FIRE DETECTION SYSTEM".

The engine fire detection system enables the monitoring and indication of a fire in the engine area.

The system includes:
- 7 detectors
- the test push-button
- the G1000 system.

DETECTORS

The 7 detectors are secured on supports positioned in the most sensitive engine areas. They consist of thermal switches detecting a temperature greater than 200°C.

PUSH-BUTTON

The push-button enables the pilot to test the detection system by opening the grounding circuit. It is connected in series with the 7 detectors. The S86 “TEST” push-button is located on the PL45 panel.

DISPLAY

SECTION 8
HANDLING, SERVICING AND MAINTENANCE

Installation and operation of "ENGINE FIRE DETECTION SYSTEM" do not change the basic handling, servicing and maintenance procedures of the airplane described in Section 8 "Handling, Servicing and Maintenance" of the basic Pilot’s Operating Handbook.
INTENTIONALLY LEFT BLANK
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - GENERAL</td>
<td>9.45.2</td>
</tr>
<tr>
<td>2 - LIMITATIONS</td>
<td>9.45.2</td>
</tr>
<tr>
<td>Internal placards</td>
<td>9.45.2</td>
</tr>
<tr>
<td>External placards</td>
<td>9.45.7</td>
</tr>
<tr>
<td>3 - EMERGENCY PROCEDURES</td>
<td>9.45.14</td>
</tr>
<tr>
<td>4 - NORMAL PROCEDURES</td>
<td>9.45.14</td>
</tr>
<tr>
<td>5 - PERFORMANCE</td>
<td>9.45.14</td>
</tr>
<tr>
<td>6 - WEIGHT AND BALANCE</td>
<td>9.45.15</td>
</tr>
<tr>
<td>7 - DESCRIPTION</td>
<td>9.45.15</td>
</tr>
<tr>
<td>8 - HANDLING, SERVICING AND MAINTENANCE</td>
<td>9.45.15</td>
</tr>
</tbody>
</table>
SECTION 1
GENERAL

This supplement is intended to inform the pilot about the airplane specifics, among others those required by the relevant Certification Authorities (limitations, description and operations necessary to the operation of the TBM airplane).

SECTION 2
LIMITATIONS

The limitations hereafter supplement or replace those of the standard airplane described in Section 2 "Limitations" of the basic Pilot's Operating Handbook.

2.9 - PLACARDS

INTERNAL PLACARDS

1 - Rear pressurized baggage compartment (in cabin)
 On partition wall

 MÁXIMO 100 kg - (220 lbs)
 ES RESPONSABILIDAD DEL PILOTO COMPROBAR QUE TODO EL EQUIPAJE ESTÁ ASEGURADO CORRECTAMENTE.
 PARA INSTRUCCIONES DE CARGA REFIERASE A LOS "DATOS DE PESO Y BALANCE" DEL MANUAL DE OPERACIÓN DEL PILOTO.

 For the small cargo net, on frame C13bis
For the large cargo net, on R.H. Side upholstery panel, in the rear baggage compartment

2 - Non pressurized FWD baggage compartment
 On baggage compartment door frame

3 - On R.H. side at front seat level and on the first rear passengers masks container (R.H. side on the ceiling)
4 - On rear passengers masks containers (on R.H. side on the ceiling and left side)

![Image of oxygen mask sign]

5 - On rear passenger's table casing

![Image of table casing sign]

6 - Door internal side
 On access door
 On "pilot" door (if installed)
7 - On emergency exit handle

8 - On landing gear emergency control access door
9 - At the upper corner of the window on each side of the cockpit

10 - On cabinet drawer (optional)
EXTERNAL PLACARDS

11 - Under engine cowling and under each wing

12 - Near fuel tank caps
13 - Above brakes hydraulic fluid reservoir against firewall

14 - On landing gear hydraulic fluid reservoir

15 - On fuse box in engine cowling
16 - On internal face of L.H. engine cowling

Capacidad del sistema de aceite
12 l.
12.7 qt

17 - On front lower portion of firewall L.H. side

<table>
<thead>
<tr>
<th>OILS - ACEITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ AEROSHELL 560</td>
</tr>
<tr>
<td>☐ EXXON 2380 OR ESSO 2380 OR BPTO 2380</td>
</tr>
<tr>
<td>☐ MOBIL JET OIL II</td>
</tr>
<tr>
<td>☐ MOBIL JET OIL 254</td>
</tr>
<tr>
<td>☐ AERO SHELL TURBINE OIL 500</td>
</tr>
<tr>
<td>☐ ROYCO TURBINE OIL 500</td>
</tr>
<tr>
<td>☐ CASTROL 5000</td>
</tr>
<tr>
<td>☐ TURBONYCOIL 525 2A</td>
</tr>
</tbody>
</table>

JACKING POINT
PUNTO DE APOYO
PARA LEVANTAMIENTO
18 - On engine cowling, in front of compartment door

19 - On nose gear door

20 - On nose gear leg

ALIMENTACIÓN EXTERNA:
28 VOLTS C.D. NOMINAL.
CAPACIDAD MÍNIMA DE ARRANQUE:
800 AMPS
NO EXCEDER 1000 AMPS

WHEN TOWING A VEHICLE DO NOT
EXCEED THE NOSE GEAR TURNING
ANGLE. (28° MAX!)

DURANTE EL REMOLQUE
CON VEHÍCULO, NO
EXCEDER EL ÁNGULO DE
GIRO DEL TREN DE NARIZ
(MÁXIMO 28°)

TREN DE ATERrizaje
DE NARIZ
PRESIÓN DE LLANTA: 6,5 bar
94 psi
21 - On main gear leg

22 - On internal face of the oxygen cylinder service door

23 - On the oxygen service door
24 - Near air data system port

25 - On external side of emergency locator transmitter inspection door

26 - On emergency exit external side
27 - Door external side
 On "pilot" door

28 - On last step of stairs

CARGA MÁXIMA SOBRE LA ESCALERA: UNA PERSONA
29 - On R.H. access door jamb

SECTION 3
EMERGENCY PROCEDURES

No specifics

SECTION 4
NORMAL PROCEDURES

No specifics

SECTION 5
PERFORMANCE

No specifics
SECTION 6
WEIGHT AND BALANCE

The weight and balance hereafter supplement or replace those of the standard airplane described in Section 6 "Weight and balance" of the basic Pilot's Operating Handbook.

<table>
<thead>
<tr>
<th>S/ R/ A/ O</th>
<th>ITEM OPT70 or MOD70</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>01 - SPECIFIC OPTIONAL EQUIPMENT</td>
<td>Mexico certification markings SOCATA</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

SECTION 7
DESCRIPTION

No specifics

SECTION 8
HANDLING, SERVICING AND MAINTENANCE

No specifics
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - GENERAL</td>
<td>9.49.2</td>
</tr>
<tr>
<td>2 - LIMITATIONS</td>
<td>9.49.2</td>
</tr>
<tr>
<td>3 - EMERGENCY PROCEDURES</td>
<td>9.49.2</td>
</tr>
<tr>
<td>4 - NORMAL PROCEDURES</td>
<td>9.49.3</td>
</tr>
<tr>
<td>5 - PERFORMANCE</td>
<td>9.49.4</td>
</tr>
<tr>
<td>6 - WEIGHT AND BALANCE</td>
<td>9.49.4</td>
</tr>
<tr>
<td>7 - DESCRIPTION</td>
<td>9.49.5</td>
</tr>
<tr>
<td>8 - HANDLING, SERVICING AND MAINTENANCE</td>
<td>9.49.10</td>
</tr>
</tbody>
</table>
SECTION 1
GENERAL

This supplement is intended to inform the pilot about the equipment limitations, description and operations necessary for operation when the airplane is equipped with the option ""GARMIN" G1000 TAWS SYSTEM".

The TAWS function enables to detect if the airplane path is in compliance with the overflown terrain relief.

SECTION 2
LIMITATIONS

The limitations hereafter supplement or replace those of the standard airplane described in Section 2 "Limitations" of the basic Pilot's Operating Handbook when the airplane is equipped with the option ""GARMIN" G1000 TAWS SYSTEM".

The G1000 TAWS function provides terrain proximity alerting and detection to the pilot. It must not be used for airplane vertical and horizontal navigation.

AC 2318 recommendation: in order to avoid unwillingly warnings, TAWS function must be inhibited for any landing on a terrain which is not mentioned in the data base.

The use of the terrain awareness warning and terrain display functions is prohibited during QFE (atmospheric pressure at airport elevation) operations.

The following document or any further edition applicable to the latter, shall be readily available to the pilot, whenever the operation of TAWS system is predicted:

SECTION 3
EMERGENCY PROCEDURES

The emergency procedures hereafter supplement or replace those of the standard airplane described in Section 3 "Emergency Procedures" of the basic Pilot's Operating Handbook when the airplane is equipped with the option ""GARMIN" G1000 TAWS SYSTEM".

"TAWS FAIL" ANNUNCIATION

The TAWS function is not operational.
SECTION 4
NORMAL PROCEDURES

The normal procedures hereafter supplement or replace those of the standard airplane described in Section 4 "Normal Procedures" of the basic Pilot's Operating Handbook when the TBM airplane is equipped with the option "GARMIN" G1000 TAWS SYSTEM.

BEFORE TAKEOFF

- "TAWS System Test OK" voice message .. HEARD

4.1 - WARNINGS OF THE TAWS FUNCTION

"PULL UP" AURAL WARNING

The red "PULL-UP" PFD/MFD alert annunciation and "PULL-UP" MFD pop-up alert light on.

1 - Level the wings.
2 - Display the maximum power.
3 - Choose the optimum rate of climb adapted to airplane configuration and speed, until the warning disappears.

"Terrain Terrain, Pull up Pull up",
"Obstacle Obstacle, Pull up Pull up",
AURAL WARNINGS

The red "PULL-UP" PFD/MFD alert annunciation and "TERRAIN/OBSTACLE PULL-UP" pop-up alerts light on.

Adjust airplane path in order to make the warning disappear.

4.2 - CAUTIONS OF THE TAWS FUNCTION

"Caution terrain", "Caution obstacle",
"Too low terrain"
AURAL WARNINGS

The amber "TERRAIN" PFD/MFD alert annunciation and "CAUTION TERRAIN/OBSTACLE" or "TOO LOW TERRAIN" pop-up alerts light on.

Adjust airplane path in order to make the warning disappear.

"Don't sink" AURAL WARNING

The amber "TERRAIN" PFD/MFD alert annunciation and "DON'T SINK" pop-up alert light on.

Re-establish a positive rate of climb.

"Sink rate" AURAL WARNING

The amber "TERRAIN" PFD/MFD alert annunciation and "SINK RATE" pop-up alert light on.

Reduce rate of descent.
SECTION 5
PERFORMANCE

Installation and operation of ""GARMIN" G1000 TAWS SYSTEM" do not change the basic performance of the airplane described in Section 5 "Performance" of the basic Pilot’s Operating Handbook.

SECTION 6
WEIGHT AND BALANCE

The weight and balance hereafter supplement or replace those of the standard airplane described in Section 6 "Weight and balance" of the basic Pilot’s Operating Handbook when the airplane is equipped with the option ""GARMIN" G1000 TAWS SYSTEM".

<table>
<thead>
<tr>
<th>S/ R/ A/ O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0176-00 Version F</td>
<td>34 - NAVIGATION G1000 TAWS system GARMIN</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>
SECTION 7
DESCRIPTION

Information hereafter supplement or replace those of the standard airplane described in Section 7 "Description" of the basic Pilot’s Operating Handbook when the TBM airplane is equipped with the option “GARMIN” G1000 TAWS SYSTEM.

The G1000 TAWS function has 7 modes.

FORWARD LOOKING TERRAIN AVOIDANCE ALERT

The Forward Looking Terrain Avoidance (FLTA) alert is used by TAWS and is composed of:

- **Reduced Required Terrain Clearance and Reduced Required Obstacle Clearance**

 Reduced Required Terrain Clearance (RTC) and Reduced Required Obstacle Clearance (ROC) alerts are issued when the airplane flight path is above terrain, yet is projected to come within the minimum clearance values in table 9.49.1. When an RTC or ROC alert is issued, a potential impact point is displayed on the TAWS Page.

- **Imminent Terrain Impact and Imminent Obstacle Impact**

 Imminent Terrain Impact (ITI) and Imminent Obstacle Impact (IOI) alerts are issued when the airplane is below the elevation of a terrain or obstacle cell in the airplane’s projected path. ITI and IOI alerts are accompanied by a potential impact point displayed on the TAWS Page. The alert is annunciated when the projected vertical flight path is calculated to come within minimum clearance altitudes in table 9.49.1.

<table>
<thead>
<tr>
<th>Phase of flight</th>
<th>Minimum Clearance Altitude Level Flight (ft)</th>
<th>Minimum Clearance Altitude Descending (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enroute</td>
<td>700</td>
<td>500</td>
</tr>
<tr>
<td>Terminal</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>Approach</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>Departure</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 9.49.1 - Minimum Terrain and Obstacle Clearance values for FLTA alerts

During the final approach phase of flight, FLTA alerts are automatically inhibited when the airplane is below 200 feet AGL while within 0.5 Nm of the approach runway or below 125 feet AGL while within 1.0 Nm of the runway threshold.
The aural/displayed messages associated with the FLTA function are described in the table 9.49.2.

<table>
<thead>
<tr>
<th>Alert Type</th>
<th>PFD/MFD TAWS Page Annunciation</th>
<th>MFD Map Page Pop-Up Alert</th>
<th>Aural Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Required Terrain Clearance Warning (RTC) (Red)</td>
<td>PULL UP</td>
<td>TERRAIN - PULL-UP</td>
<td>“Terrain, Terrain ; Pull up, Pull up”</td>
</tr>
<tr>
<td>Imminent Terrain Impact Warning (ITI) (Red)</td>
<td>PULL UP</td>
<td>TERRAIN AHEAD - PULL-UP</td>
<td>“Terrain Ahead, Pull up ; Terrain Ahead, Pull up”</td>
</tr>
<tr>
<td>Reduced Required Obstacle Clearance Warning (ROC) (Red)</td>
<td>PULL UP</td>
<td>OBSTACLE - PULL-UP</td>
<td>“Obstacle, Obstacle ; Pull up, Pull up”</td>
</tr>
<tr>
<td>Imminent Obstacle Impact Warning (IOI) (Red)</td>
<td>PULL UP</td>
<td>OBSTACLE AHEAD - PULL-UP</td>
<td>“Obstacle Ahead, Pull up ; Obstacle Ahead, Pull up”</td>
</tr>
<tr>
<td>Reduced Required Terrain Clearance Caution (RTC) (Amber)</td>
<td>TERRAIN</td>
<td>CAUTION - TERRAIN</td>
<td>“Caution, Terrain ; Caution, Terrain”</td>
</tr>
<tr>
<td>Imminent Terrain Impact Caution (ITI) (Amber)</td>
<td>TERRAIN</td>
<td>TERRAIN AHEAD</td>
<td>“Terrain Ahead ; Terrain Ahead”</td>
</tr>
<tr>
<td>Reduced Required Obstacle Clearance Caution (ROC) (Amber)</td>
<td>TERRAIN</td>
<td>CAUTION - OBSTACLE</td>
<td>“Caution, Obstacle ; Caution, Obstacle”</td>
</tr>
<tr>
<td>Imminent Obstacle Impact Caution (IOI) (Amber)</td>
<td>TERRAIN</td>
<td>OBSTACLE AHEAD</td>
<td>“Obstacle Ahead ; Obstacle Ahead”</td>
</tr>
</tbody>
</table>

Table 9.49.2 - FLTA alerts
PREMATURE DESCENT ALERTING

A Premature Descent Alert (PDA) is issued when the system detects that the airplane is significantly below the normal approach path to a runway (Figure 9.49.1).

PDA alerting begins when the airplane is within 15 Nm of the destination airport. PDA alerting ends when the airplane is either:

- 0.5 Nm from the runway threshold

or

- at an altitude of 125 feet AGL while within 1.0 Nm of the threshold.

![Figure 9.49.1 - PDA alerting threshold](image)

The aural/displayed messages associated with the PDA function are described in the table 9.49.3.

<table>
<thead>
<tr>
<th>Alert Type</th>
<th>PFD/MFD TAWS Page Annunciation</th>
<th>MFD Map Page Pop-Up Alert</th>
<th>Aural Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premature Descent Alert Caution (PDA) (Amber)</td>
<td>TERRAIN</td>
<td>TOO LOW - TERRAIN</td>
<td>"Too low, Terrain"</td>
</tr>
</tbody>
</table>

Table 9.49.3 - PDA alerts
EXCESSIVE DESCENT RATE ALERT

The purpose of the Excessive Descent Rate (EDR) alert is to provide suitable notification when the airplane is determined to be closing (descending) upon terrain at an excessive speed. Figure 9.49.2 shows the parameters for the alert as defined by TSO-C151b.

![Figure 9.49.2 - Excessive Descent Rate Alert Criteria](image)

The aural/displayed messages associated with the EDR function are described in the table 9.49.4.

<table>
<thead>
<tr>
<th>Alert Type</th>
<th>PFD/MFD TAWS Page Annunciation</th>
<th>MFD Map Page Pop-Up Alert</th>
<th>Aural Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive Descent Rate Warning (EDR) (Red)</td>
<td>PULL UP</td>
<td>PULL-UP</td>
<td>"Pull up"</td>
</tr>
<tr>
<td>Excessive Descent Rate Caution (EDR) (Amber)</td>
<td>TERRAIN</td>
<td>SINK RATE</td>
<td>"Sink rate"</td>
</tr>
</tbody>
</table>

Table 9.49.4 - EDR alerts
NEGATIVE CLimb RATE AFTER TAKEOFF ALERT (NCR)

The purpose of the Negative Climb Rate (NCR) After Takeoff alert (also referred to as "Altitude Loss After Takeoff") is to provide suitable alerts to the pilot when the system determines that the airplane is loosing altitude (closing upon terrain) after takeoff. The aural message "Don't sink" is given for NCR alerts, accompanied by an annunciation and a pop-up terrain alert on the display. NCR alerting is only active when departing from an airport and when the following conditions are met:

- The height above the terrain is less than 700 feet.
- The distance from the departure airport is 2 Nm or less.
- The heading change from the heading at the time of departure is less than 110 degrees.

Figure 9.49.3 shows two figures which illustrate the NCR alerting parameters as defined by TSO-C151b.

The NCR alert is issued when the altitude loss and height are within the range in the first figure, or when the sink rate (negative vertical speed) and height are within the range in the second figure.

Figure 9.49.3 - Negative Climb Rate (NCR) Alert Criteria
The aural/displayed messages associated with the NCR function are described in the table 9.49.5.

<table>
<thead>
<tr>
<th>Alert Type</th>
<th>PFD/MFD TAWS Page Annunciation</th>
<th>MFD Map Page Pop-Up Alert</th>
<th>Aural Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative Climb Rate Caution (NCR) (Amber)</td>
<td>TERRAIN</td>
<td>DON'T SINK</td>
<td>"Don't sink"</td>
</tr>
</tbody>
</table>

Table 9.49.5 - NCR alerts

"FIVE-HUNDRED" AURAL ALERT

The purpose of the aural alert message "Five-Hundred" is to provide an advisory alert to the pilot that the airplane is 500 feet above terrain. When the airplane descends within 500 feet of terrain, the aural message "Five-Hundred" is generated. There are no display annunciations or pop-up alerts that accompany the aural message.

TAWS NOT AVAILABLE ALERT

TAWS requires a 3-D GPS navigation solution along with specific vertical accuracy minimums. Should the navigation solution become degraded or if the airplane is out of the database coverage area, the annunciation "TAWS N/A" is generated in the annunciation window and on the TAWS Page. The aural message "TAWS Not Available" is generated. When the GPS signal is re-established and the airplane is within the database coverage area, the aural message "TAWS Available" is generated.

TAWS Inhibit

TAWS also has an inhibit mode that deactivates the PDA/FLTA aural and visual alerts. Pilots should use discretion when inhibiting TAWS and always remember to enable the system when appropriate. Only the PDA and FLTA alerts are disabled in the inhibit mode.

SECTION 8

HANDLING, SERVICING AND MAINTENANCE

Installation and operation of "GARMIN G1000 TAWS SYSTEM" do not change the basic handling, servicing and maintenance procedures of the airplane described in Section 8 "Handling, Servicing and Maintenance" of the basic Pilot's Operating Handbook.
SUPPLEMENT

"GARMIN" G1000 SYNTHETIC VISION SYSTEM

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - GENERAL</td>
<td>9.50.2</td>
</tr>
<tr>
<td>2 - LIMITATIONS</td>
<td>9.50.2</td>
</tr>
<tr>
<td>3 - EMERGENCY PROCEDURES</td>
<td>9.50.3</td>
</tr>
<tr>
<td>4 - NORMAL PROCEDURES</td>
<td>9.50.3</td>
</tr>
<tr>
<td>5 - PERFORMANCE</td>
<td>9.50.4</td>
</tr>
<tr>
<td>6 - WEIGHT AND BALANCE</td>
<td>9.50.4</td>
</tr>
<tr>
<td>7 - DESCRIPTION</td>
<td>9.50.5</td>
</tr>
<tr>
<td>8 - HANDLING, SERVICING AND MAINTENANCE</td>
<td>9.50.7</td>
</tr>
</tbody>
</table>
SECTION 1
GENERAL

This supplement is intended to inform the pilot about the equipment limitations, description and operations necessary for operation when the TBM airplane is equipped with the option ""GARMIN" G1000 SYNTHETIC VISION SYSTEM" (SVS).

The SVS does not replace and is not intended to be used independently of the TAS and/or TAWS system(s).

The SVS does not replace and is not intended to be used independently of the horizontal and vertical primary flight instruments.

The SVS does not replace and is not intended to be used independently of the Course Deviation Indicator and the Vertical Deviation Indicator.

SECTION 2
LIMITATIONS

The limitations hereafter supplement or replace those of the standard airplane described in Section 2 "Limitations" of the basic Pilot's Operating Handbook when the TBM airplane is equipped with the option ""GARMIN" G1000 SYNTHETIC VISION SYSTEM".

The following document, or any further edition applicable to the latter, shall be readily available to the pilot, whenever operation of the SVS is predicted:

The use of the Synthetic Vision system display elements alone for aircraft control without reference to the G1000 primary flight instruments is prohibited.

The use of the Synthetic Vision system alone for vertical and/or horizontal navigation, or obstacle or terrain avoidance is prohibited.

Pathway boxes must be selected OFF when flying an instrument approach. Turn Pathways OFF when ACTIVATE VECTORS-TO-FINAL, ACTIVATE APPROACH is selected, or the airplane is established on any segment of the approach.

The use of the Synthetic Vision system traffic display alone to avoid other aircraft is prohibited.

The Terrain Database has an area of coverage from North 75° Latitude to South 60° Latitude in all longitudes.
SECTION 3
EMERGENCY PROCEDURES

The emergency procedures hereafter supplement or replace those of the standard airplane described in Section 3 “Emergency Procedures” of the basic Pilot's Operating Handbook when the TBM airplane is equipped with the option “GARMIN” G1000 SYNTHETIC VISION SYSTEM.

INCONSISTENT DISPLAY BETWEEN SVS AND G1000 PRIMARY FLIGHT INSTRUMENTS

- “PFD” key .. Press
- “SYN VIS” key ... Press
- “SYN TERR” key .. Press
- SVS is removed from the PFD Verify

Use G1000 primary displays for navigation and aircraft control.

SECTION 4
NORMAL PROCEDURES

The normal procedures hereafter supplement or replace those of the standard airplane described in Section 4 “Normal Procedures” of the basic Pilot's Operating Handbook when the TBM airplane is equipped with the option “GARMIN” G1000 SYNTHETIC VISION SYSTEM.

CAUTION
SVS INFORMATION IS NOT A SUBSTITUTE FOR STANDARD COURSE AND ALTITUDE DEVIATION INFORMATION PROVIDED BY THE CDI, VSI, VDI AND THE PRIMARY FLIGHT INSTRUMENTS, AS WELL AS FOR THE TRAFFIC ADVISORY SYSTEM (TAS) OR THE TERRAIN AWARENESS WARNING SYSTEM (TAWS).

SVS ACTIVATION (1/2)

1 - If SVS is desired:
 . “PFD” key .. Press
 . “SYN VIS” key ... Press
 . “SYN TERR” key .. Press
 . The synthetic vision system will cycle on or off with each press of the “SYN TERR” key. The Flight Path Marker is displayed anytime “SYN TERR” is selected for display.
SVS ACTIVATION (2/2)

(a) If Pathway is desired:

- “PATHWAY” key .. Press

The Pathway display will cycle on or off with each press of the “PATHWAY” key. The Pathway can be displayed separately or in conjunction with the flight director.

NOTE

The utilization of the PATHWAYS is bound by limitations mentioned in Section 2 of this Supplement.

(b) If Horizon Heading is desired:

- “HRZN HDG” key .. Press

The horizon heading display will cycle on or off with each press of the “HRZN HDG” key.

(c) If Airport Signs are desired:

- “APTSIGNS” key ... Press

The airport signs display will cycle on or off with each press of the “APTSIGNS” key.

NOTE

For PATHWAY, HRZN HDG and APTSIGNS: “SYN TERR” must be activated first.

When display backup mode is selected, the display of the SVS is active within 1 minute after SVS selection.

SECTION 5

PERFORMANCE

Installation and operation of '"GARMIN" G1000 SYNTHETIC VISION SYSTEM" do not change the basic performance of the airplane described in Section 5 "Performance" of the basic Pilot’s Operating Handbook.

SECTION 6

WEIGHT AND BALANCE

The weight and balance hereafter supplement or replace those of the standard airplane described in Section 6 "Weight and balance" of the basic Pilot’s Operating Handbook when the airplane is equipped with the option '"GARMIN" G1000 SYNTHETIC VISION SYSTEM".

<table>
<thead>
<tr>
<th>S/R/A/O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPT70 or MOD70</td>
<td>34 - NAVIGATION</td>
<td>0226-00</td>
<td>G1000 Synthetic Vision System</td>
</tr>
</tbody>
</table>
SECTION 7
DESCRIPTION

Information hereafter supplement or replace those of the standard airplane described in Section 7 "Description" of the basic Pilot's Operating Handbook when the airplane is equipped with the option "GARMIN" G1000 SYNTHETIC VISION SYSTEM".

SVS provides additional features on the G1000 primary flight display (PFD) which display the following information:

- **Synthetic Terrain**: an artificial, database derived, three dimensional view of the terrain ahead of the aircraft within a field of view of approximately 30 degrees left and 35 degrees right of the aircraft heading. The terrain data has a resolution of 9 arc seconds.
- **Obstacles**: obstacles such as towers, including buildings over 200 AGL that are within the depicted synthetic terrain field of view.
- **Flight Path Marker (FPM)**: an indication of the current lateral and vertical path of the aircraft. The FPM is always displayed when synthetic terrain is selected for display.
- **Pathway**: a pilot selectable three dimensional representation of the programmed flight plan path that can be selected for display alone or with the flight director anytime synthetic terrain is selected for display.
- **Traffic**: a display on the PFD indicating the position of other aircraft detected by the Traffic Information System (TIS) component of the G1000 system.
- **Horizon Line**: a white line indicating the true horizon is always displayed on the SVS display.
- **Horizon Heading**: a pilot selectable display of heading marks displayed just above the horizon line on the PFD.
- **Airport Signs**: pilot selectable "signposts" displayed on the synthetic terrain display indicating the position of nearby airports that are in the G1000 database.
- **Runway Highlight**: a highlighted presentation of the location and orientation of the runway(s) at the departure and destination airports.

Use of Pathway

If Synthetic Terrain is displayed on the PFD, the Pathway may be used to assist the pilot's awareness of the programmed lateral and vertical navigation path. The following sections describe the basic use of the Pathway in various flight segments. For more detailed information, consult the G1000 Pilot's Guide.

- **Departure**

 Prior to departure, load and activate the desired flight plan into the G1000 FMS, set the initial altitude on the G1000 altitude selector and select GPS on the HSI display just as you would without the SVS system.

 The programmed flight path will be displayed as a series of magenta boxes along the path at the flight plan altitude subject to the following conditions:

 - If the first segment of the flight plan is a heading to altitude leg, the Pathway will not be displayed for that segment. The first Pathway segment displayed will be the first GPS course leg.
 - The Pathway must be within the SVS field of view of 30 degrees left and 35 degrees right. If the programmed path is outside that field of view, the Pathway will not be visible on the display until the aircraft has turned toward the course.
 - The Pathway will be displayed at either the altitude selected on the G1000 selector OR the altitude published for the procedure (e.g. SID) WHICHEVER IS HIGHER.
After departure, the primary aircraft control must be by reference to the primary aircraft instruments. The SVS and Pathway displays should be used to aid in awareness of the terrain and programmed flight path.

Prior to intercepting the programmed course, the Pathway will be displayed as a series of magenta “boxes” with pointers at each corner that point in the direction of the programmed course. The Pathway boxes will not be displayed on portions of the course line that would lead the pilot to intercept the course in the wrong direction.

As the aircraft approaches the center of the programmed course and altitude, the number of Pathway boxes will decrease to a minimum of four.

- **Enroute**

 When enroute, the Pathway will be displayed along the lateral path defined by the flight plan, at the altitude selected on the G1000 altitude selector.

 Flight plan changes in altitude that require a climb will be indicated by the Pathway being displayed as a level path at the altitude entered for the current flight plan leg. Because the G1000 system does not have information available to it about aircraft performance, climb profiles are not displayed by the Pathway.

 If the programmed flight plan includes one or more defined VNAV descent segments, the descent path(s) will be displayed by the Pathway as prompted by the G1000 FMS.

 If the flight plan includes a significant change in course at a waypoint, the Pathway boxes toward the currently active waypoint will be magenta in color. The boxes defining the next flight plan segment may be visible, but will be displayed in a white color.

- **Approach**

 During approach, the SVS and Pathway displays should only be used to maintain awareness with regard to the surrounding terrain and the programmed flight path. Primary aircraft control must be accomplished by reference to the primary flight instruments and, if desired, the flight director.

- **GPS approach**

 During a GPS approach, the lateral path and altitude will be displayed by the Pathway in magenta along each segment including the path required to track course reversals that are part of the approach procedure (such as a holding pattern). Approach descent segments will be displayed by the Pathway as published in the approach procedure.

 If Vectors-To-Final is selected as the approach transition, the Pathway will display the final approach course inbound to the Missed Approach Point (MAP). The Pathway will be shown level at the altitude set in the G1000 altitude selector, or the Final Approach Fix (FAF) crossing altitude (whichever is higher), up to the point along the final approach course where that altitude intercepts the extended VPTH or GP. If the altitude selector indicates an altitude below the airplane's current altitude, the Pathway will appear below the airplane altitude and the pilot must use normal descent techniques to intercept the VPTH or GP.

 If the altitude selector is left at an altitude above the current airplane altitude, the airplane will intercept the final approach course below the extended GS, such that the Pathway will be displayed above the airplane until the aircraft intercepts the GS. From the GS intercept point, the pathway will be shown inbound to the MAP along the published lateral and vertical descent path.

- **ILS approach**

 When an ILS approach is programmed into the G1000 FMS, the initial approach segments will be displayed by the Pathway in magenta at the procedure segment altitudes if they are being flown by reference to a GPS path. When the G1000 system switches to the localizer inbound to the final approach fix, the Pathway will be displayed along the localizer inbound path and glideslope in green.

 If Vectors-To-Final is selected as the approach transition, the Pathway will display the final approach course inbound to the Missed Approach Point (MAP). The Pathway will be shown level at the altitude set in the G1000 altitude selector, or the Final Approach Fix (FAF) crossing altitude (whichever is higher), up to the point along the final approach course where that altitude intercepts the extended GS. If the altitude selector indicates an altitude below the airplane's current altitude, the Pathway will appear below the airplane altitude and the pilot must use normal descent techniques to intercept the GS. If the altitude selector is left at an altitude above the current airplane altitude, the airplane will intercept the final approach course below the extended GS, such that the Pathway will be displayed above the airplane until the aircraft intercepts the GS. From the GS intercept point, the pathway will be shown inbound to the MAP along the published localizer and glideslope.
- **VOR, LOC BC or other approach**
 Approach segments for a VOR, LOC BC, ADF or other approach that are approved to be flown by reference to GPS will be displayed by the Pathway in a magenta color. Approach segments that are defined by other than a GPS or ILS, such as heading legs or VOR defined final approach course, will not be displayed by the Pathway.

- **Missed approach**
 When the missed approach is selected on the G1000 FMS, the Pathway to the Missed Approach Holding Point will be displayed just as described for the departure segment.

 The pilot must assure that the aircraft path will, at all times, comply with the requirements of the published missed approach procedure.

 If the initial missed approach leg is heading-to-altitude or a leg defined by other than a GPS course, the Pathway will not be displayed for that segment.

 If the course to the Missed Approach Holding Point is out of the SVS field of view during the initial missed approach climb, the Pathway will not be visible on the PFD until the aircraft is turned toward the course.

 The Pathway will be displayed at the published missed approach altitude OR the altitude set on the G1000 altitude selector WHICHEVER IS HIGHER. If the G1000 altitude selector is set to MDA on the final approach segment and not reset during the initial missed approach, the Pathway will still be displayed at the published missed approach altitude.

**SECTION 8
HANDLING, SERVICING AND MAINTENANCE**

Installation and operation of "GARMIN" G1000 SYNTHETIC VISION SYSTEM" do not change the basic handling, servicing and maintenance procedures of the airplane described in Section 8 "Handling, Servicing and Maintenance" of the basic Pilot's Operating Handbook.
INTENTIONALLY LEFT BLANK
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - GENERAL</td>
<td>9.56.2</td>
</tr>
<tr>
<td>2 - LIMITATIONS</td>
<td>9.56.2</td>
</tr>
<tr>
<td>3 - EMERGENCY PROCEDURES</td>
<td>9.56.3</td>
</tr>
<tr>
<td>4 - NORMAL PROCEDURES</td>
<td>9.56.3</td>
</tr>
<tr>
<td>5 - PERFORMANCE</td>
<td>9.56.4</td>
</tr>
<tr>
<td>6 - WEIGHT AND BALANCE</td>
<td>9.56.4</td>
</tr>
<tr>
<td>7 - DESCRIPTION</td>
<td>9.56.4</td>
</tr>
<tr>
<td>8 - HANDLING, SERVICING AND MAINTENANCE</td>
<td>9.56.5</td>
</tr>
</tbody>
</table>
SECTION 1
GENERAL

This supplement is intended to inform the pilot about the equipment limitations, description and operations necessary for operation when the TBM airplane is equipped with the option “GARMIN” GSR 56 WEATHER DATALINK AND SATELLITE PHONE”.

SECTION 2
LIMITATIONS

The limitations hereafter supplement or replace those of the standard airplane described in Section 2 “Limitations” of the basic Pilot's Operating Handbook when the TBM airplane is equipped with the option “GARMIN” GSR 56 WEATHER DATALINK AND SATELLITE PHONE”.

SATELLITE PHONE functions
- It is forbidden to activate Pilot In Command On-side GMA TEL button as long as the airplane is in the air or moving on the ground.
- Only the Pilot In Command cross side GMA TEL input can be activated at all time of flight for the front passenger and passengers to have the GSR 56 telephone audio functions.

USE OF PHONE BY PIC PROHIBITED DURING ALL AIRCRAFT OPERATIONS

WEATHER DATALINK functions
- The GSR 56 weather datalink is only an advisory weather source, it does not relieve the pilot to comply with the applicable operational regulation in terms of flight preparation especially with regard to the use of an approved weather and NOTAM sources during flight planning.

The “GARMIN” G1000 Integrated Flight Deck Pilot's Guide for the Socata TBM 850, No. 190-00709-05 at its latest revision shall be readily available to the pilot whenever the operation of the GSR 56 weather datalink and satellite phone system is predicted.

INTERNATIONAL TELECOMMUNICATION REGULATION

The GSR 56 is a telecommunication device approved under FCC ID Q639522B and registered by the ITU (International Telecommunication Union) for international use according to the GMPCS-MoU.

The receiver transmitter RF module embedded in the GSR 56 is a 9522 B manufactured by Iridium Satellite LLC.

Terms of use are subject to changes and are available from the ITU website.

2.1 - PLACARDS

Under L.H. front side window, under instruction plate

USE OF PHONE BY PIC PROHIBITED DURING ALL AIRCRAFT OPERATIONS
SECTION 3
EMERGENCY PROCEDURES

Installation and operation of "GARMIN" GSR 56 WEATHER DATALINK AND SATELLITE PHONE do not change the basic emergency procedures of the airplane described in Section 3 "Emergency procedures" of the basic Pilot's Operating Handbook.

SECTION 4
NORMAL PROCEDURES

The normal procedures hereafter supplement or replace those of the standard airplane described in Section 4 "Normal Procedures" of the basic Pilot's Operating Handbook when the TBM airplane is equipped with the option "GARMIN" GSR 56 WEATHER DATALINK AND SATELLITE PHONE".

Normal operating procedures of the "GARMIN" GSR 56 WEATHER DATALINK AND SATELLITE PHONE system are outlined in the Pilot's Guide, the references of which are given in Section 2 "Limitations" of this Supplement.

BEFORE STARTING ENGINE

On L.H. GMA 1347 audio panel
1. "TEL" button ... OFF

BEFORE STARTING A PHONE CALL IN FLIGHT

On L.H. GMA 1347 audio panel
1. "TEL" button ... OFF

If passengers intend to take part into a phone call:
2. "CABIN" button ... OFF

If front passenger intends to take part into a phone call:
3. "INTRCOM" button ... OFF

On R.H. GMA 1347 audio panel
4. "TEL" button ... ON

If passengers intend to take part into a phone call:
5. "CABIN" button ... ON
SECTION 5
PERFORMANCE

Installation and operation of ""GARMIN" GSR 56 WEATHER DATALINK AND SATELLITE PHONE" do not change the basic performance of the airplane described in Section 5 "Performance" of the basic Pilot's Operating Handbook.

SECTION 6
WEIGHT AND BALANCE

The weight and balance hereafter supplement or replace those of the standard airplane described in Section 6 "Weight and balance" of the basic Pilot's Operating Handbook when the airplane is equipped with the option ""GARMIN" GSR 56 WEATHER DATALINK AND SATELLITE PHONE".

<table>
<thead>
<tr>
<th>S/R</th>
<th>R/O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>R/O</td>
<td>OPT70</td>
<td>Weather datalink and satellite phone system GSR 56 coupled with "GARMIN" G1000 system</td>
<td>3.82 (1.736)</td>
<td>58.03 (1.474)</td>
</tr>
<tr>
<td></td>
<td>R/O</td>
<td>MOD70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 7
DESCRIPTION

Information hereafter supplement or replace those of the standard airplane described in Section 7 "Description" of the basic Pilot's Operating Handbook when the airplane is equipped with the option ""GARMIN" GSR 56 WEATHER DATALINK AND SATELLITE PHONE".

"GARMIN" GSR 56 weather datalink and satellite phone system provides airborne low speed datalink and voice communication capability to "GARMIN" G1000 system excluding any voice mail function. GSR 56 weather datalink and satellite phone system contains a transceiver that operates on the Iridium Satellite network.

The weather information are displayed on the MFD (GDU 1500) maps and on the PFD (GDU 1040) inset map.

The satellite phone interface is embedded in the MFD : Phone communication and SMS can be received and sent through the dedicated pages on the MFD.

Although it is possible to leave a message when calling the aircraft, as voice mail communication is not supported by the GSR 56 :
- it is not possible to access the GSR 56 voice mail from the aircraft
- there is no indication on the G1000 system when a new message has been left on the GSR 56 voice mail.

The controls for the MFD are located on both the MFD bezel and the MFD control unit (keyboard GCU 475).

The telephone audio including the incoming call ringing is controlled by the TEL button on the GMA 1347 audio panels and can be played in the pilot, front passenger and passengers headphones.
SECTION 8
HANDLING, SERVICING AND MAINTENANCE

Installation and operation of "GARMIN" GSR 56 WEATHER DATALINK AND SATELLITE PHONE" do not change the basic handling, servicing and maintenance procedures of the airplane described in Section 8 "Handling, Servicing and Maintenance" of the basic Pilot’s Operating Handbook.
SUPPLEMENT

PUBLIC TRANSPORTATION FOR FRENCH-REGISTERED AIRPLANES

TABLE OF CONTENTS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GENERAL</td>
</tr>
<tr>
<td>2</td>
<td>LIMITATIONS</td>
</tr>
<tr>
<td>3</td>
<td>EMERGENCY PROCEDURES</td>
</tr>
<tr>
<td>4</td>
<td>NORMAL PROCEDURES</td>
</tr>
<tr>
<td>5</td>
<td>PERFORMANCE</td>
</tr>
<tr>
<td>6</td>
<td>WEIGHT AND BALANCE</td>
</tr>
<tr>
<td>7</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>8</td>
<td>HANDLING, SERVICING AND MAINTENANCE</td>
</tr>
</tbody>
</table>
SECTION 1
GENERAL

This supplement supplies information necessary for the operation of the TBM airplane when used for “PUBLIC TRANSPORTATION FOR FRENCH-REGISTERED AIRPLANES”.

SECTION 2
LIMITATIONS

The limitations hereafter supplement or replace those of the standard airplane described in Section 2 "Limitations" of the basic Pilot's Operating Handbook when the TBM airplane is used for “PUBLIC TRANSPORTATION FOR FRENCH-REGISTERED AIRPLANES”.

2.9 - PLACARDS

(1) On access door - Internal side

CAUTION: UNLOCK BEFORE OPERATING THE HANDLE
ATTENTION: DEVERROULLER AVANT D'AGIR SUR LA POIGNEE

TURN HANDLE TO OPEN
TOURNER LA POIGNEE
POUR OUVIR

(2) On access door - External side

APPUYER POUR DEVERROULLER
PRESS TO UNLOCK

TURN TO OPEN
TOURNER POUR OUVIR
(3) On “pilot” door - External side (if installed)

(4) On outer fuselage skin aft of access door and in the cabin, forward of access door

(5) On emergency exit handle - Internal side

(6) On emergency exit handle - External side
(7) On R.H. access door jamb

(8) On last step of stairs

(9) On rear passengers masks containers

(10) On R.H. side at front seat level and on the first rear passengers masks container (R.H. side on the ceiling)

(11) Under window, at L.H. intermediate seat
(12) On rear passenger's table edge

![LA TABLETTE DOIT ETRE RABATTUE LORS DU DECOLLAGE ET DE L'ATTERRISSAGE](image)

(13) On the chemical toilet cabinet curtain (if installed)

![LE RIDEAU DOIT ETRE RANGE LORS DU DECOLLAGE ET DE L'ATTERRISSAGE](image)

SECTION 3
EMERGENCY PROCEDURES

Use of TBM 850 airplane for “PUBLIC TRANSPORTATION FOR FRENCH-REGISTERED AIRPLANES” does not change the basic emergency procedures of the airplane described in Section 3 “Emergency procedures” of the basic Pilot’s Operating Handbook.

SECTION 4
NORMAL PROCEDURES

Use of TBM 850 airplane for “PUBLIC TRANSPORTATION FOR FRENCH-REGISTERED AIRPLANES” does not change the basic normal procedures of the airplane described in Section 4 “Normal procedures” of the basic Pilot's Operating Handbook.

SECTION 5
PERFORMANCE

Use of TBM 850 airplane for “PUBLIC TRANSPORTATION FOR FRENCH-REGISTERED AIRPLANES” does not change the basic performance of the airplane described in Section 5 “Performance” of the basic Pilot’s Operating Handbook.
SECTION 6
WEIGHT AND BALANCE

Use of TBM 850 airplane for “PUBLIC TRANSPORTATION FOR FRENCH-REGISTERED AIRPLANES” does not change the weight and balance of the airplane described in Section 6 “Weight and balance” of the basic Pilot’s Operating Handbook.

SECTION 7
DESCRIPTION

Use of TBM 850 airplane for “PUBLIC TRANSPORTATION FOR FRENCH-REGISTERED AIRPLANES” does not change the description of the airplane described in Section 7 “Description” of the basic Pilot’s Operating Handbook.

SECTION 8
HANDLING, SERVICING AND MAINTENANCE

Use of TBM 850 airplane for “PUBLIC TRANSPORTATION FOR FRENCH-REGISTERED AIRPLANES” does not change the basic handling, servicing and maintenance procedures of the airplane described in Section 8 “Handling, Servicing and Maintenance” of the basic Pilot’s Operating Handbook.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - GENERAL</td>
<td>9.59.2</td>
</tr>
<tr>
<td>2 - LIMITATIONS</td>
<td>9.59.2</td>
</tr>
<tr>
<td>3 - EMERGENCY PROCEDURES</td>
<td>9.59.9</td>
</tr>
<tr>
<td>4 - NORMAL PROCEDURES</td>
<td>9.59.9</td>
</tr>
<tr>
<td>5 - PERFORMANCE</td>
<td>9.59.9</td>
</tr>
<tr>
<td>6 - WEIGHT AND BALANCE</td>
<td>9.59.9</td>
</tr>
<tr>
<td>7 - DESCRIPTION</td>
<td>9.59.9</td>
</tr>
<tr>
<td>8 - HANDLING, SERVICING AND MAINTENANCE</td>
<td>9.59.9</td>
</tr>
</tbody>
</table>
SECTION 1
GENERAL

This supplement is intended to inform the pilot about the airplane specifics, among others those required by the relevant Certification Authorities (limitations, description and operations necessary to the operation of the TBM airplane).

SECTION 2
LIMITATIONS

The limitations hereafter supplement or replace those of the standard airplane described in Section 2 "Limitations" of the basic Pilot's Operating Handbook.

2.5 - WEIGHT AND C.G. LIMITS

WEIGHT LIMITS

With 4-seat accommodation

- in rear part of pressurized cabin: 396 lbs (180 kg), with small or large net (see sketch below)

2.6 - OPERATION LIMITS

When operating the VHF-COMM system in Brazilian air space, the selection of 8.33 kHz in the channels spacing can cause the loss of communication with the Air Traffic Control (ATC).

G1000 GNSS (GPS/SBAS) NAVIGATION SYSTEM LIMITATIONS

In accordance with Brazilian IS 21-013A, use of GNSS/GPS is prohibited under IFR unless other means of navigation, suitable and approved for the intended route, are installed and operational. It must be possible - at any point along the route - to navigate to the destination or alternate, using such means.

The SBAS functionality is not available in Brazil, therefore operations that require such functionality, such as GNSS vertical navigation modes, are prohibited in Brazilian airspace.
2.9 - PLACARDS

On pressurized baggage compartment partition wall

For the small cargo net, on frame C13bis

For the large cargo net, on R.H. side upholstery panel, in the rear baggage compartment
On FWD baggage compartment door frame (non pressurized)

50 kg MÁXIMO
PARA INSTRUÇÕES DE CARREGAMENTO
CONSULTAR A SEÇÃO DE PESO E
BALANCEAMENTO DO MANUAL DE VÔO

Near fuel tank caps

On rear passenger’s table casing

A MESA DEVERÁ ESTAR RECOLHIDA PARA DECOLAGEM E POUSO

On nose gear door

QUANDO REBOCAR
POR VEÍCULO,
NÃO EXCEDA OS
ÂNGULOS DO TREM
DIANTEIRO (28° MAX)
On engine cowling, in front of compartment door

- TOMADA EXTERNA
- 28 VOLTS D.C. NOMINAL
- 800 AMPS
CAPACIDADE MÍNIMA PARA PARTIDA
- NÃO EXCEDA 1000 AMPS

On "pilot" door - External side (if installed)

On access door - External side
On outer fuselage skin aft of access door and in the cabin forward of access door

On access door - Internal side

On "pilot" door - Internal side (if installed)
On emergency exit handle

Marking on cover

Marking on handle

On last step of stairs

MAX. UMA PESSOA NA ESCADA

On R.H. access door jamb

NÃO USE O CORRIMÃO PARA RECOLHER E PARA ALOJAR A ESCADA
On R.H. side at front seat level and on the first rear passengers masks container (R.H. side on the ceiling)

On rear passengers masks containers

On the oxygen service door
SECTION 3
EMERGENCY PROCEDURES

No specifics

SECTION 4
PROCEDURES NORMALES

No specifics

SECTION 5
PERFORMANCE

No specifics

SECTION 6
WEIGHT AND BALANCE

The weight and balance hereafter supplement or replace those of the standard airplane described in Section 6 “Weight and balance” of the basic Pilot's Operating Handbook.

<table>
<thead>
<tr>
<th>S/</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPT70 or MOD70</td>
<td>01 - SPECIFIC OPTIONAL EQUIPMENT</td>
<td>Brazil certification markings SOCATA</td>
<td>/</td>
</tr>
</tbody>
</table>

SECTION 7
DESCRIPTION

No specifics

SECTION 8
HANDLING, SERVICING AND MAINTENANCE

No specifics
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - GENERAL</td>
<td>9.60.2</td>
</tr>
<tr>
<td>2 - LIMITATIONS</td>
<td>9.60.2</td>
</tr>
<tr>
<td>3 - EMERGENCY PROCEDURES</td>
<td>9.60.2</td>
</tr>
<tr>
<td>4 - NORMAL PROCEDURES</td>
<td>9.60.2</td>
</tr>
<tr>
<td>5 - PERFORMANCE</td>
<td>9.60.2</td>
</tr>
<tr>
<td>6 - WEIGHT AND BALANCE</td>
<td>9.60.3</td>
</tr>
<tr>
<td>7 - DESCRIPTION</td>
<td>9.60.3</td>
</tr>
<tr>
<td>8 - HANDLING, SERVICING AND MAINTENANCE</td>
<td>9.60.3</td>
</tr>
</tbody>
</table>
SECTION 1
GENERAL

This supplement is intended to inform the pilot about the equipment limitations, description and operations necessary for operation when the airplane is equipped with “ADS-B OUT function”.

The ADS-B OUT function is integrated in the optional modification MOD70-0264-34 : Garmin GTX 33 Non-Diversity or diversity Mode S transponders with the extended squitter functionality.

The installed ADS-B OUT system has been shown to meet the equipment requirements of 14 CFR 91.227.

1.4 - ABBREVIATIONS AND TERMINOLOGY

RADIO - NAVIGATION ABBREVIATIONS

ADS-B : Automatic Dependent Surveillance-Broadcast

SECTION 2
LIMITATIONS

Operation of “ADS-B OUT function” does not change the limitations of the airplane described in Section 2 “Limitations” of the basic Pilot's Operating Handbook.

SECTION 3
EMERGENCY PROCEDURES

Operation of “ADS-B OUT function” does not change the emergency procedures of the airplane described in Section 3 “Emergency Procedures” of the basic Pilot's Operating Handbook.

SECTION 4
NORMAL PROCEDURES

Operation of “ADS-B OUT function” does not change the normal procedures of the airplane described in Section 4 “Normal Procedures” of the basic Pilot's Operating Handbook.

SECTION 5
PERFORMANCE

Operation of “ADS-B OUT function” does not change the basic performance of the airplane described in Section 5 “Performance” of the basic Pilot's Operating Handbook.
SECTION 6
WEIGHT AND BALANCE

Operation of “ADS-B OUT function” does not change the basic weight and balance of the airplane described in Section 6 “Weight and balance” of the basic Pilot's Operating Handbook.

SECTION 7
DESCRIPTION

Information hereafter supplement or replace those of the standard airplane described in Section 7 “Description” of the basic Pilot's Operating Handbook when the airplane is equipped with the “ADS-B OUT function”.

The “ADS-B OUT function” enables the airplane to broadcast data, such as position information, to ground stations and to other airplanes equipped with ADS-B IN system.

The loss of an interfaced input to the selected extended quitter transponder may cause the transponder to stop transmitting ADS-B OUT data. Depending on the nature of the fault or failure, the transponder may no longer be transmitting all of the required data in the ADS-B OUT messages.

Airplane equipped with one extended squitter transponder

ADS-B OUT data is only transmitted via transponder #1. Use of transponder #2 results in a loss of the ADS-B OUT data transmission.

If the transponder #1 detects any internal fault or failure with the ADS-B OUT functionality, the following advisory message “XPDR1 ADS-B FAIL” will be displayed on the PFDs.

After being informed of ADS-B OUT failure either by the advisory message “XPDR1 ADS-B FAIL”, or by Air traffic Control, it is possible to disable ADS-B OUT function by selecting transponder #2 (if installed).

Airplane equipped with two extended squitter transponders

ADS-B OUT data can be transmitted from any transponder upon pilot selection.

If the transponder #1 [#2] detects any internal fault or failure with the ADS-B OUT functionality, the following advisory message “XPDR1 ADS-B FAIL” [“XPDR2 ADS-B FAIL”] will be displayed on the PFDs.

After being informed of ADS-B OUT failure either by the advisory message “XPDR1 ADS-B FAIL” [“XPDR2 ADS-B FAIL”] or by Air traffic Control, it is possible to restore ADS-B OUT function by selecting transponder #2 [#1].

SECTION 8
HANDLING, SERVICING AND MAINTENANCE

Operation of “ADS-B OUT function” does not change the basic handling, servicing and maintenance of the airplane described in Section 8 “Handling, Servicing and Maintenance” of the basic Pilot's Operating Handbook.
SUPPLEMENT

FLIGHT ENVELOPE PROTECTION

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - GENERAL</td>
<td>9.62.2</td>
</tr>
<tr>
<td>2 - LIMITATIONS</td>
<td>9.62.2</td>
</tr>
<tr>
<td>3 - EMERGENCY PROCEDURES</td>
<td>9.62.3</td>
</tr>
<tr>
<td>4 - NORMAL PROCEDURES</td>
<td>9.62.7</td>
</tr>
<tr>
<td>5 - PERFORMANCE</td>
<td>9.62.11</td>
</tr>
<tr>
<td>6 - WEIGHT AND BALANCE</td>
<td>9.62.11</td>
</tr>
<tr>
<td>7 - DESCRIPTION</td>
<td>9.62.12</td>
</tr>
<tr>
<td>8 - HANDLING, SERVICING AND MAINTENANCE</td>
<td>9.62.15</td>
</tr>
</tbody>
</table>
SECTION 1
GENERAL

This supplement is intended to inform the pilot about the equipment limitations, description and operations necessary for operation when the airplane is equipped with "FLIGHT ENVELOPE PROTECTION".

The flight envelope protection may be:
- Option No. 1: the Lift Transducer, USP and coupled Go Around.
- Option No. 2: the Electronic Stability Protection (only if the option No. 1 is installed).

1.4 - ABBREVIATIONS AND TERMINOLOGY

GENERAL ABBREVIATIONS
AoA : Angle of Attack
ESP : Electronic Stability Protection
USP : UnderSpeed Protection

SECTION 2
LIMITATIONS

Operation of "FLIGHT ENVELOPE PROTECTION" does not change the limitations of the airplane described in Section 2 “Limitations” of the basic Pilot’s Operating Handbook.
SECTION 3
EMERGENCY PROCEDURES

Information hereafter supplement or replace those of the standard airplane described in Section 3 “Emergency Procedures” of the basic Pilot’s Operating Handbook.

3.2 - FAILURES WITH IMMEDIATE ACTION REQUIRED AND RED CAS MESSAGES

INADVERTENT SPINS

(Voluntary spins are prohibited)

1 - "AP / TRIM DISC” push-button PRESS and HOLD until recovery
2 - CONTROL WHEEL .. NEUTRAL : PITCH ROLL
3 - RUDDER ... FULLY OPPOSED TO THE SPIN
4 - THROTTLE .. FLIGHT IDLE
5 - Flaps ... UP

When rotation is stopped

6 - Level the wings and ease out of the dive
7 - THEN :

FLY THE AIRPLANE

AP OFF AND STALL WARNING SOUND

1 - Fly the airplane, wings level and nose down until stall warning stops
2 - Power as required
3 - Return to the desired flight path

"USP ACTIVE"

1 - Do not disconnect AP
2 - Increase power up to 50 % minimum
3 - Manage the flight

NOTE : Stall warning may be triggered but AP will remain ON
3.10 - ANNEX

From S/N 1000 to S/N 1105, plus S/N 687

Figure 3.10.2 - PARTIAL ELECTRICAL DISTRIBUTION OF BUS BARS

From S/N 1106

Figure 3.10.2 - PARTIAL ELECTRICAL DISTRIBUTION OF BUS BARS
SECTION 4
NORMAL PROCEDURES

Information hereafter supplement or replace those of the standard airplane described in Section 4 “Normal Procedures” of the basic Pilot’s Operating Handbook.

4.3 - CHECK-LIST PROCEDURES

GO-AROUND WITH AP OFF

1 - GO AROUND push-button ... Pushed

2 - Simultaneously
 - Throttle ... T/O power
 - Attitude ... 10°

3 - Flaps ... TO

Weight below 6579 lbs (2984 kg)
When the vertical speed is positive and when IAS is at or above 85 KIAS :

4 - Landing gear control ... UP
 All warning lights OFF

When IAS is at or above 110 KIAS :

5 - Flaps ... UP

6 - Climb speed ... As required

Weight above 6579 lbs (2984 kg)
When the vertical speed is positive and when IAS is at or above 90 KIAS :

7 - Landing gear control ... UP
 All warning lights OFF

When IAS is at or above 115 KIAS :

8 - Flaps ... UP

9 - Climb speed ... As required

10 - Power ... As required
GO-AROUND WITH AP ON

1 - GO AROUND push-button ... Pushed

2 - Simultaneously
 - Throttle ... T/O power

3 - Flaps ... TO

Weight below 6579 lbs (2984 kg)
When the vertical speed is positive and when IAS is at or above 85 KIAS :

4 - Landing gear control ... UP
 All warning lights OFF

When IAS is at or above 110 KIAS :

5 - Flaps ... UP

6 - Climb speed ... As required

Weight above 6579 lbs (2984 kg)
When the vertical speed is positive and when IAS is at or above 90 KIAS :

7 - Landing gear control ... UP
 All warning lights OFF

When IAS is at or above 115 KIAS :

8 - Flaps ... UP

9 - Climb speed ... As required

10 - Power ... As required
4.4 - AMPLIFIED PROCEDURES

GO-AROUND WITH AP OFF

1 - GO AROUND push-button ... Pushed

It provides the moving up of the flight director to + 10°.

2 - Simultaneously
 - Throttle ... T/O power
 - Attitude .. 10°

The airplane will tend to yaw to the left when power is applied. Right rudder pressure will be required to maintain coordinated straight flight until the rudder trim can be adjusted.

3 - Flaps ... TO

Weight below 6579 lbs (2984 kg)

If speed has been maintained at 80 KIAS or more and TRQ 100%, select TO flaps as soon as the 10° attitude has been attained.

When the vertical speed is positive and when IAS is at or above 85 KIAS :

4 - Landing gear control .. UP
 All warning lights OFF

When IAS is at or above 110 KIAS :

5 - Flaps ... UP

6 - Climb speed .. As required

Weight above 6579 lbs (2984 kg)

If speed has been maintained at 85 KIAS or more and TRQ 100%, select TO flaps as soon as the 10° attitude has been attained.

When the vertical speed is positive and when IAS is at or above 90 KIAS :

7 - Landing gear control .. UP
 All warning lights OFF

When IAS is at or above 115 KIAS :

8 - Flaps ... UP

9 - Climb speed .. As required

10 - Power .. As required
GO-AROUND WITH AP ON

1 - GO AROUND push-button ... Pushed

AP remains ON with the flight director moving up to + 10°.

2 - Simultaneously
 - Throttle ... T/O power
 - Flaps ... TO

Weight below 6579 lbs (2984 kg)

If speed has been maintained at 80 KIAS or more and TRQ 100%, select TO flaps as soon as the 10° attitude has been attained.

When the vertical speed is positive and when IAS is at or above 85 KIAS:

3 - Landing gear control ... UP
 All warning lights OFF

When IAS is at or above 110 KIAS:

4 - Flaps ... UP

5 - Climb speed ... As required

Weight above 6579 lbs (2984 kg)

If speed has been maintained at 85 KIAS or more and TRQ 100%, select TO flaps as soon as the 10° attitude has been attained.

When the vertical speed is positive and when IAS is at or above 90 KIAS:

6 - Landing gear control ... UP
 All warning lights OFF

When IAS is at or above 115 KIAS:

7 - Flaps ... UP

8 - Climb speed ... As required

9 - Power ... As required
4.5 - PARTICULAR PROCEDURES

FLIGHT INTO KNOWN ICING CONDITIONS

CAUTION

THE STALL WARNING SYSTEM DOES NOT FUNCTION PROPERLY IN ICING CONDITIONS AND SHOULD NOT BE RELIED UPON TO PROVIDE ADEQUATE STALL WARNING IN ICING CONDITIONS AND AFTER LEAVING ICING CONDITIONS, IF ICE ACCRETION REMAINS ON THE AIRPLANE. THEREFORE THE USP AND ESP (IF INSTALLED) FUNCTIONS RECEIVING INFORMATION FROM THE STALL WARNING SYSTEM MAY NOT BE CORRECTLY ENGAGED.

SECTION 5

PERFORMANCE

Operation of “FLIGHT ENVELOPE PROTECTION” does not change the basic performance of the airplane described in Section 5 “Performance” of the basic Pilot's Operating Handbook.

SECTION 6

WEIGHT AND BALANCE

From S/N 1000 to S/N 1105, plus S/N 687

Information hereafter supplement or replace those of the standard airplane described in Section 6 “Weight and Balance” of the basic Pilot’s Operating Handbook when the airplane is equipped with the “FLIGHT ENVELOPE PROTECTION”.

<table>
<thead>
<tr>
<th>A or O</th>
<th>ITEM</th>
<th>OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0423-34B or C</td>
<td>Lift transducer and AoA computer installation, of which SAFE FLIGHT INSTRUMENTS</td>
<td>1.66 (0.752)</td>
<td>242.01 (6.147)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lift transducer</td>
<td>0.50 (0.226)</td>
<td>173.23 (4.400)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AoA computer P/N C-101706-1</td>
<td>0.74 (0.336)</td>
<td>273.62 (6.950)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>K59 and K590 relays</td>
<td>0.25 (0.115)</td>
<td>265.55 (6.745)</td>
</tr>
</tbody>
</table>

From S/N 1106 (0423-34A)

Operation of “FLIGHT ENVELOPE PROTECTION” does not change the basic weight and balance of the airplane described in Section 6 “Weight and balance” of the basic Pilot’s Operating Handbook.

NOTE: Equipment are included in the List of Equipment of the basic Pilot's Operating Handbook.
SECTION 7
DESCRIPTION

Information hereafter supplement or replace those of the standard airplane described in Section 7 "Description" of the basic Pilot's Operating Handbook when the airplane is equipped with the “FLIGHT ENVELOPE PROTECTION”.

7.8 - ELECTRICAL SYSTEM

From S/N 1000 to S/N 1105, plus S/N 687

Figure 7.8.3 - PARTIAL ELECTRICAL DISTRIBUTION OF BUS BARS

Figure 7.8.4 - PARTIAL CIRCUIT BREAKER PANEL (Typical arrangement)
Figure 7.8.3 - PARTIAL ELECTRICAL DISTRIBUTION OF BUS BARS

Figure 7.8.4 - PARTIAL CIRCUIT BREAKER PANEL (Typical arrangement)
7.14 - MISCELLANEOUS EQUIPMENT

STALL WARNING SYSTEM

The stall warning system consists of:

- an electrically deiced lift transducer, installed in the leading edge of the right wing,
- an AoA computer,

From S/N 1000 to S/N 1105, plus S/N 687

- the "AOA TEST" pushbutton located at the bottom of the L.H. side instrument panel.

From S/N 1106

- "AOA TEST" function is integrated in the "TEST" push-button on cockpit overhead panel.

All

The system is also interfaced with the G1000 system.

The lift transducer is fitted with a vane that senses the change in airflow over the wing.

The AoA computer computes the normalized angle of attack of the airplane thanks to the lift transducer information and the flaps position. The normalized angle of attack value is sent to the G1000 system for display. The AoA computer also triggers the "stall" aural warning alert that begins no later than 5 knots above the stall in all configurations.

From S/N 1000 to S/N 1105, plus S/N 687

The stall warning system should be checked during the preflight inspection by momentarily turning on the "SOURCE" selector and by manipulating the vane of the lift transducer at the wing leading edge then, while in the cockpit by depressing the "AOA TEST" pushbutton.

From S/N 1106

The stall warning system should be checked during the preflight inspection by momentarily turning on the "SOURCE" selector and by manipulating the vane of the lift transducer at the wing leading edge then, while in the cockpit by depressing the "TEST" pushbutton on cockpit overhead panel.

All

The system is operational if a "stall" aural warning alert is heard on the alarms speaker.

For further information concerning the use of the system and its controls, refer to GARMIN “G1000 PILOT’S GUIDE” at the latest issue.

UNDERSPEED PROTECTION (USP), COUPLED GO AROUND

For further information concerning the use of the system and its controls, refer to GARMIN “G1000 PILOT’S GUIDE” at the latest issue.

ELECTRONIC STABILITY PROTECTION (ESP)

For further information concerning the use of system and its controls, refer to GARMIN “G1000 PILOT’S GUIDE” at the latest issue.
SECTION 8
HANDLING, SERVICING AND MAINTENANCE

Operation of “FLIGHT ENVELOPE PROTECTION” does not change the basic handling, servicing and maintenance of the airplane described in Section 8 “Handling, Servicing and Maintenance” of the basic Pilot's Operating Handbook.
TBM 900

LIST OF EQUIPMENT

Report reference NAV No. 34/90-RJ-App 3
From S/N 1050

The content of this document is the property of SOCATA S.A.S. It is supplied in confidence and commercial security of its contents must be maintained.

It must not be used for any purpose other than that for which it is supplied, nor may information contained in it be disclosed to unauthorized persons. It must not be reproduced nor transmitted in any form in whole or in part without permission in writing from the owners of the Copyright.

Information in this document is subject to change without notice.

© 2014 - 2015 - 2016 - SOCATA S.A.S
All rights reserved

SOCATA S.A.S
Customer support
65921 TARBES CEDEX 9
FRANCE

Printed in FRANCE
LIST OF EFFECTIVE PAGES AND VALIDITIES

EDITION 1 OF DECEMBER 5, 2014

From S/N 1050

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>1-2</td>
<td>JUL 16</td>
<td>31</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>0A</td>
<td>1-2</td>
<td>JUL 16</td>
<td>32</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>0B</td>
<td>1-0</td>
<td>DEC 14</td>
<td>33</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>0C</td>
<td>1-1</td>
<td>DEC 15</td>
<td>34</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>0D</td>
<td>1-1</td>
<td>DEC 15</td>
<td>35</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>0E</td>
<td>1-2</td>
<td>JUL 16</td>
<td>36</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>0F</td>
<td>1-2</td>
<td>JUL 16</td>
<td>37</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>1</td>
<td>1-1</td>
<td>DEC 15</td>
<td>39</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>2</td>
<td>1-1</td>
<td>DEC 15</td>
<td>40</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>3</td>
<td>1-0</td>
<td>DEC 15</td>
<td>41</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>4</td>
<td>1-1</td>
<td>DEC 15</td>
<td>42</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>5</td>
<td>1-1</td>
<td>DEC 15</td>
<td>43</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>6</td>
<td>1-1</td>
<td>DEC 15</td>
<td>44</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>7</td>
<td>1-1</td>
<td>DEC 15</td>
<td>45</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>8</td>
<td>1-1</td>
<td>DEC 15</td>
<td>46</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>9</td>
<td>1-1</td>
<td>DEC 15</td>
<td>47</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>10</td>
<td>1-1</td>
<td>DEC 15</td>
<td>48</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>11</td>
<td>1-1</td>
<td>DEC 15</td>
<td>49</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>12</td>
<td>1-1</td>
<td>DEC 15</td>
<td>50</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>13</td>
<td>1-1</td>
<td>DEC 15</td>
<td>51</td>
<td>1-1</td>
<td>DEC 15</td>
</tr>
<tr>
<td>14</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1-2</td>
<td>JUL 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1-2</td>
<td>JUL 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1-1</td>
<td>DEC 15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF AMENDMENTS

Revision 1 dated September 15, 2015

<table>
<thead>
<tr>
<th>Pages</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>New logo and denomination</td>
</tr>
<tr>
<td>0A</td>
<td>List of effective pages</td>
</tr>
<tr>
<td>0C and 0D</td>
<td>List of amendments</td>
</tr>
<tr>
<td>1</td>
<td>Table of contents</td>
</tr>
<tr>
<td>2</td>
<td>List of critical RVSM equipment: modification of P/N</td>
</tr>
<tr>
<td>4</td>
<td>Addition of OPT/MOD-70-0454-21: General Air System Controller</td>
</tr>
<tr>
<td>4</td>
<td>Addition of OPT/MOD70-448-21 (Up to S/N 1083 as a retrofit): Outflow valve and safety valve</td>
</tr>
</tbody>
</table>
| 4 | Outflow valve and safety valve:
- addition of validity: From S/N 1084
- modification of weight values |
| 8, 22, 23, 24, 28 | OPT/MOD70-0176-00A:
- addition of validity: Up to S/N 1110 |
| 8 | Addition of OPT/MOD70-0487-23A: Radio stereo-headset A20 |
| 8 | OPT/MOD70-0176-00B:
- addition of validity: Up to S/N 1105
- modification of weight values |
| 8 | Addition of OPT/MOD70-0458-23: GDL 69A SXM - XM Generation 4 |
| 9 | OPT/MOD70-0331-23:
- modification of Version D
- addition of Version G |
| 11 | OPT/MOD70-0374-25B:
- addition of validity: Up to S/N 1105
- modification of weight values |
| 12 | Addition of OPT/MOD70-0374-25C: Servicing plugs unit |
| 13 | OPT/MOD70-0437-25:
- modification of version: 0437-25B becomes 0437-25A
- addition of validity: Up to S/N 1110 |
LIST OF AMENDMENTS

Revision 1 dated September 15, 2015 (Cont'd)

<table>
<thead>
<tr>
<th>Pages</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Addition of OPT/MOD70-26002G : Engine fire detection system</td>
</tr>
<tr>
<td>14</td>
<td>OPT/MOD70-0391-25 : addition of Version D</td>
</tr>
<tr>
<td>15</td>
<td>L.H. and R.H. equipped control wheels : deletion of P/N</td>
</tr>
<tr>
<td>18</td>
<td>Addition of OPT/MOD70-0455-31A : Light weight Flight Data Recorder</td>
</tr>
<tr>
<td>19</td>
<td>Deletion of "Door actuator EC 6230"</td>
</tr>
<tr>
<td>21</td>
<td>OPT/MOD70-0322-00 : addition of "LED" notion for taxi and landing lights</td>
</tr>
</tbody>
</table>
| 22 | Lift transducer 799-13 :
- addition of validity : Up to S/N 1105 |
| 22 | Addition of OPT/MOD70-0423-34 : Lift transducer and AoA computer |
| 25 | OPT/MOD70-0270-34A :
- addition of validity : Up to S/N 1105 |
| 25 | Addition of OPT/MOD70-0451-34A : GRA 55 radar altimeter |
| 26 | OPT/MOD70-0176-00F :
- addition of validity : Up to S/N 1110 |
| 26 | OPT/MOD70-0258-00B :
- addition of validity : Up to S/N 1110 |
| 27 | OPT/MOD70-0176-00E :
- addition of validity : Up to S/N 1110 |
| 27 | Addition of OPT/MOD70-0264-34C : Transponder #2 GTX 33 - Mode S diversity with extended squitter |
| 27 | OPT/MOD70-0176-00H :
- addition of validity : Up to S/N 1110 |
| 28 | OPT/MOD70-0176-00G :
- addition of validity : Up to S/N 1110 |
| 29 | OPT70-207-00 :
- addition of "with oxygen masks EROS" |
| 4, 5 thru 38 | Presentation, terminoloy and/or text moving |
LIST OF AMENDMENTS

Revision 2 dated July 2016

<table>
<thead>
<tr>
<th>Pages</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Copyright</td>
</tr>
<tr>
<td>0A</td>
<td>List of effective pages</td>
</tr>
<tr>
<td>0E, 0F</td>
<td>List of amendments - Revision 2</td>
</tr>
<tr>
<td>15</td>
<td>Addition of MOD70-0510-27 "Stick shaker"</td>
</tr>
<tr>
<td>18</td>
<td>Addition of "Pre-MOD70-0407-00D" validity for Aural warning system</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ATA Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATA 01</td>
<td>SPECIFIC OPTIONAL EQUIPMENT</td>
<td>3</td>
</tr>
<tr>
<td>ATA 21</td>
<td>ENVIRONMENTAL SYSTEM</td>
<td>4</td>
</tr>
<tr>
<td>ATA 22</td>
<td>AUTO FLIGHT</td>
<td>7</td>
</tr>
<tr>
<td>ATA 23</td>
<td>COMMUNICATIONS</td>
<td>8</td>
</tr>
<tr>
<td>ATA 24</td>
<td>ELECTRICAL POWER</td>
<td>10</td>
</tr>
<tr>
<td>ATA 25</td>
<td>EQUIPMENT AND FURNISHINGS</td>
<td>11</td>
</tr>
<tr>
<td>ATA 26</td>
<td>FIRE PROTECTION</td>
<td>14</td>
</tr>
<tr>
<td>ATA 27</td>
<td>FLIGHT CONTROLS</td>
<td>15</td>
</tr>
<tr>
<td>ATA 28</td>
<td>FUEL SYSTEM</td>
<td>16</td>
</tr>
<tr>
<td>ATA 30</td>
<td>ICE AND RAIN PROTECTION</td>
<td>17</td>
</tr>
<tr>
<td>ATA 31</td>
<td>INDICATING/RECORDING SYSTEMS</td>
<td>18</td>
</tr>
<tr>
<td>ATA 32</td>
<td>LANDING GEARS</td>
<td>19</td>
</tr>
<tr>
<td>ATA 33</td>
<td>LIGHTS</td>
<td>21</td>
</tr>
<tr>
<td>ATA 34</td>
<td>NAVIGATION</td>
<td>22</td>
</tr>
<tr>
<td>ATA 35</td>
<td>OXYGEN</td>
<td>29</td>
</tr>
<tr>
<td>ATA 37</td>
<td>VACUUM</td>
<td>30</td>
</tr>
<tr>
<td>ATA 52</td>
<td>DOORS</td>
<td>31</td>
</tr>
<tr>
<td>ATA 56</td>
<td>WINDOWS</td>
<td>32</td>
</tr>
<tr>
<td>ATA 57</td>
<td>WINGS</td>
<td>33</td>
</tr>
<tr>
<td>ATA 61</td>
<td>PROPELLER</td>
<td>34</td>
</tr>
<tr>
<td>ATA 71</td>
<td>POWER PLANT</td>
<td>35</td>
</tr>
<tr>
<td>ATA 77</td>
<td>ENGINE INDICATING</td>
<td>36</td>
</tr>
<tr>
<td>ATA 79</td>
<td>LUBRICATION</td>
<td>37</td>
</tr>
</tbody>
</table>
The following list contains standard equipment installed on each airplane and available optional equipment.

A separate list of equipment of items installed at the factory in your specific airplane is provided in your airplane file.

Columns showing weight (in pounds) and arm (in inches) provide the weight and center of gravity location for the equipment.

In the list of Required, Standard or Optional equipment (not restrictive), a letter “R”, “S”, “O” or “A” allows classifying the equipment:

- “R” : equipment items required for certification
- “S” : standard equipment items
- “A” : optional equipment items which are in addition to required or standard items
- “O” : optional equipment items replacing required or standard items

LIST OF CRITICAL RVSM EQUIPMENT

Equipment listed hereafter, or later approved versions, is required for RVSM operation.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>*</th>
<th>**</th>
<th>P/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barometric altimeter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- GDC74B (Air data computer)</td>
<td>2</td>
<td>2</td>
<td>P/N 011-01110-XX</td>
</tr>
<tr>
<td>- GDU1XXX (Display)</td>
<td>3</td>
<td>2</td>
<td>P/N 011-00916-XX or P/N 011-01108-XX</td>
</tr>
<tr>
<td>Autopilot Altitude Hold function</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- GMC710 (AFCS mode controller)</td>
<td>1</td>
<td>1</td>
<td>P/N 011-01020-XX</td>
</tr>
<tr>
<td>- GIA63W (Integrated Avionics Computer)</td>
<td>2</td>
<td>2</td>
<td>P/N 011-01105-XX</td>
</tr>
<tr>
<td>- GRS77</td>
<td>2</td>
<td>2</td>
<td>P/N 011-00868-XX</td>
</tr>
<tr>
<td>ATC :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Altitude reporting transponder</td>
<td>1</td>
<td>1</td>
<td>TSO C-74c</td>
</tr>
</tbody>
</table>

(*) Quantity installed

(**) Quantity required
<table>
<thead>
<tr>
<th>S/R</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPT70 or MOD70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>01026A</td>
<td>Flight ceiling at 31000 ft SOCATA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/ R/ A/ O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>---</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>General Air System Controller (GASC) 82024A040601 LIEBHERR</td>
<td>1.98 (0.900)</td>
<td>311.02 (7.900)</td>
</tr>
<tr>
<td>S</td>
<td>0454-21</td>
<td>General Air System Controller (GASC) 82024A040701 LIEBHERR</td>
<td>1.98 (0.900)</td>
<td>311.02 (7.900)</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>- Version A (From S/N 1098)</td>
<td>1.98 (0.900)</td>
<td>311.02 (7.900)</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>- Version B (Up to S/N 1097 as a retrofit)</td>
<td>1.98 (0.900)</td>
<td>311.02 (7.900)</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>Mixing unit 9723A010001 LIEBHERR</td>
<td>0.53 (0.240)</td>
<td>151.57 (3.850)</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>Hot Air Distributor 6044A010001 LIEBHERR</td>
<td>4.06 (0.840)</td>
<td>153.54 (3.900)</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>Bleed temperature switch 92244B010002 LIEBHERR</td>
<td>0.13 (0.060)</td>
<td>153.54 (3.900)</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>Cabin altitude warn switch 214 C40.3.261 CONDEC/EATON</td>
<td>0.077 (0.035)</td>
<td>153.94 (3.910)</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>Cabin differential pressure switch 17-600-01 UMA</td>
<td>0.143 (0.065)</td>
<td>139.76 (3.550)</td>
</tr>
<tr>
<td>S</td>
<td>0448-21</td>
<td>Outflow valve 81146A010101 (From S/N 1084) LIEBHERR</td>
<td>4.101 (1.860)</td>
<td>317.32 (8.060)</td>
</tr>
<tr>
<td>O</td>
<td>0448-21</td>
<td>Outflow valve 81146A010101 (Up to S/N 1083 as a retrofit) LIEBHERR</td>
<td>4.101 (1.860)</td>
<td>317.32 (8.060)</td>
</tr>
<tr>
<td>S</td>
<td>0448-21</td>
<td>Safety valve 81147A010101 (From S/N 1084) LIEBHERR</td>
<td>3.461 (1.570)</td>
<td>317.32 (8.060)</td>
</tr>
<tr>
<td>O</td>
<td>0448-21</td>
<td>Safety valve 81147A010101 (Up to S/N 1083 as a retrofit) LIEBHERR</td>
<td>3.461 (1.570)</td>
<td>317.32 (8.060)</td>
</tr>
<tr>
<td>S/R/A/O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--</td>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21-50 - Temperature conditioning system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Flow control shut-off valve 6784A010001 LIEBHERR</td>
<td>4.74 (2.500)</td>
<td>114.17 (2.900)</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Non-return valve 7085A010002 LIEBHERR</td>
<td>0.11 (0.050)</td>
<td>102.36 (2.600)</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Shut-off valve 4589A010001 LIEBHERR</td>
<td>2.37 (1.075)</td>
<td>114.17 (2.900)</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Intermediate pressure sensor 93557A010001 LIEBHERR</td>
<td>0.33 (0.150)</td>
<td>110.24 (2.800)</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Overheat thermal switch A042010300-5 LIEBHERR</td>
<td>0.18 (0.080)</td>
<td>110.24 (2.800)</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Main heat exchanger 81249A010001 LIEBHERR</td>
<td>7.72 (3.500)</td>
<td>108.27 (2.750)</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Non-return valve 52704A010001 LIEBHERR</td>
<td>0.66 (0.300)</td>
<td>118.11 (3.000)</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Ground Fan 8031A020 LIEBHERR</td>
<td>3.95 (1.790)</td>
<td>90.55 (2.300)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21-55 - Vapor cycle cooling system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Compressor 1377A010001 LIEBHERR</td>
<td>14.77 (6.700)</td>
<td>98.43 (2.500)</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Cockpit Evaporator Assembly 14720A010001 LIEBHERR</td>
<td>9.06 (4.111)</td>
<td>200.79 (5.100)</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Cabin Evaporator Assembly 14719A010001 LIEBHERR</td>
<td>12.90 (5.850)</td>
<td>311.02 (7.900)</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>Condenser Assembly 81250A010001 LIEBHERR</td>
<td>24.80 (11.250)</td>
<td>330.71 (8.400)</td>
</tr>
</tbody>
</table>
21-60 - Temperature regulation

<table>
<thead>
<tr>
<th>S/R/A/O</th>
<th>ITEM</th>
<th>WEIGHT per unit</th>
<th>ARM in.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>By-pass valve 6043A010001</td>
<td>3.31 (1.500)</td>
<td>106.30 (2.700)</td>
<td>LIEBHERR</td>
</tr>
<tr>
<td>S</td>
<td>Bleed differential pressure sensor 93558A010001</td>
<td>0.44 (0.200)</td>
<td>114.17 (2.900)</td>
<td>LIEBHERR</td>
</tr>
<tr>
<td>S</td>
<td>Inlet temperature sensor 93276A010001</td>
<td>0.11 (0.050)</td>
<td>153.54 (3.900)</td>
<td>LIEBHERR</td>
</tr>
<tr>
<td>S</td>
<td>Cockpit ventilated sensor 92279A010002</td>
<td>0.18 (0.080)</td>
<td>182.09 (4.625)</td>
<td>LIEBHERR</td>
</tr>
<tr>
<td>S</td>
<td>Cabin ventilated sensor 92279A010002</td>
<td>0.18 (0.080)</td>
<td>250.00 (6.350)</td>
<td>LIEBHERR</td>
</tr>
</tbody>
</table>
22 - AUTO FLIGHT

Upgrading of AFCS GFC 700 composed of:

- **Pitch servo GSA 81 + Servo mount GSM 86**
 - GARMIN
 - Weight: 4.08 lb (1.85 kg)
 - ARM: 247.40 in. (6.284 m)

- **Roll servo GSA 81 + Servo mount GSM 86**
 - GARMIN
 - Weight: 4.08 lb (1.85 kg)
 - ARM: 231.10 in. (5.870 m)

- **Yaw servo GSA 81 + Servo mount GSM 86**
 - GARMIN
 - Weight: 4.08 lb (1.85 kg)
 - ARM: 253.70 in. (6.444 m)

- **Pitch trim servo GSA 81 + Servo mount GSM 86**
 - GARMIN
 - Weight: 4.14 lb (1.88 kg)
 - ARM: 157.87 in. (4.010 m)

- **Trim adapter GTA 82**
 - GARMIN
 - Weight: 1.30 lb (0.59 kg)
 - ARM: 240.87 in. (6.118 m)

- **AFCS Control Unit GMC 710**
 - GARMIN
 - Weight: 0.91 lb (0.41 kg)
 - ARM: 156.61 in. (3.978 m)
<table>
<thead>
<tr>
<th>S/ R/ A/ O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 - COMMUNICATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 0176-00A</td>
<td>Dual audio system</td>
<td>2.59 (1.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with integrated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marker Beacon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Receiver # 1 GMA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1347C (Up to S/N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1110) GARMIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 0176-00A</td>
<td>Dual audio system</td>
<td>2.59 (1.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with integrated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marker Beacon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Receiver # 2 GMA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1347C (Up to S/N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1110) GARMIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 0176-00A</td>
<td>G1000 COM # 1 system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Up to S/N 1110)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Transceiver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(integrated in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIA 63W Integrated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avionics Unit # 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- refer to ATA 34-28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GARMIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S 0176-00A</td>
<td>G1000 COM # 2 system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Up to S/N 1110)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Transceiver</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(integrated in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GIA 63W Integrated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avionics Unit # 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- refer to ATA 34-28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GARMIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Static dischargers</td>
<td>Neglig.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSC 740049 (Qty : 4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAYTON GRANGER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Static dischargers</td>
<td>Neglig.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-5 SCY (Qty : 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHELTON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Static dischargers</td>
<td>Neglig.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-9 SCY (Qty : 3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHELTON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O 0287-23A</td>
<td>Radio stereo-headset</td>
<td>Neglig.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A20 with bluetooth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O 0487-23A</td>
<td>Radio stereo-headset</td>
<td>Neglig.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 0176-00B</td>
<td>Data link XM Radio</td>
<td>1.72 (0.78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GDL 69A (interfaced</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with G1000 system)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Up to S/N 1105)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GARMIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O 0458-23</td>
<td>GDL 69A SXM - XM</td>
<td>1.41 (0.64)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Generation 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(interfaced with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G1000 system)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Up to S/N 1110)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GARMIN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/R</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit</td>
<td>ARM in.</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------</td>
<td>---</td>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>O</td>
<td>OPT70 or MOD70</td>
<td>Weather Data Link and Satellite Phone GSR 56 GARMIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post-MOD70-0319</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Version C: with antenna CI 490-1 (GSR unit support pre-installed)</td>
<td>3.80 (1.736)</td>
<td>58.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Version D: with antenna CI 490-1 (Mechanical capability installed: antenna and unit box)</td>
<td>0.61 (0.276)</td>
<td>58.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Version G: with antenna CI 490-490 (Spare for antenna CI 490-1)</td>
<td>3.59 (1.629)</td>
<td>58.00</td>
</tr>
<tr>
<td>A</td>
<td>0410-23</td>
<td>HF Communication System KHF1050, of which HONEYWELL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Control Display unit</td>
<td>1.56 (0.707)</td>
<td>155.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Receiver/Exciter</td>
<td>5.90 (2.676)</td>
<td>123.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Antenna coupler</td>
<td>16.20 (7.348)</td>
<td>342.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Power amplifier</td>
<td>8.40 (3.810)</td>
<td>342.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- HF Antenna kit</td>
<td>1.74 (0.790)</td>
<td>324.80</td>
</tr>
<tr>
<td>S/ R/ A/ O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>---</td>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>OPT70 or MOD70</td>
<td>24 - ELECTRICAL POWER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24-30 - DC generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0234-24</td>
<td>Electric power system (EPS) 1408-1-1 ASTRONICS</td>
<td>14.330 (6.500)</td>
<td>128.15 (3.255)</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>Stand-by alternator ES10024B-5 HARTZELL ENGINEERING TECHNOLOGY (HET)</td>
<td>13.000 (5.897)</td>
<td>104.84 (2.663)</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>Starter generator MG94K-1 ADVANCED INDUSTRIES</td>
<td>31.989 (14.510)</td>
<td>118.83 (2.815)</td>
</tr>
<tr>
<td>S</td>
<td>24002A</td>
<td>Lead-acid battery RG-380E/44 CONCORDE</td>
<td>85.979 (39.000)</td>
<td>112.20 (2.850)</td>
</tr>
<tr>
<td>A</td>
<td>0303-24</td>
<td>Charger/Maintainer for lead acid battery</td>
<td>0.220 (0.100)</td>
<td>114.17 (2.900)</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>24-40 - External power supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>Ground power receptacle MS 3506-1 QPL (AIRCRAFT APPLIANCES AND EQUI. LTD)</td>
<td>0.794 (0.360)</td>
<td>114.17 (2.900)</td>
</tr>
<tr>
<td>S/R</td>
<td>A/ O</td>
<td>ITEM</td>
<td>EQUIPMENT AND FURNISHINGS</td>
<td>WEIGHT per unit lb (kg)</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>---------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>A</td>
<td>OPT70 or MOD70</td>
<td>25004D</td>
<td>Leather upholstering - version D "Autolux" SOCATA</td>
<td>6.614 (3.000) 212.60 (5.400)</td>
</tr>
<tr>
<td>A</td>
<td>0386-25</td>
<td>Leather upholstering "Vulcain" SOCATA</td>
<td>6.614 (3.000) 212.60 (5.400)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>Smoke goggles MXP 210 INTERTECHNIQUE</td>
<td>0.855 (0.388) 200.00 (5.080)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>Front seats ease covers SOCATA</td>
<td>2.756 (1.250) 183.78 (4.668)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>JetFly type cabin arrangement SOCATA</td>
<td>/ /</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>Cabin furnishings - "Loupe d'Orme" wood SOCATA</td>
<td>/ /</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>CD reader PCD 7100 PS ENGINEERING</td>
<td>2.20 (1.00) 205.04 (5.208)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0304-25</td>
<td>Cabin fitting out ("Autolux" leather upholstering variants) SOCATA</td>
<td>/ /</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Version A : Heather-leather light blue-coloured seats</td>
<td>/ /</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Version B : Blue jeans-coloured carpets</td>
<td>/ /</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Version C : Sateen Chocolate-coloured seats and cabinets</td>
<td>/ /</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Version D : Carbon-coloured Finishing</td>
<td>/ /</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Version E : Grey-coloured seats and cabinets</td>
<td>/ /</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0374-25B</td>
<td>Servicing plugs unit, of which : (Up to S/N 1105) TRUE BLUE POWER</td>
<td>3.75 (1.700) /</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 12 VDC servicing plugs unit (Qty : 2 - one in the cockpit, one in the cabin), of which :</td>
<td>3.31 (1.500) 195.28 (4.960)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>. 28-12VDC Converter TRUE BLUE POWER</td>
<td>2.98 (1.350) 195.28 (4.960)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 5 VDC servicing plugs unit (USB type) (Qty : 4 - two in the cockpit, two in the cabin) with integrated charger TRUE BLUE POWER</td>
<td>0.44 (0.200) 187.99 (4.775)</td>
<td></td>
</tr>
<tr>
<td>S/ R/ A/ O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>--</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>S</td>
<td>0374-25C</td>
<td>Servicing plugs unit, of which : (From S/N 1106) TRUE BLUE POWER</td>
<td>3.97 (1.800)</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 12 VDC servicing plugs unit (Qty : 2 - one in the cockpit, one in the cabin), of which :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>. 28-12VDC Converter TRUE BLUE POWER</td>
<td>2.98 (1.350)</td>
<td>195.28 (4.960)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 5 VDC servicing plugs unit (USB type) [Qty : 6 - two in the cockpit, four in the cabin (2 on R.H. side, 2 on L.H. side)] with integrated charger TRUE BLUE POWER</td>
<td>0.66 (0.300)</td>
<td>219.29 (5.570)</td>
</tr>
<tr>
<td>O</td>
<td>0374-25C</td>
<td>Servicing plugs unit, of which : (As a retrofit, Post-Version B) TRUE BLUE POWER</td>
<td>3.97 (1.800)</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 12 VDC servicing plugs unit (Qty : 2 - one in the cockpit, one in the cabin), of which :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>. 28-12VDC Converter TRUE BLUE POWER</td>
<td>2.98 (1.350)</td>
<td>195.28 (4.960)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 5 VDC servicing plugs unit (USB type) [Qty : 6 - two in the cockpit, four in the cabin (2 on R.H. side, 2 on L.H. side)] with integrated charger TRUE BLUE POWER</td>
<td>0.66 (0.300)</td>
<td>219.29 (5.570)</td>
</tr>
<tr>
<td>A</td>
<td>0417-25</td>
<td>Paper clips (one on each control wheel) SOCATA</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Seats - Belts (Standard equipment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leather seats - Belts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Reels</td>
<td>ANJOU AERONAUTIQUE</td>
<td>1.79 (0.810)</td>
<td>192.91 or 287.40 (4.900 or 7.300)</td>
</tr>
<tr>
<td></td>
<td>- Pilot's seat T700C2500002</td>
<td>SOCATA</td>
<td>55.12 (25.00)</td>
<td>183.90 (4.671)</td>
</tr>
<tr>
<td>S</td>
<td>- Front R.H. seat T700C2500002</td>
<td>SOCATA</td>
<td>55.12 (25.00)</td>
<td>183.90 (4.671)</td>
</tr>
<tr>
<td>S/ R/ A/ O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>A 25030G</td>
<td>25-61 - Emergency locator transmitter</td>
<td></td>
<td>7.77 (3.523) 349.92 (8.888)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Three-frequency emergency locator transmitter C406-1</td>
<td></td>
<td>3.36 (1.525) 354.72 (9.010)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(with base) (with G1000 system GPS source) (airplanes</td>
<td></td>
<td>2.69 (1.220) 353.15 (8.970)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>equipped with reinforcement), of which:</td>
<td></td>
<td>0.449 (0.204) 318.70 (8.095)</td>
<td></td>
</tr>
<tr>
<td>A 0437-25A</td>
<td>Emergency locator transmitter ELT 1000 (airplanes</td>
<td></td>
<td>2.385 (1.082) 340.91 (8.659)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>equipped with reinforcement), of which (Up to S/N 1110)</td>
<td></td>
<td>1.764 (0.800) 354.72 (9.010)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELT 1000 with base</td>
<td></td>
<td>0.449 (0.204) 318.70 (8.095)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antenna 110-338</td>
<td></td>
<td>0.449 (0.204) 318.70 (8.095)</td>
<td></td>
</tr>
</tbody>
</table>
26 - FIRE PROTECTION

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Weight per unit</th>
<th>ARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 26002E</td>
<td>Engine fire detection system - capability installation</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>A 26002F</td>
<td>Engine fire detection system</td>
<td>1.455 (0.660)</td>
<td>96.06 (2.440)</td>
</tr>
<tr>
<td>A 26002G</td>
<td>Engine fire detection system (From S/N 1089)</td>
<td>1.455 (0.660)</td>
<td>96.06 (2.440)</td>
</tr>
<tr>
<td>A 0391-26</td>
<td>Portable fire extinguisher unit 74-00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Version A</td>
<td>4.89 (2.220)</td>
<td>170.11 (4.321)</td>
</tr>
<tr>
<td></td>
<td>- Version B</td>
<td>4.89 (2.220)</td>
<td>192.16 (4.932)</td>
</tr>
<tr>
<td></td>
<td>- Version C</td>
<td>4.96 (2.250)</td>
<td>193.80 (4.923)</td>
</tr>
<tr>
<td></td>
<td>- Version D</td>
<td>4.52 (2.050)</td>
<td>203.54 (5.170)</td>
</tr>
<tr>
<td>S/R/A/O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lb (kg)</td>
</tr>
<tr>
<td>27 - FLIGHT CONTROLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-10 - Roll control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Roll trim actuator 145700.02</td>
<td>LPMI</td>
<td>1.543 (0.700)</td>
</tr>
<tr>
<td>27-20 - Yaw control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Rudder trim actuator 145700.02</td>
<td>LPMI</td>
<td>1.543 (0.700)</td>
</tr>
<tr>
<td>S</td>
<td>0348-27</td>
<td>New control wheels</td>
<td>CROUZET</td>
</tr>
<tr>
<td>S</td>
<td>- L.H. equipped control wheel</td>
<td>CROUZET</td>
<td>2.535 (1.150)</td>
</tr>
<tr>
<td>S</td>
<td>- RH. equipped control wheel</td>
<td>CROUZET</td>
<td>2.535 (1.150)</td>
</tr>
<tr>
<td>27-30 - Pitch control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Pitch trim actuator 145400-02</td>
<td>LPMI</td>
<td>1.213 (0.550)</td>
</tr>
<tr>
<td>O</td>
<td>0510-27</td>
<td>Stick shaker</td>
<td>C-101702-1 SAFE FLIGHT INSTRUMENTS</td>
</tr>
<tr>
<td>27-50 - Wing flaps (control)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Flap control including :</td>
<td>AVIAC</td>
<td>15.520 (7.040)</td>
</tr>
<tr>
<td></td>
<td>- Flap motor 6157-1</td>
<td>AVIAC</td>
<td>2.866 (1.300)</td>
</tr>
<tr>
<td></td>
<td>- Flap actuator 1-5297 / 2-5297</td>
<td>AVIAC</td>
<td>1.830 (0.830)</td>
</tr>
<tr>
<td>S/R</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>OPT70 or MOD70</td>
<td>28 - FUEL SYSTEM</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>28-20 - Fuel supply</td>
<td>Electric boost pump 1B9-5 AIRBORNE</td>
<td>4.409 (2.000) 129.92 (3.300)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engine driven fuel pump 1127-02 IN-LHC</td>
<td>1.543 (0.700) 110.24 (2.800)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fuel unit L88A15-651 INTERTECHNIQUE</td>
<td>4.586 (2.080) 133.07 (3.380)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A35 fuel sequencer unit TFE</td>
<td>1.102 (0.500) 125.98 (3.200)</td>
</tr>
<tr>
<td>28</td>
<td>28-40 - Fuel indication</td>
<td>Fuel gage amplifier (in us gal) 738574-1-0 INTERTECHNIQUE</td>
<td>1.08 (0.49) 278.74 (7.080)</td>
</tr>
<tr>
<td></td>
<td>0158-28C</td>
<td>Inboard L.H. gage 762 438.1.0 INTERTECHNIQUE</td>
<td>0.331 (0.150) 183.07 (4.650)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inboard R.H. gage 762 439.1.0 INTERTECHNIQUE</td>
<td>0.331 (0.150) 183.07 (4.650)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intermediate gage 762 440.1.0 INTERTECHNIQUE</td>
<td>0.220 (0.100) 190.94 (4.850)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Outboard gage 762 441.1.0 INTERTECHNIQUE</td>
<td>0.220 (0.100) 190.94 (4.850)</td>
</tr>
<tr>
<td></td>
<td>0427-28A</td>
<td>Low level sensor 747-971-1-0 ZODIAC/INTERTECHNIQUE</td>
<td>0.143 (0.065) 185.28 (4.706)</td>
</tr>
<tr>
<td>S/ R/ A/ O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>30 - ICE AND RAIN PROTECTION</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Deicer T700A30130003000, L.H. horizontal stabilizer</td>
<td>SOCATA</td>
<td>4.198 (1.900)</td>
</tr>
<tr>
<td>S</td>
<td>Deicer T700A30130003001, R.H. horizontal stabilizer</td>
<td>SOCATA</td>
<td>4.198 (1.900)</td>
</tr>
<tr>
<td>S</td>
<td>Deicer T700A3014003000, vertical stabilizer</td>
<td>SOCATA</td>
<td>3.968 (1.800)</td>
</tr>
<tr>
<td>S</td>
<td>Deicer T700A3010001002, inboard L.H. wing</td>
<td>SOCATA</td>
<td>5.732 (2.600)</td>
</tr>
<tr>
<td>S</td>
<td>Deicer T700A3010001003, inboard R.H. wing</td>
<td>SOCATA</td>
<td>5.732 (2.600)</td>
</tr>
<tr>
<td>S</td>
<td>Deicer T700A3010001004, middle L.H. wing</td>
<td>SOCATA</td>
<td>3.748 (1.700)</td>
</tr>
<tr>
<td>S</td>
<td>Deicer T700A3010001005, middle R.H. wing</td>
<td>SOCATA</td>
<td>3.748 (1.700)</td>
</tr>
<tr>
<td>S</td>
<td>Deicer T700A30100012000, outboard L.H. wing</td>
<td>SOCATA</td>
<td>2.65 (1.200)</td>
</tr>
<tr>
<td>S</td>
<td>Deicer T700A3010001007, outboard R.H. wing</td>
<td>SOCATA</td>
<td>3.307 (1.500)</td>
</tr>
<tr>
<td>S</td>
<td>Dual port distribution valve 1532-10C</td>
<td>LUCAS</td>
<td>2.425 (1.100)</td>
</tr>
<tr>
<td>S</td>
<td>Timer 42E25-2A</td>
<td>LUCAS</td>
<td>0.772 (0.350)</td>
</tr>
<tr>
<td>S</td>
<td>Water separator and filter 44E21-2A</td>
<td>LUCAS</td>
<td>1.102 (0.500)</td>
</tr>
<tr>
<td>S</td>
<td>Timer 3E2311-4</td>
<td>BF GOODRICH</td>
<td>0.44 (0.200)</td>
</tr>
</tbody>
</table>

30-60 - Propeller deicing
<table>
<thead>
<tr>
<th>S/R/A/O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>OPT70 or MOD70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>31002A</td>
<td>Hourmeter 56457-3 (engine running time) DATCON</td>
<td>0.551 (0.250)</td>
<td>156.30 (3.970)</td>
</tr>
<tr>
<td>S</td>
<td>0455-31A</td>
<td>Light weight Flight Data Recorder (ADRS - CARS) L3 COMMUNICATIONS AVIONICS SYSTEM</td>
<td>5.659 (2.567)</td>
<td>256.50 (6.515)</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>Aural warning system T700A3155011000 (Pre-MOD70-0407-00D) SOCATA</td>
<td>0.661 (0.300)</td>
<td>183.07 (4.650)</td>
</tr>
<tr>
<td>S/</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit</td>
<td>ARM</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>--</td>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td>R/</td>
<td>OPT70 or MOD70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>32 - LANDING GEAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0190-32</td>
<td>L.H. main landing gear D23767001 MESSIER DOWTY</td>
<td>53.79 (24.400)</td>
<td>200.39 (5.090)</td>
</tr>
<tr>
<td>R</td>
<td>0190-32</td>
<td>R.H. main landing gear D23768001 MESSIER DOWTY</td>
<td>53.79 (24.400)</td>
<td>200.39 (5.090)</td>
</tr>
<tr>
<td>R</td>
<td>0134-32</td>
<td>Nose gear D23766000 MESSIER DOWTY</td>
<td>53.57 (24.300)</td>
<td>93.70 (2.380)</td>
</tr>
<tr>
<td>R</td>
<td>Hand pump 914-8D27</td>
<td>TELEDYNE</td>
<td>2.326 (1.055)</td>
<td>181.10 (4.600)</td>
</tr>
<tr>
<td>O</td>
<td>0334-32</td>
<td>Main locking actuator VSTS 083560</td>
<td>13.228 (6.000)</td>
<td>208.07 (5.285)</td>
</tr>
<tr>
<td>O</td>
<td>0334-32</td>
<td>Nose locking actuator VSTS 083560</td>
<td>13.228 (6.000)</td>
<td>110.24 (2.800)</td>
</tr>
<tr>
<td>R</td>
<td>060-32</td>
<td>Hydraulic power pack 1118-04 LHC</td>
<td>10.362 (4.700)</td>
<td>84.65 (2.150)</td>
</tr>
<tr>
<td>R</td>
<td>Brake assembly 030-19100</td>
<td>PARKER</td>
<td>14.991 (6.800)</td>
<td>204.33 (5.190)</td>
</tr>
<tr>
<td>R</td>
<td>Main tire 18x5.5-10PR</td>
<td>MICHELIN</td>
<td>13.50 (6.123)</td>
<td>204.33 (5.190)</td>
</tr>
<tr>
<td>R</td>
<td>0409-32</td>
<td>Main tire 18x5.5-10PR GOOD YEAR</td>
<td>14.396 (6.530)</td>
<td>204.33 (5.190)</td>
</tr>
<tr>
<td>R</td>
<td>Master cylinder 010-07802</td>
<td>PARKER</td>
<td>0.882 (0.400)</td>
<td>145.67 (3.700)</td>
</tr>
<tr>
<td>R</td>
<td>Nose tire 5.00-5-10PR TL</td>
<td>MICHELIN</td>
<td>5.600 (2.540)</td>
<td>89.57 (2.275)</td>
</tr>
<tr>
<td>R</td>
<td>Good year</td>
<td>GOOD YEAR</td>
<td>6.300 (2.858)</td>
<td>89.57 (2.275)</td>
</tr>
<tr>
<td>S/R</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>OPT70 or MOD70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Nose tire 5.00-5-10PR GOOD YEAR</td>
<td>6.834 (3.100)</td>
<td>89.57 (2.275)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Nose wheel 40-262A PARKER</td>
<td>2.976 (1.350)</td>
<td>89.57 (2.275)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Main wheel (Model 40-434) PARKER</td>
<td>11.28 (5.120)</td>
<td>204.33 (5.190)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Parking brake valve T700A32400010 or T700B3240001 SOCATA</td>
<td>0.331 (0.150)</td>
<td>157.48 (4.000)</td>
<td></td>
</tr>
</tbody>
</table>
33 - LIGHTS

33-10 - Instrument panel lighting

<table>
<thead>
<tr>
<th>S/R/A/O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>OPT70 or MOD70</td>
<td>Instruments emergency lighting 2240-3 WEMAC</td>
<td>0.110 (0.050)</td>
<td>181.10 (4.600)</td>
</tr>
<tr>
<td>S</td>
<td>0372-33</td>
<td>Back lighted panels SOCATA</td>
<td>2.132 (0.967)</td>
<td>/</td>
</tr>
<tr>
<td>S</td>
<td>0322-00</td>
<td>PULSELITE unit WHELEN</td>
<td>Neglig.</td>
<td>/</td>
</tr>
</tbody>
</table>

33-40 - External lighting

<table>
<thead>
<tr>
<th>S/R/A/O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>L.H. wing inspection light (icing detection) T700G3340020 SOCATA</td>
<td>0.20 (0.090)</td>
<td>151.57 (3.850)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0322-00</td>
<td>LED L.H. taxi and landing lights 01-0771674-01 WHELEN</td>
<td>1.400 (0.635)</td>
<td>181.10 (4.600)</td>
</tr>
<tr>
<td>S</td>
<td>0322-00</td>
<td>LED R.H. taxi and landing lights 01-0771674-01 WHELEN</td>
<td>1.400 (0.635)</td>
<td>181.10 (4.600)</td>
</tr>
<tr>
<td>S</td>
<td>0322-00</td>
<td>NAV/Anticollision system (LED lights) : Central units :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>- L.H. strobe light power supply 01-0771234-07 WHELEN</td>
<td>0.609 (0.277)</td>
<td>191.38 (4.861)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>- R.H. strobe light power supply 01-0771234-07 WHELEN</td>
<td>0.609 (0.277)</td>
<td>191.38 (4.861)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>- Rear strobe light power supply</td>
<td>WHELEN</td>
<td>0.609 (0.277)</td>
<td>397.87 (10.106)</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>Lights :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>- L.H. navigation/strobe/recognition lights 01-0771170-02 WHELEN</td>
<td>0.499 (0.227)</td>
<td>184.29 (4.681)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>- R.H. navigation/strobe/recognition lights 01-0771170-01 WHELEN</td>
<td>0.499 (0.227)</td>
<td>184.29 (4.681)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>- Rear tail navigation/strobe lights 01-0790667-00 WHELEN</td>
<td>0.499 (0.227)</td>
<td>444.21 (11.283)</td>
<td></td>
</tr>
</tbody>
</table>
34 - NAVIGATION

34-11 - Air data systems

<table>
<thead>
<tr>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit</th>
<th>ARM in.</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lb (kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Lift transducer 799-13 (Up to S/N 1105) SAFE FLIGHT INSTRUMENTS</td>
<td>0.882 (0.400)</td>
<td>173.23</td>
<td>(4.400)</td>
</tr>
<tr>
<td>S</td>
<td>Pitot L heated probe AN 5812-1 QPL (AIRCRAFT APPLIANCES AND EQUI. LTD)</td>
<td>0.750 (0.340)</td>
<td>200.79</td>
<td>(5.100)</td>
</tr>
<tr>
<td>S</td>
<td>Pitot R heated probe AN 5812-1 QPL (AIRCRAFT APPLIANCES AND EQUI. LTD)</td>
<td>0.750 (0.340)</td>
<td>200.79</td>
<td>(5.100)</td>
</tr>
<tr>
<td>R</td>
<td>Static reference plug T700A3415017 SOCATA Neglig. /</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Static reference selector TB30 77010000 SOCATA 0.220 (0.100)</td>
<td>157.48 (4.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Authorization to operate in RVSM area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Air Data Computer # 1 GDC 74B (Up to S/N 1110) GARM IN</td>
<td>2.31 (1.05)</td>
<td>150.24</td>
<td>(3.816)</td>
</tr>
<tr>
<td>S</td>
<td>Air Data Computer # 2 GDC 74B (Up to S/N 1110) GARM IN</td>
<td>2.31 (1.05)</td>
<td>150.24</td>
<td>(3.816)</td>
</tr>
<tr>
<td>O</td>
<td>Electronic Standby Instrument ESI-2000 (replacing altimeter, airspeed indicator and stand-by horizon) L-3 COMMUNICATION AVIONICS SYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>- Version A (refer to 34-24)</td>
<td>2.75 (1.250)</td>
<td>154.29</td>
<td>(3.919)</td>
</tr>
<tr>
<td>S</td>
<td>Lift transducer and AoA computer installation, of which:</td>
<td>1.66 (0.752)</td>
<td>242.01</td>
<td>(6.147)</td>
</tr>
<tr>
<td>R</td>
<td>- Lift transducer P/N C-101-707-1</td>
<td>0.50 (0.226)</td>
<td>173.23</td>
<td>(4.400)</td>
</tr>
<tr>
<td>S</td>
<td>- AoA computer P/N C-101-706-1</td>
<td>0.74 (0.338)</td>
<td>273.62</td>
<td>(6.950)</td>
</tr>
<tr>
<td>S</td>
<td>- K59 and K590 relays</td>
<td>0.25 (0.115)</td>
<td>265.55</td>
<td>(6.745)</td>
</tr>
<tr>
<td>S/ R/ O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>--</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>OPT70</td>
<td>34-21 - Heading reference system</td>
<td>3.46 (1.57)</td>
<td>171.77 (4.363)</td>
<td></td>
</tr>
<tr>
<td>or MOD70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0176-00A</td>
<td>Attitude and Heading Reference System #1 GRS 77 (Up to S/N 1110)</td>
<td>3.46 (1.57)</td>
<td>171.77 (4.363)</td>
<td></td>
</tr>
<tr>
<td>0176-00A</td>
<td>Attitude and Heading Reference System #2 GRS 77 (Up to S/N 1110)</td>
<td>3.46 (1.57)</td>
<td>171.77 (4.363)</td>
<td></td>
</tr>
<tr>
<td>0176-00A</td>
<td>Magnetometer #1 GMU 44 (Up to S/N 1110)</td>
<td>0.48 (0.22)</td>
<td>180.98 (4.597)</td>
<td></td>
</tr>
<tr>
<td>0176-00A</td>
<td>Magnetometer #2 GMU 44 (Up to S/N 1110)</td>
<td>0.48 (0.22)</td>
<td>180.98 (4.597)</td>
<td></td>
</tr>
<tr>
<td>34-23 - Magnetic compass</td>
<td>Stand-by compass C2350 L4.M23</td>
<td>0.551 (0.250)</td>
<td>163.39 (4.150)</td>
<td></td>
</tr>
<tr>
<td>34-24 - ADI and standby horizon</td>
<td>Electronic stand-by indicator (integrated in MOD70-0335-34 ESI 2000 : see 34-11)</td>
<td>2.75 (1.250)</td>
<td>154.29 (3.919)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>L-3 COMMUNICATION AVIONICS SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/ R/ A/ O</td>
<td>ITEM OPT70 or MOD70</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------</td>
<td>--</td>
<td>--------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>S</td>
<td>0176-00A</td>
<td>34-28 - Electronic flight instrumentation system</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integrated Flight Deck System G1000 composed of (Up to S/N 1110) :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- PFD1 GDU 1040A GARMIN</td>
<td>6.53 (2.96)</td>
<td>155.71 (3.955)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- PFD2 GDU 1040A GARMIN</td>
<td>6.53 (2.96)</td>
<td>155.71 (3.955)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- MFD GDU 1500A GARMIN</td>
<td>8.66 (3.93)</td>
<td>155.20 (3.942)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Engine/Airframe Interface Unit # 1 GEA 71 GARMIN</td>
<td>2.53 (1.15)</td>
<td>150.63 (3.826)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Engine/Airframe Interface Unit # 2 GEA 71 GARMIN</td>
<td>2.53 (1.15)</td>
<td>150.63 (3.826)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Integrated Avionics Unit # 1 GIA 63W GARMIN</td>
<td>7.21 (3.27)</td>
<td>149.37 (3.794)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Integrated Avionics Unit # 2 GIA 63W GARMIN</td>
<td>7.21 (3.27)</td>
<td>149.37 (3.794)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- MFD remote controller GCU 475 GARMIN</td>
<td>0.82 (0.37)</td>
<td>157.83 (4.009)</td>
</tr>
<tr>
<td>A</td>
<td>0226-00A</td>
<td>A 0226-00A G1000 Synthetic Vision System GARMIN / /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0222-00A</td>
<td>A 0222-00A Electronic checklists technical content GARMIN / /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>MARKER antenna DM N27-3 DORNE & MARGOLIN</td>
<td>34-31 - Marker</td>
<td>0.750 (0.340)</td>
<td>129.92 (3.300)</td>
</tr>
<tr>
<td>S</td>
<td>Receiver (integrated in the GMA 1347C dual audio systems : refer to ATA 23)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/R A/O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>---</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>OPT70 or MOD70</td>
<td>형태를 알 수 없습니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>34-41 - Stormscope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>34056B</td>
<td>Stormscope WX 500, G1000 coupled : BFG</td>
<td>4.94 (2.24)</td>
<td>232.28 (5.900)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Antenna NY163 BFG</td>
<td>0.84 (0.38)</td>
<td>311.02 (7.900)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Processor WX500 BFG</td>
<td>2.27 (1.03)</td>
<td>255.91 (6.500)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34-42 - Weather radar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0394-34</td>
<td>Weather radar GWX 70 GARMAN</td>
<td>10.35 (4.47)</td>
<td>169.1 (4.295)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34-43 - Radioaltimeter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0270-34A</td>
<td>Radioaltimeter RA4500, G1000 coupled, of which</td>
<td>2.500 (1.134)</td>
<td>220.47 (5.600)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Up to S/N 1105) :</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Transceiver RA4500 FREEFLIGHT</td>
<td>1.900 (0.862)</td>
<td>228.82 (5.812)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Transmitting antenna S67-2002 SENSOR SYSTEMS</td>
<td>0.300 (0.136)</td>
<td>182.09 (4.625)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Receiving antenna S67-2002 SENSOR SYSTEMS</td>
<td>0.300 (0.136)</td>
<td>205.83 (5.228)</td>
</tr>
<tr>
<td>A</td>
<td>0451-34A</td>
<td>GRA 55 radar altimeter, of which</td>
<td>4.127 (1.872)</td>
<td>220.47 (5.600)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(From S/N 1106 up to S/N 1110) : GARMIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Transceiver RA4500</td>
<td>3.527 (1.600)</td>
<td>228.82 (5.812)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Transmitting antenna S67-200 and</td>
<td>0.300 (0.136)</td>
<td>182.09 (4.625)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Receiving antenna S67-200</td>
<td>0.300 (0.136)</td>
<td>205.83 (5.228)</td>
</tr>
<tr>
<td>S/R A/O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>--</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34-44 - Traffic advisory system</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 0176-00F</td>
<td>G1000 TAWS system (Up to S/N 1110)</td>
<td>GARMIN</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>A 0258-00B</td>
<td>TAS system GTS 820, G1000 coupled, of which (Up to S/N 1110):</td>
<td></td>
<td>22.53 (10.220)</td>
<td>177.68 (4.513)</td>
</tr>
<tr>
<td></td>
<td>- Processor GTS 820 GARMIN</td>
<td></td>
<td>9.92 (4.500)</td>
<td>143.11 (3.635)</td>
</tr>
<tr>
<td></td>
<td>- Power amplifier/low noise amplifier GPA 65 GARMIN</td>
<td></td>
<td>1.90 (0.860)</td>
<td>221.42 (5.624)</td>
</tr>
<tr>
<td></td>
<td>- Antenna GA 58 (above fuselage) GARMIN</td>
<td></td>
<td>0.79 (0.360)</td>
<td>230.71 (5.860)</td>
</tr>
<tr>
<td></td>
<td>- Antenna GA 58 (under fuselage) GARMIN</td>
<td></td>
<td>0.79 (0.360)</td>
<td>260.63 (6.620)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34-51 - NAV 1 installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>VHF GS-NAV antenna DM N4-17N DORNE & MARGOLIN</td>
<td>3.307 (1.500)</td>
<td>401.57 (10.200)</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Receiver (integrated in the GIA 63W Integrated Avionics Unit #1: refer to ATA 34-28)</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>34-52 - NAV 2 installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Receiver (integrated in the GIA 63W Integrated Avionics Unit #2: refer to ATA 34-28)</td>
<td>/</td>
<td>/</td>
<td></td>
</tr>
</tbody>
</table>
List of Equipment

34-53 - Transponder

<table>
<thead>
<tr>
<th>S/R/A/O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0176-00E</td>
<td>Transponder #2 GTX 33 - Mode S non diversity (Up to S/N 1110) GARMIN</td>
<td>3.87 (1.75)</td>
<td>149.65 (3.801)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Antenna KA 61</td>
<td>0.40 (0.18)</td>
<td>193.22 (4.908)</td>
</tr>
<tr>
<td>S</td>
<td>0264-34B</td>
<td>Transponder #1 GTX 33 - Mode S non diversity with extended squitter (Up to S/N 1110) GARMIN</td>
<td>4.41 (2.00)</td>
<td>149.65 (3.801)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Antenna KA 61</td>
<td>0.40 (0.18)</td>
<td>193.22 (4.908)</td>
</tr>
<tr>
<td>O</td>
<td>0264-34C</td>
<td>Transponder #2 GTX 33 - Mode S diversity with extended squitter (Up to S/N 1110) GARMIN</td>
<td>4.41 (2.00)</td>
<td>149.65 (3.801)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Antenna KA 61</td>
<td>0.40 (0.18)</td>
<td>193.22 (4.908)</td>
</tr>
</tbody>
</table>

34-54 - Automatic Direction Finder (ADF)

<table>
<thead>
<tr>
<th>S/R/A/O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0176-00H</td>
<td>ADF RA 3500 system (European countries only), of which (Up to S/N 1110) :</td>
<td>7.61 (3.45)</td>
<td>214.65 (5.452)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Receiver RA3502 P/N 0505.757-912 BECKER</td>
<td>2.205 (1.000)</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Antenna AN3500 P/N 0832.601-912 BECKER</td>
<td>3.594 (1.630)</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- RMI converter AC3504 P/N 0856.010-912 BECKER</td>
<td>1.323 (0.600)</td>
<td>/</td>
</tr>
</tbody>
</table>

34-55 - DME installation

<table>
<thead>
<tr>
<th>S/R/A/O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>34014E</td>
<td>DME KN63, G1000 coupled HONEYWELL</td>
<td>2.80 (1.27)</td>
<td>232.28 (5.900)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ Antenna KA 61</td>
<td>0.40 (0.18)</td>
<td>238.82 (6.066)</td>
</tr>
</tbody>
</table>
List of Equipment

<table>
<thead>
<tr>
<th>S/R/A/O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>34-57 - Global Positioning System (GPS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0176-00A</td>
<td>GPS/WAAS Antenna GA 36 (Up to S/N 1110)</td>
<td>0.48 (0.22)</td>
<td>204.84 (5.203)</td>
</tr>
<tr>
<td>S</td>
<td>0176-00A</td>
<td>GPS/WAAS + XM Antenna GA 37 (Up to S/N 1110)</td>
<td>0.55 (0.25)</td>
<td>204.84 (5.203)</td>
</tr>
<tr>
<td>A</td>
<td>0176-00G</td>
<td>G1000 Chartwiew function (Up to S/N 1110)</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>S/</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>----</td>
<td>------------</td>
<td>---</td>
<td>-------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>OPT70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOD70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0207-00</td>
<td>35 - OXYGEN: Gaseous oxygen system with oxygen masks EROS</td>
<td>22.73 (10.310)</td>
<td>226.77 (5.760)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EROS/INTERTECHNIQUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------</td>
<td>---</td>
<td>-------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>OPT70 or MOD70</td>
<td>37 - VACUUM</td>
<td>Air ejector valve 19E17-5A LUCAS</td>
<td>0.661 (0.300)</td>
<td>116.14 (2.950)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regulator and relief valve 38E-96-2D LUCAS</td>
<td>1.323 (0.600)</td>
<td>116.14 (2.950)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vacuum relief valve 691-21A LUCAS</td>
<td>0.331 (0.150)</td>
<td>139.76 (3.550)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Valve 557-18 E LUCAS</td>
<td>0.353 (0.160)</td>
<td>118.11 (3.000)</td>
</tr>
<tr>
<td>S/R</td>
<td>A/O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OPT70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MOD70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>52002A</td>
<td>"Pilot" door SOCATA</td>
<td>44.092 (20.000)</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td>0320-52B</td>
<td>New "Pilot" door SOCATA - Version B</td>
<td>45.607 (20.687)</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>0342-52</td>
<td>Additional landing gear doors SOCATA</td>
<td>6.613 (3.000)</td>
</tr>
<tr>
<td>S/R/A/O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>--</td>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>S</td>
<td>56001A</td>
<td>Deiced R.H. windshield</td>
<td>SPS</td>
<td>158.27 (4.020)</td>
</tr>
<tr>
<td></td>
<td>56 - WINDOWS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table provides information on the required equipment, including its weight and arm length.
<table>
<thead>
<tr>
<th>S/R/A/O</th>
<th>ITEM</th>
<th>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</th>
<th>WEIGHT per unit lb (kg)</th>
<th>ARM in. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>57001A</td>
<td>Utilization on runways covered with melting snow SOCATIA</td>
<td>200.00 (5.080)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>57 - WINGS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>R/</td>
<td>OPT70 or MOD70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>61 - PROPELLER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0345-61</td>
<td>Propeller (5-blade) HC-E5N-3C / NC 8834 K + spinner 104552P</td>
<td>171.08 (77.60)</td>
<td>43.11 (1.095)</td>
</tr>
<tr>
<td></td>
<td>61-10 - Propeller assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>61-20 - Controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>Propeller governor 8210.007</td>
<td>2.646 (1.200)</td>
<td>59.06 (1.500)</td>
</tr>
<tr>
<td>R</td>
<td>0445-72</td>
<td>Overspeed governor 1439292</td>
<td>2.535 (1.200)</td>
<td>59.06 (1.330)</td>
</tr>
<tr>
<td>S/ R/ A/ O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>---</td>
<td>------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>OPT70 or MOD70</td>
<td>71 - POWER PLANT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>Turboprop engine PT6 A-66D P & W CANADA</td>
<td></td>
<td>497.30 (226.00)</td>
<td>79.72 (2.025)</td>
</tr>
<tr>
<td>S</td>
<td>Top silentblocks 95007-16 (Qty 2) BARRY</td>
<td></td>
<td>2.647 (1.201)</td>
<td>79.72 (2.025)</td>
</tr>
<tr>
<td>S</td>
<td>Bottom silentblocks 95007-19 (Qty 2) BARRY</td>
<td></td>
<td>2.654 (1.204)</td>
<td>79.72 (2.025)</td>
</tr>
<tr>
<td>R</td>
<td>0359-71 Inertial ice separator actuator JA23372-1000-1 BEAVER</td>
<td></td>
<td>2.156 (0.978)</td>
<td>62.99 (1.600)</td>
</tr>
<tr>
<td>S/ R/ A/ O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>---</td>
<td>-------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>OPT70 or MOD70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>77-12</td>
<td>Fuel management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0328-77</td>
<td>Torque transducer APTE-438-1000-75D KULITE</td>
<td>0.473 (0.215)</td>
<td>54.84 (1.393)</td>
</tr>
<tr>
<td>S</td>
<td>77</td>
<td>Engine indicating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>0077</td>
<td>Compressor turbine tacho-generator (Ng) MIL-G-26611C GEU-7/A AIRCRAFT APPLIANCES AND EQUI. LTD</td>
<td>0.981 (0.445)</td>
<td>108.27 (2.750)</td>
</tr>
<tr>
<td>R</td>
<td>0078</td>
<td>Propeller tacho-generator (Np) MIL-G-26611 GEU-7/A P/N 32005-025 AIRCRAFT APPLIANCES AND EQUI. LTD</td>
<td>0.981 (0.445)</td>
<td>55.12 (1.400)</td>
</tr>
<tr>
<td>S</td>
<td>660 526AS SHADIN</td>
<td>Fuel flow transmitter</td>
<td>0.683 (0.310)</td>
<td>110.20 (2.799)</td>
</tr>
<tr>
<td>S/R/A/O</td>
<td>ITEM</td>
<td>REQUIRED (R) OR STANDARD (S) OR OPTIONAL (A or O) EQUIPMENT</td>
<td>WEIGHT per unit lb (kg)</td>
<td>ARM in. (m)</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--</td>
<td>-------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>R</td>
<td>OPT70 or MOD70</td>
<td>79 - LUBRICATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>79-20 - Distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oil cooler L8538233</td>
<td>LORI 10.472 (4.750)</td>
<td>90.55 (2.300)</td>
</tr>
<tr>
<td>R</td>
<td>0327-79A</td>
<td>79-30 - Indicating</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oil pressure transmitter APT-369A-1000-150G (5 Vdc)</td>
<td>KULITE 0.337 (0.153)</td>
<td>105.35 (2.676)</td>
</tr>
<tr>
<td>S</td>
<td>0169-79 C</td>
<td>Chip detection system (2 detectors) interfaced with G1000 system</td>
<td>PWC Neglig. /</td>
<td></td>
</tr>
</tbody>
</table>