

TBM 960

Pilot's Information Manual

P/N DMMPIPYEE0EN - Edition 0 - Revision 04

CAUTION

This information manual is a non-official copy of the pilot's operating handbook and may be used for general information purposes only. It is not kept current and therefore cannot be used as a substitute for airworthiness authorities approved manual which is the only one intended for operation of the airplane. The list of effective pages in this manual corresponds to that of the basic Pilot's Operating Handbook.

The content of this document is the property of DAHER AEROSPACE. It is supplied in confidence and commercial security of its contents must be maintained.

It must not be used for any purpose other than that for which it is supplied, nor may information contained in it be disclosed to unauthorized persons. It must not be reproduced nor transmitted in any form in whole or in part without permission in writing from the owners of the Copyright.

Information in this document is subject to change without notice.

© 2023 - DAHER AEROSPACE All rights reserved

DAHER AEROSPACE

Customer Care 65921 TARBES CEDEX 9 FRANCE

Printed in FRANCE

List of Effective Pages and Validities

Original issue: January 27, 2022

Airplanes equipped with MOD70-0621-76

P/N	DMMFM00EE0ENR04	
Page No.	Rev. No.	Rev. Date
0.1 to 0.1	04	FEB 2023
0.3 to 0.6	00	JAN 2022
0.7 to 0.7	03	OCT 2022
0.8 to 0.8	01	MAR 2022
0.9 to 0.9	01	MAR 2022
0.10 to 0.11	01	MAR 2022
0.12 to 0.12	01	MAR 2022
0.13 to 0.20	04	FEB 2023
0.21 to 0.24	04	FEB 2023
0.25 to 0.25	04	FEB 2023
1.0.1 to 1.0.1	04	FEB 2023
1.1.1 to 1.1.1	00	JAN 2022
1.2.1 to 1.2.2	00	JAN 2022
1.3.1 to 1.3.4	00	JAN 2022
1.4.1 to 1.4.9	00	JAN 2022
1.5.1 to 1.5.4	00	JAN 2022
1.6.1 to 1.6.2	00	JAN 2022
2.0.1 to 2.0.2	04	FEB 2023
2.1.1 to 2.1.1	03	OCT 2022
2.2.1 to 2.2.1	00	JAN 2022
2.3.1 to 2.3.4	00	JAN 2022
2.4.1 to 2.4.1	00	JAN 2022
2.5.1 to 2.5.4	00	JAN 2022
2.6.1 to 2.6.16	00	JAN 2022
2.7.1 to 2.7.2	01	MAR 2022
2.8.1 to 2.8.13	03	OCT 2022
2.9.1 to 2.9.11	03	OCT 2022
3.A.1 to 3.A.3	04	FEB 2023
3.0.1 to 3.0.3	04	FEB 2023
3.1.1 to 3.1.4	00	JAN 2022

POH TBM 960 - Edition 0 Rev. 04 Page 0.21

Page No.	Rev. No.	Rev. Date
3.2.1 to 3.2.2 3.3.1 to 3.3.18 3.4.1 to 3.4.3 3.5.1 to 3.5.6 3.6.1 to 3.6.4 3.7.1 to 3.7.4 3.8.1 to 3.8.4 3.9.1 to 3.9.4 3.10.1 to 3.10.7 3.11.1 to 3.11.1 3.12.1 to 3.12.10 3.13.1 to 3.13.10	00 03 00 00 00 00 00 04 00 00 00 00 00 03	JAN 2022 OCT 2022 JAN 2022 JAN 2022 JAN 2022 JAN 2022 JAN 2022 FEB 2023 JAN 2022 JAN 2022 JAN 2022 JAN 2022 OCT 2022
3A.0.1 to 3A.0.3 3A.1.1 to 3A.1.1 3A.2.1 to 3A.2.1 3A.3.1 to 3A.2.1 3A.3.1 to 3A.3.9 3A.4.1 to 3A.4.1 3A.5.1 to 3A.4.1 3A.6.1 to 3A.6.1 3A.7.1 to 3A.7.15 3A.8.1 to 3A.7.15 3A.8.1 to 3A.8.5 3A.9.1 to 3A.9.7 3A.10.1 to 3A.10.5 3A.11.1 to 3A.11.10 3A.12.1 to 3A.12.22 3A.13.1 to 3A.13.4	04 00 03 00 00 00 01 00 00 00 00 00 00 00 00 00	FEB 2023 JAN 2022 JAN 2022 OCT 2022 JAN 2022
4.0.1 to 4.0.3 4.1.1 to 4.1.1 4.2.1 to 4.2.1 4.3.1 to 4.3.24 4.4.1 to 4.4.69 4.5.1 to 4.5.29	04 00 00 04 04 04	FEB 2023 JAN 2022 JAN 2022 FEB 2023 FEB 2023 FEB 2023
5.0.1 to 5.0.2 5.1.1 to 5.1.1 5.2.1 to 5.2.1 5.3.1 to 5.3.2 5.4.1 to 5.4.1 5.5.1 to 5.5.1 5.6.1 to 5.6.1	04 01 00 03 00 03	FEB 2023 MAR 2022 JAN 2022 JAN 2022 OCT 2022 JAN 2022 OCT 2022

Page 0.22

POH TBM 960 - Edition 0 Rev. 04

Page No.	Rev. No.	Rev. Date
5.7.1 to 5.7.1 5.8.1 to 5.8.52 5.9.1 to 5.9.10 5.10.1 to 5.10.12 5.11.1 to 5.11.62 5.12.1 to 5.12.1 5.13.1 to 5.13.1 5.14.1 to 5.14.4	00 01 01 03 00 00 01	JAN 2022 MAR 2022 MAR 2022 MAR 2022 OCT 2022 JAN 2022 JAN 2022 MAR 2022
6.0.1 to 6.0.1 6.1.1 to 6.1.1 6.2.1 to 6.2.1 6.3.1 to 6.3.3 6.4.1 to 6.4.19 6.5.1 to 6.5.1	04 00 00 00 00 00	FEB 2023 JAN 2022 JAN 2022 JAN 2022 JAN 2022 JAN 2022
7.0.1 to 7.0.4 7.1.1 to 7.1.1 7.2.1 to 7.2.10 7.3.1 to 7.3.73 7.4.1 to 7.4.29 7.5.1 to 7.5.16 7.6.1 to 7.6.28 7.7.1 to 7.7.10 7.8.1 to 7.8.15 7.9.1 to 7.9.31 7.10.1 to 7.10.15 7.11.1 to 7.11.11 7.12.1 to 7.12.5 7.13.1 to 7.13.4 7.14.1 to 7.14.5 7.15.1 to 7.15.17	04 00 04 00 03 04 03 04 04 02 00 00 00 00 00 00 00 00	FEB 2023 JAN 2022 JAN 2022 FEB 2023 JAN 2022 OCT 2022 FEB 2023 OCT 2022 FEB 2023 FEB 2023 APR 2022 JAN 2022 JAN 2022 JAN 2022 JAN 2022 FEB 2023
8.0.1 to 8.0.2 8.1.1 to 8.1.1 8.2.1 to 8.2.1 8.3.1 to 8.3.1 8.4.1 to 8.4.1 8.5.1 to 8.5.1 8.6.1 to 8.6.5 8.7.1 to 8.7.15 8.8.1 to 8.8.2	04 00 00 00 00 00 01 04 00	FEB 2023 JAN 2022 JAN 2022 JAN 2022 JAN 2022 JAN 2022 MAR 2022 FEB 2023 JAN 2022

POH TBM 960 - Edition 0 Rev. 04 Page 0.23

Page No.	Rev. No.	Rev. Date
8.9.1 to 8.9.15	01	MAR 2022
8.10.1 to 8.10.2	00	JAN 2022

Page 0.24

POH TBM 960 - Edition 0 Rev. 04

Table of Contents

	Section
General	1
Limitations	2
Emergency Procedures	3
Abnormal Procedures	3A
Normal Procedures	4
Performance	5
Weight and Balance	6
Description	7
Handling, Servicing and Maintenance	8

Section 0

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04

Page 0.30

Section 1

General

Table of Contents

1.1	- General	1.1.1
	Part 135 Operations	1.1.1
1.2	- Three View Drawing	1.2.1
1.3	- Descriptive Data	1.3.1
	Engine	1.3.1
	Propeller	1.3.1
	Fuel	1.3.1
	Engine Oil	1.3.2
	Maximum Certificated Weights	1.3.3
	Standard Airplane Weights	1.3.3
	Cabin and Entry Dimensions	1.3.3
	Specific Loadings	1.3.4
1.4	- Abbreviations and Terminology	1.4.1
	Meteorological Terminology	1.4.1
	General Airspeed Terminology and Symbols	1.4.1
	Power Terminology	1.4.2
	Airplane Performance and Flight Planning Terminology	1.4.2
	Weight and Balance Terminology	1.4.3
	General Abbreviations	1.4.3
	Radio Navigation Abbreviations	1.4.8
1.5	- Conversion Factors	1.5.1
1.6	- Pressure and Standard Atmosphere	1.6.1
	Standard Atmosphere	1.6.1
	Pressure Conversion Table	1.6.2

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04

Page 1.0.2

1.1 - General

This POH contains nine sections and includes the material required by FAR Part 23 to be furnished to the pilot for operation of the TBM airplane. It also contains supplemental data supplied by the manufacturer, in accordance with GAMA (General Aviation Manufacturers Association) standards.

Section 1 provides basic data and information of general interest. It also contains definitions or explanations of commonly used abbreviations and terminology.

Whenever this POH refers to the Garmin Integrated Flight Deck Pilot's Guide, it denotes the guide described in <u>Subsection 2.1. General</u>.

Whenever this POH refers to the MD302 Pilot's Guide, it denotes the guide described in <u>Subsection 2.1. General</u>.

The general information for complex optional systems are given in Section 9: Supplements.

The installed ADS-B OUT system has been shown to meet the equipment requirements of 14 CFR 91.227.

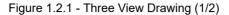
The installed transponder system is able to respond to interrogations in Modes A, C and S and is fully compliant with the requirements of CS ACNS.D.ELS/EHS (Mode S Elementary/Enhanced Surveillance).

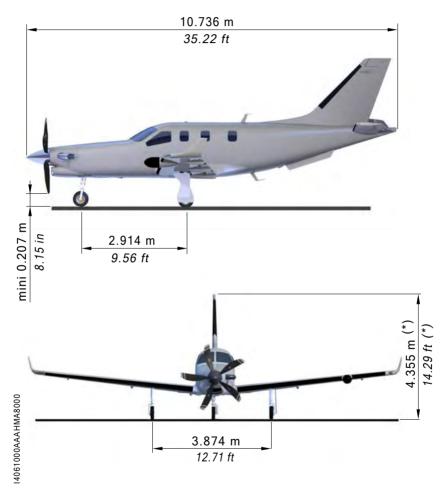
The installed ADS-B OUT system is fully compliant with the requirements of CS ACNS.D.ADSB (1090 MHz Extended Squitter ADS-B OUT).

Part 135 Operations

For 14 CFR 135 operations, the TBM airplane's alternative source of electric power is capable of supplying 150 percent of the electrical loads of all required instruments and equipment for safe emergency operation of the airplane for at least one hour.

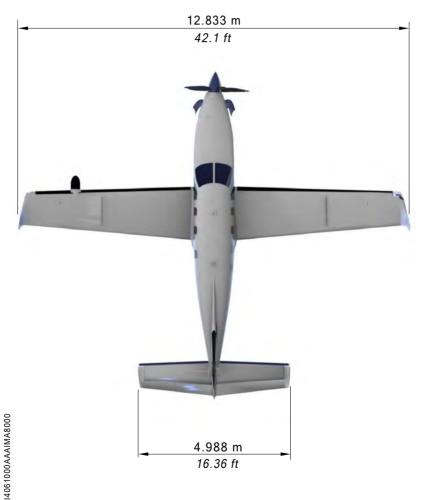
The electrical load shedding procedure provided in Section 3 of this POH must be followed to meet requirements of paragraph 14 CFR 135.163(f)(2).


Intentionally left blank


PIM TBM 960 - Edition 0 Rev. 00

Page 1.1.2

1.2 - Three View Drawing



(*) Airplane on a level surface with fully extended FWD shock absorber

PIM TBM 960 - Edition 0 Rev. 00 Page 1.2.1

Figure 1.2.2 - Three View Drawing (2/2)

PIM TBM 960 - Edition 0 Rev. 00 Page 1.2.2

1.3 - Descriptive Data

Engine

Number of engines: 1

Engine manufacturer: Pratt & Whitney Canada

Engine model number: PT6E-66XT

Engine type: Free turbine, reverse flow and two turbine sections

- Compressor type: four axial stages, one centrifugal stage
- Combustion chamber type: annular
- Turbine type: one gas generator turbine stage, two power turbine stages

Horsepower rating and propeller speed: 895 SHP (667 kW) at 1,925 RPM

The engine is electronically controlled by a Full Authority Digital Engine Control (FADEC) system.

Propeller

Number of propellers: 1

Propeller manufacturer: Hartzell

Propeller model number: 5D31-NK366B1 / 86DB01B

Number of blades: 5

Propeller diameter: 91 in (2.311 m)

Propeller type: Adjustable constant speed, with feathering and hydraulic control reverse

Propeller blade setting at 30-inch station:

- Low pitch: 19.5°
- Feathering: 86.1°
- Maximum reverse: 9.3°

The electro-hydro-mechanical Propeller Control Unit (PCU) modulates the blade angle.

Fuel

Total capacity: 301 USG (1,140 liters)

Total capacity, each tank: 150.5 USG (570 liters)

PIM TBM 960 - Edition 0 Rev. 00 Page 1.3.1

Total usable: 292 USG (1,106 liters)

CAUTION

The fuel used must contain an anti-ice additive, in accordance with specification MIL-I-27686 or MIL-I-85470. Additive concentrations (EGME or DIEGME) shall be between a minimum of 0.06% and a maximum of 0.15% by volume. Refer to <u>Paragraph Fuel in Subsection 8.7.</u> for additional information.

Table 1.3.1 - Recommended Fuel Types [Reference: P&WC Engine Maintenance
Manual, latest revision]

US Specification (US)	French Specification (FR)	English Specification (UK)	NATO Code
ASTM-D1655 JET A ASTM-D1655 JET A1	AIR 3405C Grade F35	DERD 2494 Issue 9	F35**
MIL-DTL-5624 Grade JP-5	AIR 3404C Grade F44	DERD 2452 Issue 2 Amendment 1	F44*
MIL-DTL-83133 Grade JP-8	AIR 3405C Grade F34	DERD 2453 Issue 4 Amendment 1	F34*
	AIR 3404C Grade F43	DERD 2498 Issue 7	F43**
* Already contains an anti-ice additive. ** Requires an anti-ice additive.			

Engine Oil

System total capacity: 12.7 qt (12 liters) (oil cooler included)

Usable capacity: 6 qt (5.7 liters)

Maximum oil consumption in a 10-hour period: 0.14 qt/h (0.13 l/h) [0.3 lb/h (136 cc/h)]

Specification

Table 1.3.2 - Recommended Engine Oil Types [Reference: P&WC Engine Maintenance Manual, latest revision]

Nominal viscosity	Specification	NATO code
5cSt	MIL-PRF-23699	O-156 (STD) O-154 (HTS)

Maximum Certificated Weights

Maximum airplane weight:

Maximum Ramp Weight (MRW)	7,430 lbs to 7,650 lbs * (3,370 kg to 3,470 kg) *
Maximum Takeoff Weight (MTOW)	7,394 lbs to 7,615 lbs * (3,354 kg to 3,454 kg) *
Maximum Landing Weight (MLW)7,110 lbs (3,225 kg)	
* Depending on the C.G. position – see Figure 2.5.2	

Baggage weight:

- For weight and C.G. limits, refer to <u>Paragraph Weight Limits in Subsection</u> <u>2.5.</u>
- For cargo loading instructions, refer to Subsection 6.3. Baggage Loading

Standard Airplane Weights

Standard empty weight: 4,784 lbs (2,170 kg)

Maximum useful load: 2,831 lbs (1,284 kg)

Cabin and Entry Dimensions

Maximum cabin width: 3.97 ft (1.21 m) Maximum cabin length: 13.29 ft (4.05 m) Maximum cabin height: 4 ft (1.22 m) Number of cabin entries: 1 (standard) + 1 pilot door (if installed) Entry width (standard): 3.54 ft (1.08 m)

PIM TBM 960 - Edition 0 Rev. 00 Page 1.3.3

Entry height (standard): 3.9 ft (1.19 m) Pilot entry mean width: 2.3 ft (0.70 m) Pilot entry mean height: 3.18 ft (0.97 m)

Specific Loadings

Wing loading: 39.3 lbs/ft² (191.9 kg/m²) Power loading: 8.5 lbs/SHP (3.86 kg/SHP)

1.4 - Abbreviations and Terminology

Meteorological Terminology

ISA	International Standard Atmosphere
IMC	Instrument Meteorological Conditions
VMC	Visual Meteorological Conditions
OAT	Outside Air Temperature
SAT	Static Air Temperature
QFE	Atmospheric pressure at the airport reference point.
QNH	Atmospheric pressure at sea level, at airplane position.
Standard temperature	15 °C (59 °F) at sea level pressure altitude, decreasing by 2 °C (3.6 °F) for each 1,000 ft of altitude.
Pressure altitude	The altitude read from an altimeter when the altimeter's barometric scale has been set to 29.92 inches of mercury (1,013.2 hPa).

General Airspeed Terminology and Symbols

- KCAS Knots Calibrated Airspeed: the indicated airspeed expressed in knots corrected for position and instrument error. Knots calibrated airspeed is equal to KTAS in standard atmosphere at sea level.
- **KIAS Knots Indicated Airspeed**: the speed shown on the airspeed indicator and expressed in knots.
- **KTAS Knots True Airspeed**: the airspeed expressed in knots relative to undisturbed air which is KCAS corrected for altitude and temperature.
- V_A Maneuvering Speed: the maximum speed at which full or abrupt control movements may be used.
- V_{FE} Maximum Flap Extended Speed: the highest speed permissible with wing flaps in a prescribed extended position.
- V_{LE} Maximum Landing Gear Extended Speed: the maximum speed at which an airplane can be safely flown with the landing gear extended.
- V_{LO} Maximum Landing Gear Operating Speed: the maximum speed at which the landing gear can be safely extended or retracted.

V_{MO} Maximum Operating Speed: the speed limit that may not be deliberately exceeded in normal flight operations.

- V_R Rotation Speed: the speed at which rotation is initiated during takeoff to achieve takeoff safety speed at screen height.
- V_{S0} Stalling Speed: the minimum steady flight speed at which the airplane is controllable in the landing configuration.
- V_{S1} Stalling Speed: the minimum steady flight speed obtained in a specific configuration.
- V_X Best Angle of Climb Speed: the airspeed which delivers the greatest gain of altitude in the shortest possible horizontal distance.
- V_Y Best Rate of Climb Speed: the airspeed which delivers the greatest gain in altitude in the shortest possible time.

Power Terminology

Recovery altitude	Maximum altitude at which it is possible, in standard temperature conditions, to maintain a specified power.
Hot start	Engine start or attempt to start that causes the interturbine temperature to be higher than the maximum value permissible during start.
Flameout	Involuntary loss of the combustion chamber flame during operation.
GPU	Ground Power Unit
Feathering	Action which reduces the drag of a propeller by positioning blades at the pitch angle creating minimal drag.
Maximum Cruise Power	Power developed in relation to outside flight level and temperature conditions.
Ng	Gas generator RPM
Np	Propeller rotation speed
Reverse	Drag produced when the propeller blade setting is negative.
RPM	Revolutions Per Minute
SHP	Shaft Horsepower
TRQ	Torque

Airplane Performance and Flight Planning Terminology

Climb gradient The ratio of the change in height during a portion of climb to the horizontal distance traversed during the same time interval.

PIM ⁻	TBM 960 - E	dition 0
Rev.	00	

Page 1.4.2

Demonstrated crosswind velocity The velocity of the crosswind component for which adequate control of the airplane during takeoff and landing was actually demonstrated during certification tests. The value shown is not considered to be limiting.

g The force of gravity or acceleration.

- **Usable fuel** Total fuel that can be effectively consumed by the engine.
- **D**₅₀ Takeoff or landing distance over a 50-foot (15-meter) obstacle

Weight and Balance Terminology

Reference datum	Datum perpendicular to the longitudinal airplane centerline from which all distances are measured for weight and balance purposes.		
Arm	The distance from the reference datum to the center of gravity (C.G.) of an item.		
Moment	The product of the weight of an item multiplied by its arm.		
Center of gravity	Airplane balance point. Its distance from the reference datum is found by dividing the total moment by the total weight of the airplane.		
C.G. limits	The extreme center of gravity locations within which the airplane must be operated at a given weight.		
Standard empty weight	Weight of a standard airplane, including unusable fuel and full operating fluids (oil and hydraulic fluids).		
Basic empty weight	Standard empty weight plus optional equipment.		
Useful load	The difference between maximum ramp weight and the basic empty weight.		
Maximum Ramp Weight	The maximum weight approved for ground maneuver. It includes the weight of start, taxi and run up fuel.		
Maximum Takeoff Weight	The maximum weight approved at the beginning of the takeoff run.		
Maximum Landing Weight	The maximum weight approved for landing touchdown.		

General Abbreviations

Α	Ampere	
A/C	Air Conditioning	
ADC	Air Data Computer	

PIM TBM 960 - Edition 0 Rev. 00 Page 1.4.3

AGL	Above Ground Level
	Aileron TRIM
	Altimeter
ALT SEL	Altitude Selection
	Ampere
AMF 3 AoA	Amperes
AUA AT	Angle of Attack Autothrottle
ATIS	Automatic Terminal Information Service
	Auto Selector
AUTO SEL	
AUX BP	Auxiliary Boost Pump
BAT	Battery
BRT	Brightness
°C	Degrees Celsius
CAS	Crew Alerting System
CAS	Calibrated Airspeed
cc/h	Cubic Centimeter per Hour
C.G.	Center of Gravity
CONT	Control
cu.ft	Cubic Feet
DCTU	Data Collection and Transmission Unit
DIEGME	Diethylene Glycol Monomethyl Ether
DISC	Disconnect
DN	Down
ECS	Environmental Control System
EDM	Emergency Descent Mode
EGME	Ethylene Glycol Monomethyl Ether
EIS	Engine Indication System
EMER	Emergency
ESP	Electronic Stability Protection
ESS BUS TIE	Essential Bus Tie
EXT LIGHTS	External Lights
°F	Degrees Fahrenheit
FADEC	Full Authority Digital Engine Control

FCU	Fuel Control Unit		
FF	Fuel Flow		
FL	Flight Level		
FOB	Fuel on Board		
FPL	Flight Plan		
ft	Feet		
ft/min	Feet per Minute		
FWD	Forward		
G	Green		
GIA	Garmin Integrated Avionics Unit		
GIFD	Garmin Integrated Flight Deck		
GMA	Garmin Audio Panel System		
GR	Ground Roll		
GTC	Garmin Touchscreen Controller		
h	Hour		
н	High		
HP	High Pressure		
hPa	Hectopascal		
HTR	Heater		
HTRS	Heaters		
IAS	Indicated Airspeed		
IGNIT	Ignition		
in	Inch / Inches		
INDIC	Indicator		
INERT SEP	Inertial Separator		
in.Hg	Inches of Mercury		
in.lbs	Inch-pounds		
INSTR	Instrument		
INT LIGHTS	Interior Lights		
ITT	Interturbine Temperature		
kg	Kilogram		
kg/h	Kilogram per Hour		
kg/m²	Kilograms per Square Meter		
kg/SHP	Kilogram per Shaft Horsepower		

kt	Knot (1 nautical mile per hour - 1,852 meters per hour)
kW	Kilowatt
I	Liter
L	Left
lb	Pound
lb/h	Pounds per Hour
lbs	Pounds
lbs/ft ²	Pounds per Square Foot
lbs/SHP	Pounds per Shaft Horsepower
LCD	Liquid Crystal Display
L/D	Lift to Drag Ratio
LDG	Landing
LDG GR	Landing Gear
LDR	Lightweight Data Recorder
LFE	Landing Field Elevation
l/h	Liter per Hour
L.H.	Left Hand
LO	Low
LP	Low Pressure
LRCR	Long Range Cruise
LRN	Long Range Navigation
LTS TEST	Lights Test
LVL	Level
m	Meter
Μ	Mach Number
MAC	Mean Aerodynamic Chord
MAIN GEN	Main Generator
MAN	Manual
MAX RPM	Maximum Revolutions per Minute
mb	Millibar
MFD	Multifunction Display
min	Minute
MIN	Minimum
m.kg	Kilogram-meters

Page 1.4.6

MLW	Maximum Landing Weight
mm	Millimeter
MPH	Miles per Hour
MRW	Maximum Ramp Weight
MTOW	Maximum Takeoff Weight
MXCL	Maximum Climb
MXCR	Maximum Cruise
MZFW	Maximum Zero Fuel Weight
NM	Nautical Mile
NORM	Normal
PCU	Propeller Control Unit
PFD	Primary Flight Display
PRESS	Pressure
PROP	Propeller
psi	Pounds per Square Inch
PSIG	Pounds per Square Inch Gauge
qt	Quart (¼ USG)
qt/h	Quart per Hour
QTY	Quantity
R	Right
RCR	Recommended Cruise
R.H.	Right Hand
RUD	Rudder
S	Second
SEI	Single Engine Indicator
SEL	Selector
SIG	Signalization
SL	Sea Level
S/N	Serial Number
SPKR	Speaker
STALL HTR	Stall Warning Heater
ST-BY	Standby
Std	Standard
STPD	Standard Temperature Pressure Dry

Page 1.4.8

T°	Temperature		
TAS	True Airspeed		
TEMP	Temperature		
то	Takeoff		
TURN COORD	Turn Coordinator		
USG	Gallon U.S		
USG/h	Gallon U.S per Hour		
USP	Under Speed Protection		
V	Volt		
VSI	Vertical Speed Indicator		
W	Watt		
WARN	Warning		
W/S	Windshield		

Radio Navigation Abbreviations

ADF	Automatic Direction Finder System
ADS-B	Automatic Dependent Surveillance-Broadcast
AFCS	Automated Flight Control System
AIRAC	Aeronautical Information Regulation and Control
AP	Autopilot
APR	Approach
ATC	Air Traffic Control
Baro-VNAV	Barometric Vertical NAVigation
CDI	Course Deviation Indicator
СОМ	Communications Transceivers
DA	Decision Altitude
DH	Decision Height
DME	Distance Measuring Equipment
DR	Dead Reckoning
ELT	Emergency Locator Transmitter
FAF	Final Approach Fix
FD	Flight Director
FDE	Fault Detection and Exclusion
FMS	Flight Management System
GNSS	Global Navigation Satellite System
PIM TBM 960 - I Rev. 00	Edition 0

GP	Glide Path
GPS	Global Positioning System
GS	Glide Slope
HSI	Horizontal Situation Indicator
IFR	Instrument Flight Rules
ILS	Instrument Landing System
IMC	Instrument Meteorological Conditions
LNAV	Lateral NAVigation
LNAV+V	Lateral NAVigation and Vertical
LOC	Localizer
LPV	Localizer Performance with Vertical Guidance
MAP	Missed Approach Point
MDA	Minimum Descent Altitude
NAV	Navigation Indicators or Receivers
NDB	Non-Directional Beacon
RAIM	Receiver Autonomous Integrity Monitoring
RF Legs	Radius to Fix Legs
RNAV	Area NAVigation
RNP	Required Navigation Performance
RVSM	Reduced Vertical Separation Minimum
SBAS	Satellite Based Augmentation System
STAR	Standard Terminal Arrival Route
TAS	Traffic Advisory System
TAWS	Terrain Awareness Warning System
VDI	Vertical Deviation Indicator
VFR	Visual Flight Rules
VHF	Very High Frequency
VMC	Visual Meteorological Conditions
VNAV	Vertical NAVigation
VOR	VHF Omnidirectional Range
VOR/LOC	VHF Omnidirectional Range LOCalizer
WFDE	WAAS Fault Detection and Exclusion
WGS	World Geodetic System
XPDR	Transponder

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00

Page 1.4.10

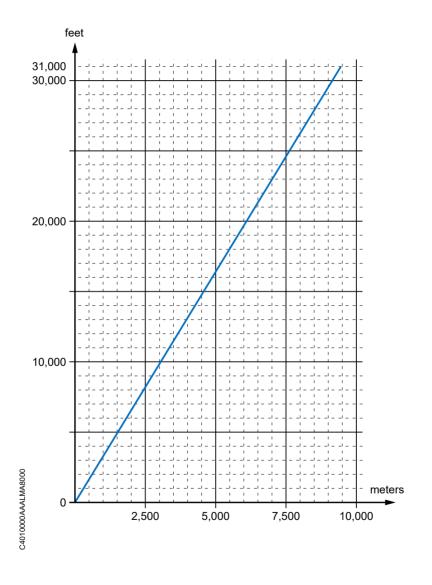
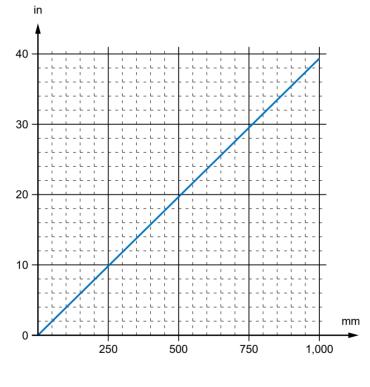

1.5 - Conversion Factors

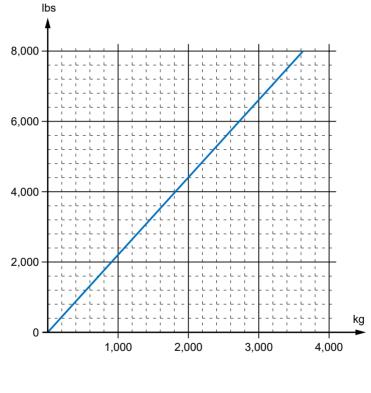
Table 1.5.1 - Imperial and U.S Units to Metric Units

Imperial and U.S units to metric units		Metric units to Imperial and U.S units			
Multiply	Ву	To obtain	Multiply	Ву	To obtain
feet	0.3048	meters	meters	3.2808	feet
inches	25.4	mm	mm	0.03937	inches
Imp.Gal	4.546	liters	liters	0.220	Imp.Gal
USG	3.785	liters	liters	0.264	USG
lbs	0.45359	kg	kg	2.2046	lbs



Page 1.5.2





C4010000AAALMA8100

PIM TBM 960 - Edition 0 Rev. 00 Page 1.5.3

C4010000AAALMA8200

PIM TBM 960 - Edition 0 Rev. 00 Page 1.5.4

1.6 - Pressure and Standard Atmosphere

Standard Atmosphere

Pressure altitude (ft)	Pressure (hPa)	°C	°F
0	1,013.2	+ 15.0	+ 59.0
2,000	942.1	+ 11.0	+ 51.8
4,000	875.0	+ 7.0	+ 44.6
6,000	811.9	+ 3.1	+ 37.6
8,000	752.6	- 0.8	+ 30.5
10,000	696.8	- 4.8	+ 23.4
12,000	644.3	- 8.7	+ 16.2
14,000	595.2	- 12.7	+ 9.2
16,000	549.1	- 16.6	+ 2.2
18,000	505.9	- 20.6	- 5.0
20,000	465.6	- 24.6	- 12.4
22,000	427.8	- 28.5	- 19.3
24,000	392.6	- 32.5	- 26.5
26,000	359.8	- 36.5	- 33.6
28,000	329.3	- 40.4	- 40.7
30,000	300.8	- 44.4	- 47.8
31,000	287.4	- 46.4	- 51.6

Table 1.6.1 - Standard Atmosphere

Pressure Conversion Table

_____ NOTE _____

The standard pressure of 1,013.2 hPa is equal to 29.92 inches of mercury.

950	951	952	953	954	955	956	957	958	959
28.05	28.08	28.11	28.14	28.17	28.20	28.23	28.26	28.29	28.32
960	961	962	963	964	965	966	967	968	969
28.35	28.38	28.41	28.44	28.47	28.50	28.53	28.56	28.58	28.61
970	971	972	973	974	975	976	977	978	979
28.64	28.67	28.70	28.73	28.76	28.79	28.82	28.85	28.88	28.91
980	981	982	983	984	985	986	987	988	989
28.94	28.97	29.00	29.03	29.06	29.09	29.12	29.15	29.18	29.20
990	991	992	993	994	995	996	997	998	999
29.23	29.26	29.29	29.32	29.35	29.38	29.41	29.44	29.47	29.50
1,000	1,001	1,002	1,003	1,004	1,005	1,006	1,007	1,008	1,009
29.53	29.56	29.59	29.62	29.65	29.68	29.71	29.74	29.77	29.80
1,010	1,011	1,012	1,013	1,014	1,015	1,016	1,017	1,018	1,019
29.83	29.85	29.88	29.91	29.94	29.97	30.00	30.03	30.06	30.09
1,020	1,021	1,022	1,023	1,024	1,025	1,026	1,027	1,028	1,029
30.12	30.15	30.18	30.21	30.24	30.27	30.30	30.33	30.36	30.39
1,030	1,031	1,032	1,033	1,034	1,035	1,036	1,037	1,038	1,039
30.42	30.45	30.47	30.50	30.53	30.56	30.59	30.62	30.65	30.68
1,040	1,041	1,042	1,043	1,044	1,045	1,046	1,047	1,048	1,049
30.71	30.74	30.77	30.80	30.83	30.86	30.89	30.92	30.95	30.98

Table 1.6.2 - Pressure Conversion Table – hPa versus in.Hg

Section 2

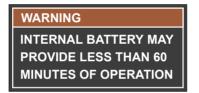
Limitations

Table of Contents

2.1	-	General	2.1.1
2.2	-	Airspeed Limitations	2.2.1
2.3	-	Powerplant Limitations	2.3.1
		Engine	2.3.1
		Oil	2.3.1
		Fuel	2.3.2
		Propeller	2.3.3
		Full Authority Digital Engine Control (FADEC)	2.3.3
2.4	-	Starter Operation Limits	2.4.1
2.5	-	Weight and C.G. Limits	2.5.1
		Weight Limits	2.5.1
		C.G. Limits	2.5.2
2.6	-	Operation Limits	2.6.1
		Maneuver Limits	2.6.1
		Temperature Limits	2.6.1
		Flight Load Factor Limits	2.6.1
		Generator Limits	2.6.2
		GFC 700 Autopilot Limits	2.6.2
		Autothrottle (AT) Limits	2.6.2
		HomeSafe Emergency Function	2.6.2
		GNSS (GPS/SBAS) Navigation Equipment Approvals	2.6.3
		GNSS (GPS/SBAS) Navigation System Limitations	2.6.6
		Icing Conditions	2.6.8
		Severe Icing Conditions	2.6.9
		Flap Operating Envelope	2.6.10
		Reverse Utilization	2.6.10
		Weather Radar	2.6.10
		Equipment Required Depending on Type of Operation	2.6.10
		Altitude Operating Limits	2.6.14

	In-Flight Breaker Use Limits	2.6.15
	Enhanced Mode S	2.6.15
	Chartview System Operating Limitations	2.6.15
2.7	- Miscellaneous Limits	2.7.1
	Seating Limits C.G.	2.7.1
	Seat Belts Limits	2.7.1
	Baggage Limits	2.7.1
	Minimum Crew	2.7.1
	Maximum Occupancy	2.7.1
	Use of Doors	2.7.1
	Cargo Net Installation Limits	2.7.1
2.8	- Markings	2.8.1
	Airspeed Indicator on PFD(s) and on Standby Airspeed	
	Indicator	2.8.1
	Pressurization	2.8.1
	Engine Instruments	2.8.2
	Engine Instruments	2.8.6
2.9	- Placards	2.9.1

2.1 - General


TBM 960 is the trade name of the TBM 700 N variant airplane (TBM 700 type), which is certified in the normal category.

This airplane must be flown in compliance with the limits specified by placards or markings and with those given in this section and throughout the POH.

The Garmin G3000 Integrated Flight Deck Pilot's Guide, No. 190-02923-00, or any later version as applicable, must be readily available to the pilot and permanently kept in the airplane with the POH.

The Pilot's Guide for MD302 Standby Attitude Module P/N 9017846 Rev G or any later version as applicable, must be permanently kept in the airplane with the POH.

Departure into IMC is not authorized if the MD302 battery fails its initial capacity check with associated message:

or if there is a red "X" over the battery symbol at MD302 initialization.

This section of the airplane POH presents the various operating limitations, the significance of such limitations, instrument markings, color coding, and basic placards necessary for the safe operation of the airplane, its powerplant and installed equipment.

The limitations included in this section have been approved by the Federal Aviation Administration in accordance with 14 CFR section 21.29.

The limitations for some optional systems are given in Section 9: Supplements of the POH.

TBM 700 airplane is certified under EASA.A.010 and FAA N° A60EU Type Certificates.

Section 2 Limitations

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 03

Page 2.1.2

2.2 - Airspeed Limitations

Airspeed limitations and their operational significance are shown in Table 2.2.1.

Speed		KCAS	KIAS	Remarks
V _{MO}	Maximum operating speed	271	266	Do not intentionally exceed this speed in normal flight category
V _A	Maneuvering speed	160	158	Do not make abrupt or full control movements above this speed
V _{FE}	Maximum flaps extended speed:			Do not exceed these speeds
	Landing configuration	120	122	depending on flaps position
	Takeoff configuration	180	178	
V _{LO}	Maximum landing gear operating speed:			
	Extension	180	178	Do not extend or retract landing gear above this
	Retraction	151	150	speed
	Emergency extension	151	150	
V_{LE}	Maximum landing gear extended speed	180	178	Do not exceed this speed with landing gear extended

Table 2.2.1 - Airspeed Limitation	s
-----------------------------------	---

Section 2 Limitations

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00 Page 2.2.2

2.3 - Powerplant Limitations

Engine

Number of engines: 1

Engine manufacturer: Pratt & Whitney Canada

Engine model number: PT6E-66XT

Torque limitations:

- 103% at Np = 1,925 RPM,
- 103% < TRQ ≤ 118% acceptable for maximum 20 seconds.

Ng limitations:

- 104%,
- $104\% \le Ng \le 104.3\%$ acceptable for maximum 20 seconds.

Np limitation:

1,925 RPM -20/+30 RPM

ITT limitations:

- Engine running:
 - . Maximum continuous: 850 °C,
 - . 850 °C < ITT \leq 900 °C acceptable for maximum 20 seconds.

– NOTE -

During normal operation, the power settings are defined by the FADEC to maintain ITT below 840 °C.

- During start:
 - . 850 °C,
 - . 850 °C < ITT ≤ 900 °C acceptable for maximum 20 seconds,
 - . 900 °C < ITT ≤ 1,000 °C acceptable for maximum 5 seconds.

Oil

CAUTION -

Do not mix different viscosities or specifications of oil as their different chemical structure can make them incompatible.

PIM TBM 960 - Edition 0 Rev. 00

Maximum oil temperature: 104 °C. A transient oil temperature up to 110 °C is acceptable for maximum 10 minutes.

Minimum oil temperature for takeoff: 0 °C.

Oil pressure:

- Minimum: 60 psi. A transient oil pressure down to 40 psi is acceptable for maximum 20 seconds.
- Maximum: 135 psi. A transient oil pressure up to 175 psi is acceptable for maximum 20 seconds.

Normal oil pressure is 100 to 135 psi. Oil pressures under 100 psi are undesirable. Under emergency conditions, to complete a flight, an oil pressure between 60 and 100 psi is permitted at reduced power level not exceeding 45% torque. Oil pressures below 60 psi are unsafe and require that either the engine be shut down or a landing be made as soon as possible using the minimum power required to sustain flight.

Oil capacity:

- System total capacity: 12.7 qt (12 liters), oil cooler included,
- Usable capacity: 6 qt (5.7 liters).

Fuel

Fuel limitations:

- Two tanks: 150.5 USG (570 liters) each
- Total fuel: 301 USG (1,140 liters)
- Usable fuel: 292 USG (1,106 liters)
- Unusable fuel: 9 USG (34 liters)
- Maximum fuel imbalance: 15 USG (57 liters)

- NOTE -

The quantity of usable fuel can be safely utilized during all normal airplane maneuvers.

- CAUTION -

The fuel used must contain an anti-ice additive, in accordance with specification MIL-I-27686 or MIL-I-85470. Additive concentrations (EGME or DIEGME) shall be between a minimum of 0.06% and a maximum of 0.15% by volume. Refer to Paragraph Fuel in Subsection 8.7. for additional information.

PIM TBM 960 - Edition 0 Rev. 00 Page 2.3.2

CAUTION

Maximum sideslip duration is 30 seconds.

Table 2.3.1 - Recommended Fuel Types [Reference: P&WC Engine Maintenance Manual, latest revision]

US Specification (US)	French Specification (FR)	English Specification (UK)	NATO Code		
ASTM-D1655 JET A ASTM-D1655 JET A1	AIR 3405C Grade F35	DERD 2494 Issue 9	F35**		
MIL-DTL-5624 Grade JP-5	AIR 3404C Grade F44	DERD 2452 Issue 2 Amendment 1	F44*		
MIL-DTL-83133 Grade JP-8	AIR 3405C Grade F34	DERD 2453 Issue 4 Amendment 1	F34*		
	AIR 3404C Grade F43	DERD 2498 Issue 7	F43**		
* Already contains an anti-ice additive. ** Requires an anti-ice additive					

Requires an anti-ice additive.

Propeller

Number of propellers: 1

Propeller manufacturer: Hartzell

Propeller model number: 5D31-NK366B1 / 86DB01B

Propeller diameter: 91 in (2.311 m)

Propeller blade setting at 30-inch station:

- Low pitch: 19.5° _
- Feathering: 86.1° _
- Maximum reverse: 9.3° _

Full Authority Digital Engine Control (FADEC)

Takeoff is not allowed when **NO DISPATCH** is displayed in the CAS window.

- Airplane dispatch is allowed when **LMTD DISPATCH** is displayed in the CAS window.

The fault must be repaired within 50 flight hours after the message's first appearance. The full duration of the flight after which **LMTD DISPATCH** first appeared must be counted when calculating the 50-flight-hour time period.

Calculating the 50-flight-hour time period is the pilot's responsibility.

PIM TBM 960 - Edition 0 Rev. 00

2.4 - Starter Operation Limits

Starter operation sequence is limited as follows:

- Automatically by the FADEC to 80 seconds.
- For manual dry motoring to 30 seconds.

- NOTE -

On start, the FADEC automatically performs a dry motoring after an aborted start (commanded by the FADEC or by pilot action). The FADEC limits the use of starter to a total duration of 80 seconds, including dry motoring and start sequences.

Should several start-up sequences be necessary, respect the following spacings between attempts:

- Between 1st and 2nd sequence: wait for 1 minute.
- Between 2nd and 3rd sequence: wait for 5 minutes.
- Between 3rd and 4th sequence: wait for 30 minutes.

Section 2 Limitations

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00 Page 2.4.2

2.5 - Weight and C.G. Limits

Weight Limits

Maximum airplane weight:

Maximum Ramp Weight (MRW)	7,430 lbs to 7,650 lbs * (3,370 kg to 3,470 kg) *		
Maximum Takeoff Weight (MTOW)	7,394 lbs to 7,615 lbs * (3,354 kg to 3,454 kg) *		
Maximum Landing Weight (MLW)	7,110 lbs (3,225 kg)		
Maximum Zero Fuel Weight (MZFW)6,252 lbs (2,836 kg)			
* Depending on the C.G. position – see Figure 2.5.2			

NOTE -

The Maximum Takeoff Weight of 3,454 kg is valid only for C.G. between 34.4% and 34.7%.

The Maximum Takeoff Weight of 3,354 kg is valid only for C.G. at 23.8%. The Maximum Takeoff Weight increases linearly from 3,354 kg to 3,454 kg between 23.8% and 34.4% of C.G.. For example, MTOW = 3,394 kg for C.G. at 28% – see Figure 2.5.2.

Maximum baggage weight:

- in the front baggage compartment (non pressurized): 110 lbs (50 kg)

>> With 6-seat accommodation

- in rear part of pressurized cabin: 220 lbs (100 kg)


>> With 4-seat accommodation

- in rear part of pressurized cabin: 396 lbs (180 kg), with small or large net – see Figure 2.5.1

PIM TBM 960 - Edition 0 Rev. 00 Page 2.5.1

Figure 2.5.1 - Baggage Limits

C.G. Limits

Center of gravity range with landing gear down and flaps up, attitude 0°:

- Forward limits:
 - . 181.3 in (4.604 m) aft of datum at 4,409 lbs (2,000 kg) or less (14% of MAC)
 - . 183.6 in (4.664 m) aft of datum at 6,250 lbs (2,835 kg) (18% of MAC)
 - . 185.3 in (4.707 m) aft of datum at 6,579 lbs (2,984 kg) (20.85% of MAC)
 - . 187.1 in (4.752 m) aft of datum at 7,024 lbs (3,186 kg) (23.8% of MAC)
 - . 187.1 in (4.752 m) aft of datum at 7,394 lbs (3,354 kg) (23.8% of MAC)
 - . 193.4 in (4.912 m) aft of datum at 7,615 lbs (3,454 kg) (34.4% of MAC)
- Aft limits:
 - . 193.6 in (4.916 m) aft of datum at 7,615 lbs (3,454 kg) (34.7% of MAC)
 - . 193.7 in (4.921 m) aft of datum at 7,394 lbs (3,354 kg) (35% of MAC)
 - 194.0 in (4.928 m) aft of datum at 6,986 lbs (3,169 kg) (35.5% of MAC)

PIM TBM 960 - Edition 0 Rev. 00 Page 2.5.2

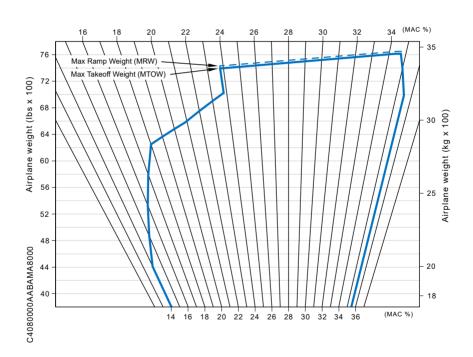
Reference datum: 118.1 in (3 m) in front of the firewall front face.

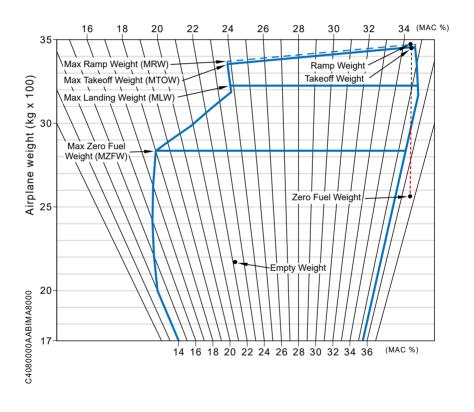
Straight line variation between points.

Leveling point: cabin floor rails.

It is the responsibility of the pilot to ensure that the airplane is properly loaded. Refer to <u>Subsection 6.1. General</u> for proper loading instructions.

NOTE -




Figure 2.5.2 - C.G. Limits

WARNING

For airplane with C.G. between 28% and 34.7% at takeoff, fuel consumption during flight will move the C.G. rearwards. This is to be taken into account to remain inside the C.G. limits. See an example of C.G. moving outside the limits in <u>Figure 2.5.3</u> (red dashed line).

Figure 2.5.3 - Example of C.G. Outside the Limits when Fuel on Board Decreases

Page 2.5.4

2.6 - Operation Limits

Maneuver Limits

This airplane is certified in the normal category.

The normal category is applicable to airplanes intended for non-aerobatic operations.

Non-aerobatic operations include any maneuvers incidental to normal flying, stalls (except whip stalls), lazy eights, chandelles, and steep turns in which the angle of bank is no more than 60°.

— WARNING -

Aerobatic maneuvers, including spins, are not approved.

Temperature Limits

Minimum temperature at start and takeoff: -40 °C (-40 °F)

Maximum temperature at start and takeoff: ISA + 37 °C (+ 67 °F) from 0 to 8,000 ft pressure altitude.

Maximum temperature in flight:

- ISA + 37 °C (+ 67 °F) from 0 to 8,000 ft pressure altitude,
- ISA + 30 °C (+ 54 °F) above 8,000 ft pressure altitude.

Flight Load Factor Limits

Flaps Up

Weight below 6,579 lbs (2,984 kg): -1.5 < n < +3.8 g

Weight above 6,579 lbs (2,984 kg): -1.5 < n < +3.5 g

Flaps Down

-0 < n < +2.0 g

- CAUTION -

Intentional negative load factors are prohibited.

PIM TBM 960 - Edition 0 Rev. 00 Page 2.6.1

Generator Limits

Generator load must be below 200 A when the airplane is on the ground.

GFC 700 Autopilot Limits

- During autopilot operation, a pilot with seat belt fastened must be seated at the left or right position.
- The autopilot and yaw damper must be OFF during takeoff and landing.
- Do not engage autopilot below 1,000 ft (300 m) AGL in cruise or climb.
- Do not use autopilot in approach below 200 ft (60 m) AGL.

– NOTE –

Do not use the autopilot in descent below 2,000 ft (600 m) AGL with a vertical speed in excess of 2,000 ft/min.

Autothrottle (AT) Limits

- Do not engage autothrottle for taxi.
- Do not engage autothrottle below 1,000 ft (300 m) AGL in case of takeoff without autothrottle.
- Do not engage autothrottle during landing and touch and go.
- Disengage autothrottle if speed is not controlled within ± 5 KIAS range.
- Do not engage autothrottle when autopilot is coupled with the flight director on PFD2 (XFR right).
- For approaches, the SPD source switch must be in MAN mode or the autothrottle must be disengaged. The autothrottle must be disengaged before 200 ft (60 m) AGL.

HomeSafe Emergency Function

HomeSafe must be activated only when the pilot is incapacitated.

WARNING

 HomeSafe deactivation must be performed by a pilot who is: fully capable of flying the airplane, and fully aware of all actions needed to be performed in reconfiguring the airplane (the flight plan in the FMS is lost, the landing gear and flap positions may not agree with the lever positions for the landing gear and flaps).

If the pilot is no longer incapacitated and is able to fly the airplane, he/she must deactivate HomeSafe before taking control of the airplane.

The airplane must be inspected by maintenance personnel before further flight if HomeSafe completes a landing.

GNSS (GPS/SBAS) Navigation Equipment Approvals

The Garmin GNSS navigation system installed in this airplane:

- is a GPS system with a Satellite Based Augmentation System (SBAS) comprised of:
 - . two TSO-C145d Class 3 approved Garmin GIAs,
 - . TSO-C146d Class 3 approved Garmin GDUs Display Units,
 - . Garmin GA36 and GA37 antennas,
 - . GPS software version 7.0 or later approved version.
- is installed in this airplane in accordance with AC 20-138A,
- is, as installed in this airplane, approved for navigation using GPS and GPS/ SBAS (within the coverage of a SBAS complying with ICAO Annex 10) for IFR enroute, terminal area, and RNP APCH operations (to LNAV, LNAV/ VNAV and LPV minima),
- is, as installed in this airplane, complying with the equipment, performance, and functional requirements to conduct RNAV and RNP operations in accordance with the applicable requirements of the reference documents listed in the following table.

– NOTE –

Depending on the area of navigation, an operational approval may be required to use the navigation performance that are detailed in the table hereafter. The pilot is responsible to ensure compliance with current operational requirements.

PIM TBM 960 - Edition 0 Rev. 00

This table is accurate at the time it was published.

Phase of	Approved		Reference	ICAO Flight Plan Code		
flight	PBN Capability	Operational limitations	Documents	Item 10a Cod e	Item 18 PBN /	Notes
En-route, Oceanic and Remote continental (Class II Navigation)	RNAV 10 RNP 10	GNSS FDE availability must be verified prior to flight. Maximum predicted FDE unavailability is 34 minutes. <u>See Note 1</u> Two GNSS systems required to be operational. <u>See Note 2</u>	FAA AC 90-105A	R	A1	Additional communication and surveillance equipment may be required to obtain operational approval to utilize RNP 10 / RNAV 10 performance.
En-route continental, Arrival	RNAV 5 (formerly designated as B-RNAV)	One GNSS system required to be operational.	JAA AMJ 20X2	R	B2	
En-route, Oceanic and Remote continental (Class II Navigation)	RNP 4	GNSS FDE availability must be verified prior to flight. Maximum predicted FDE unavailability is 25 minutes. <u>See Note 1</u> Two GNSS systems required to be operational. <u>See Note 2</u>	FAA AC 90-105A	R	L1	Additional communication and surveillance equipment may be required to obtain operational approval to utilize RNP 4 performance.
Departure En-route continental, Arrival	RNAV 2 / RNAV 1	One GNSS system required to be operational,	JAA TGL-10 FAA AC 90-105A	R	C2 / D2	
Domestic, Offshore, Oceanic and Remote continental	RNP 2	GNSS FDE availability must be verified prior to oceanic or remote continental flight. Maximum predicted FDE unavailability is 5 minutes. Two GNSS systems required to be operational. <u>See Note 2</u> Only one operational GNSS system required for domestic and offshore operations areas.	FAA AC 90-105A	R	-	Additional communication and surveillance equipment may be required to obtain operational approval to utilize RNP 2 performance.
Departure, Arrival,	RNP 1 (with and without RF Legs)	At a minimum, the flight director must be displayed and utilized when conducting procedures containing RF Legs.	FAA AC 90-105A	R	O2	Includes RNP terminal departure and arrival procedures. This includes procedures with Radius-to- Fix Legs (RF Legs).

Table 2.6.1 - GNSS Operational Requirements

Continue ►

PIM TBM 960 - Edition 0 Rev. 00 Page 2.6.4

► Continuing

Phase of	Approved		Reference	ICAO Flight Plan Code		
flight	PBN Capability	Operational limitations	Documents	Item 10a Cod e	Item 18 PBN /	Notes
Approach	RNP APCH LNAV minima (with and without RF Legs)	At a minimum, the flight director must be displayed and utilized when conducting procedures containing RF Legs.	EASA AMC 20-27 FAA AC 90-105A	R	S1	Includes non-precision approaches based on conventional navigation aids with "or GPS" in the title and area navigation approaches titled "GPS", "RNAV (GPS)", and "RNAV (GNSS)". This includes procedures with RF Legs. RF Legs may be used in the initial and intermediate legs of the approach procedure or the final leg of the missed approach procedure only.
Approach	RNP APCH LNAV/VNAV minima (with and without RF Legs)	At a minimum, the flight director must be displayed and utilized when conducting procedures containing RF Legs. QNH shall be available at the destination airport when conducting a Baro-VNAV approach. Use of remote altimeter setting source is not allowed to conduct a Baro-VNAV approach. The two primary altimeters must be operational when flying a RNP APCH LNAV/ VNAV with Baro-VNAV guidance.	EASA AMC 20-27 FAA AC 90-105A	R	S2	Includes area navigation approaches titled "RNAV (GPS)" and "RNAV (GNSS)". This includes procedures with RF Legs. Vertical guidance is based on GPS/ SBAS and/or Baro-VNAV. RF Legs may be used in the initial and intermediate legs of the approach procedure or the final leg of the missed approach procedure only.
Approach	RNP APCH LPV minima (with and without RF Legs)	At a minimum, the flight director must be displayed and utilized when conducting procedures containing RF Legs.	EASA AMC 20-28	В		RF Legs may be used in the initial and intermediate legs of the approach procedure or the final leg of the missed approach procedure only.

NOTE 1 - FDE/RAIM availability worldwide can be determined using the WFDE Prediction program, part number 006-A0154-01 or later approved version with Garmin GA36 and GA37 antennas selected, or:

- within the United States, using the FAA's en-route and terminal RAIM prediction website: www.raimprediction.net, or by contacting a Flight Service Station,
- within Europe, using Europe's AUGUR GPS RAIM Prediction Tool at http://augur.ecacnav.com/augur/app/home.
- **NOTE** 2 A **BOTH ON GPS1** or **BOTH ON GPS2** system annunciation does not necessarily mean that one GPS has failed. Refer to the MFD GPS STATUS page to determine the state of the unused GPS.

General Considerations

The route planning and WFDE prediction program may be downloaded from the Garmin website on the internet. For information on using the WFDE Prediction Program, refer to Garmin WAAS FDE Prediction Program, part number 190-00643-01, `WFDE Prediction Program Instructions'.

Garmin International holds an FAA Type 2 Letter of Acceptance (LOA) in accordance with RTCA/DO-200A and AC 20-153B for database integrity, quality, and database management processes for many of its aviation databases. LOA status and RTCA/DO-200A List of Applicable Avionics (190-01999-00) can be viewed at FlyGarmin.com.

Navigation information is referenced to WGS-84 reference system, and should only be used where the Aeronautical Information Publication (including electronic data and aeronautical charts) conform to WGS-84 or equivalent.

GNSS (GPS/SBAS) Navigation System Limitations

Navigation database limitations

The pilot must confirm at system initialization that the Navigation database is current.

If the AIRAC cycle will change during flight, the pilot must ensure the accuracy of navigation data, including suitability of navigation facilities used to define the routes and procedures for flight. If an amended chart affecting navigation data is published for the procedure, the database must not be used to conduct the procedure.

GPS/SBAS based IFR enroute, oceanic, and terminal navigation is prohibited unless the pilot verifies and uses a valid, compatible, and current Navigation database or verifies each waypoint for accuracy by reference to current approved data.

PIM TBM 960 - Edition 0 Rev. 00 Page 2.6.6

Discrepancies that invalidate a procedure must be reported to Garmin International. The affected procedure is prohibited from being flown using data from the Navigation database until a new Navigation database is installed in the airplane and verified that the discrepancy has been corrected.

Contact information to report Navigation database discrepancies can be found at www.Garmin.com>Support>Contact Garmin Support>Aviation. Pilots and operators can view navigation data base alerts at www.Garmin.com>In the Air>NavData Alerts.

RNP APCH including "GPS", "or GPS", "RNAV (GPS)" and "RNAV (GNSS)" instrument approaches using the Garmin integrated flight deck are prohibited unless the pilot verifies and uses the current Navigation database. GPS based instrument approaches must be flown in accordance with an approved instrument approach procedure that is loaded from the Navigation database into the flight plan by its name.

Not all published Instrument Approach Procedures (IAP) are in the Navigation database.

Manual entry of waypoints using latitude/longitude or place/bearing is prohibited for published RNP and RNAV routes.

Whenever possible, RNP and RNAV routes including Standard Instrument Departures (SIDs) and Obstacle Departure Procedures (ODPs), Standard Terminal Arrival (STAR), and enroute RNAV Q and RNAV T routes should be loaded into the flight plan from the database in their entirety, rather than loading route waypoints from the database into the flight plan individually. Selecting and inserting individual named fixes from the database is permitted, provided all fixes along the published route to be flown are inserted.

GNSS integrity limitations

For flight planning purposes, in areas where SBAS coverage is not available, the pilot must check RAIM availability. The availability of GPS integrity RAIM shall be confirmed for the intended route of flight.

In the event of a predicted continuous loss of RAIM of more than five minutes for any part of the intended route of flight, the flight should be delayed, cancelled, or re-routed on a track where RAIM requirements can be met.

For flight planning purposes, in Remote Continental and Oceanic areas, the pilot must check FDE availability. Refer to <u>Table 2.6.1</u>, to check maximum authorized FDE unavailability and WFDE Prediction program references.

Approach operations limitations

LNAV+V feature is a standard LNAV approach with advisory vertical guidance provided for assistance in maintaining a constant vertical glidepath similar to an

PIM TBM 960 - Edition 0 Rev. 00 Page 2.6.7

ILS glideslope on approach. This guidance is displayed on the PFD in the same location as the ILS glideslope using a magenta diamond. In all cases where LNAV +V is indicated by the system during an approach, LNAV minima shall be used.

Use of the Garmin GPS/SBAS receivers to provide navigation guidance during the final approach segment of an ILS, LOC, LOC-BC, LDA, SDF, MLS or any other type of approach not approved for "or GPS" navigation is prohibited.

When using VOR/LOC/GS receivers to fly the final approach segment, VOR/LOC/GS navigation data must be selected and presented on the CDI of the pilot flying.

Use of Baro-VNAV to a DA is not authorized with a remote altimeter setting. A current altimeter setting for the landing airport is required. When using remote altimeter minima, the Baro-VNAV function may be used to the published LNAV MDA.

Procedures with RF Legs (Radius to Fix Legs)

At the minimum, the flight director must be displayed and utilized when conducting procedures containing RF Legs.

Advisory visual approaches

WARNING ·

Use of advisory visual approaches in IMC is prohibited. Advisory visual approaches are intended to be used as an aid to situational awareness and do not guarantee terrain or obstruction clearance along the approach path.

Icing Conditions

Except for certain phases of flight where the POH specifies that deicing boots should not be used (e.g. takeoff, final approach, and landing), compliance with the following is required.

Wing and tail leading edge pneumatic deicing boot system must be activated:

- At the first sign of ice formation anywhere on the aircraft, and
- The system must either be continued to be operated in the automatic cycling mode, if available; or the system must be manually cycled as needed to minimize the ice accretions on the airframe.

The wing and tail leading edge pneumatic deicing boot system may be deactivated only after leaving icing conditions and after the airplane is determined to be clear of ice.

PIM TBM 960 - Edition 0 Rev. 00 Page 2.6.8

The lce Detection System is only an advisory system. The pilot must activate manually the ice protection systems as a preventive prior to entering icing conditions or when icing conditions are identified.

In any case of icing conditions, first refer to procedure <u>Flight into Known Icing</u> <u>Conditions in Subsection 4.5.</u>, and in case of unforeseen icing conditions, refer in addition to procedure <u>Flight into Severe Icing Conditions in Subsection 3.13.</u>.

Severe Icing Conditions

- WARNING

Severe icing may result from environmental conditions outside of those for which the airplane is certificated. Flight in freezing rain, freezing drizzle, or mixed icing conditions

(supercooled liquid water and ice crystals) may result in ice build-up on protected surfaces exceeding the capability of the ice protection system, or may result in ice forming aft of the protected surfaces. This ice may not be shed using the ice protection systems, and may seriously degrade the performance and controllability of the airplane.

During flight, severe icing conditions that exceed those for which the airplane is certificated shall be determined by the following visual cues. If one or more of these visual cues exists, immediately request priority handling from air traffic control to facilitate a route or an altitude change to exit the icing conditions.

- Unusually extensive ice accumulation on the airframe and windshield in areas not normally observed to collect ice,
- Accumulation of ice on the upper surface of the wing aft of the protected area.

Since the autopilot, when operating, may mask tactile cues that indicate adverse changes in handling characteristics, use of the autopilot is prohibited when any of the visual cues specified above exist, or when unusual lateral trim requirements or autopilot trim warnings are encountered while the airplane is in icing conditions.

All wing icing inspection lights must be operative prior to flight into icing conditions at night.

NOTE -

This supersedes any relief provided by the Master Minimum Equipment List (MMEL).

Refer to Paragraph Equipment Required Depending on Type of Operation .

PIM TBM 960 - Edition 0 Rev. 00 Page 2.6.9

Refer to procedure <u>Flight into Severe Icing Conditions in Subsection 4.5.</u>, and in case of unforeseen icing conditions, refer in addition to procedure <u>Flight into</u> <u>Severe Icing Conditions in Subsection 3.13.</u>.

Flap Operating Envelope

The use of flaps is not authorized above 15,000 ft.

Reverse Utilization

The use of reverse range is prohibited during flight.

Weather Radar

On ground, the radar radiation is inhibited when the landing gear shock absorbers are compressed. However, it is important to obey the following restrictions:

- Do not operate the radar during refueling operations or in the vicinity of trucks or containers containing flammables or explosives,
- Do not allow personnel within 12 feet of area being scanned by antenna when system is transmitting.

- CAUTION -

The weather radar can be displayed on PFD 1, PFD 2 and MFD, with different indications of mode.

The radar is in standby mode only when all displays indicate STANDBY.

Equipment Required Depending on Type of Operation

The airplane is approved for day & night VFR and day & night IFR operations when appropriate equipment is installed and operating correctly.

The type certification for each use requires the following equipment. The equipment must be installed and operate perfectly according to the indicated type of use.

CAUTION -

It is the pilot's responsibility to check that the following equipment lists are in accordance with the specific national operation rules of the airplane registration country depending on the type of operation.

PIM TBM 960 - Edition 0 Rev. 00 Page 2.6.10

CAUTION

Systems and equipment mentioned hereafter do not include specific flight and radio-navigation instruments required by decree concerning operation conditions for civil airplanes in general aviation or other foreign regulations (for example FAR PART 91 and 135).

Day VFR

- 1. Pilot instruments
 - Airspeed indicator
 - Sensitive and adjustable altimeter
 - Standby heading reference instrument
- 2. CAS warning and caution messages
 - FADEC monitoring
 - Oil pressure
 - Low fuel pressure
 - Fuel selector OFF
 - Fuel auxiliary pump ON
 - Left and right fuel tank low level
 - Non functioning of fuel timer
 - Battery stop
 - Main generator OFF
 - Low voltage
 - Ground power unit connected
 - Inertial separator
 - Starter
 - Ignition
 - Flaps
 - Landing gears and doors
- 3. Aural warning
 - V_{MO} warning
 - Landing gear warning
 - Stall warning
- 4. Engine instruments
 - Torquemeter

PIM TBM 960 - Edition 0 Rev. 00 Page 2.6.11

- Propeller tachometer
- Interturbine temperature indicator (ITT)
- Gas generator tachometer (Ng)
- Oil pressure indicator
- Oil temperature indicator
- 5. Various indicators
 - Fuel gauge indicators (2)
 - Voltmeter
 - Ammeter
 - Outside air temperature
- 6. Installations
 - Fuel mechanical pump (main)
 - Fuel electrical pump (auxiliary)
 - Fuel shut-off valve
 - Fuel timer
 - Starter generator
 - Inertial separator
 - Stall warning
 - Electrical aileron trim
 - Electrical rudder trim
 - Manual elevator pitch trim
 - Engine ignition
 - Landing gear electro-hydraulic unit
 - Landing gear emergency hydraulic pump (manual)
 - Flaps
 - Electrical feathering
 - Battery
- 7. Miscellaneous
 - Seats (each occupant)
 - Belts (each occupant)
 - Straps (each occupant)
 - Pilot's Operating Handbook

Night VFR

1. All equipment required for day VFR

PIM TBM 960 - Edition 0 Rev. 00 Page 2.6.12

- 2. Attitude display indicator
- 3. Instrument lighting
- 4. Instrument panel lighting
- 5. Emergency lighting
- 6. Vertical speed indicator
- 7. Navigation lights (4)
- 8. Anticollision lights (2)
- 9. Landing light

IFR

- 1. All equipment required for day VFR
- 2. All equipment required for night VFR, if flight is performed during night
- 3. Taxi light, if flight is performed during night
- 4. Clock
- 5. 2nd altimeter
- 6. Emergency static source
- 7. Pitot static tube deicing

Pressurized flight

- 1. Cabin altimeter
- 2. Cabin vertical speed indication
- 3. Cabin differential pressure indication
- 4. Pressurization control valve
- 5. Safety valve
- 6. Pressurization control
- 7. Maximum cabin altitude and pressure warning light

Flight into icing conditions

- 1. All equipment required for IFR flight
- 2. Propeller deicing
- 3. Left windshield deicing
- 4. Airframe, stabilizer and elevator horn deicing
- 5. Wing leading edge inspection light, if night flight
- 6. Stall warning deicing
- 7. Inertial separator
- 8. Garmin annunciation "Airspeed"

PIM TBM 960 - Edition 0 Rev. 00 Page 2.6.13

Altitude Operating Limits

Maximum altitude: 31,000 ft (9,449 m)

Maximum differential pressure: 6.2 psi.

Operation in RVSM Area

This airplane is approved for operations in Reduced Vertical Separation Minimum (RVSM) airspace when required equipment is maintained in accordance with the Airplane Maintenance Manual.

This does not constitute operational approval. Individual airplane and operational approval must be obtained in accordance with applicable operating rules.

Each operator must ensure compliance with required crew training and operating practices and procedures.

Moreover, the equipment listed hereafter, or later approved versions, must be installed and operating normally upon entering RVSM airspace:

Equipment	Installed quantity	Required quantity
Barometric altimeter:		
- Air Data Computer	2	2
- Avionics Display Unit	3	2
Autopilot altitude hold function:		
- AFCS mode controller	1	1
- Integrated Avionics Computer	2	2
- AHRS	2	2
ATC transponder with ADS-B OUT function	1 or 2	1

NOTE -

Any changes to the pitot/static, air data computer, autopilot, altitude alerting and/or transponder systems, or other changes that affect operation of these systems must be evaluated for impact on the RVSM approval. The standby altimeter is not approved for RVSM operations.

PIM TBM 960 - Edition 0 Rev. 00

In-Flight Breaker Use Limits

A tripped breaker should not be reset in flight unless deemed necessary for continued safe flight and landing. Only one reset should be attempted.

Enhanced Mode S

The installed Mode S system satisfies the data requirements of ICAO Doc 7030/4, regional supplementary procedures for SSR Mode S enhanced surveillance in designated european airspace. The capability to transmit data parameters is shown in column 2:

Parameter	Available (A) / Not available (NA)
Magnetic heading	A
Indicated airspeed	A
Mach No	A
Vertical rate	A
Roll angle	A
True airspeed	A
True track angle	A
Ground speed	А
Selected altitude	A
Barometric pressure setting	А

Chartview System Operating Limitations

The geographic-referenced airplane symbol on some charts must not be used for navigation.

PIM TBM 960 - Edition 0 Rev. 00 Page 2.6.15

NOTE

The airplane symbol displayed on some charts provides supplemental airplane situational awareness information. It is not intended as a means for navigation or flight guidance. The airplane symbol is not to be used for conducting instrument approaches or departures, and it should not be relied upon during low visibility taxi operations. Position accuracy, orientation, and related guidance must be assured by other means of required navigation.

Operators must have backup charts available to the flight crew.

Database currency must be verified prior to use via database effectivity page.

The flight crew is responsible for verifying availability of charts for the planned flight.

2.7 - Miscellaneous Limits

Seating Limits C.G.

- 2 front seats at 178.5 in (4.534 m)

>> With 4-seat accommodation or 6-seat accommodation

- 2 intermediate seats at 224.8 in (5.710 m)

>> With 6-seat accommodation

- Rear bench (2 seats) at 267.1 in (6.785 m)

Seat Belts Limits

WARNING

The buckle positioner does not serve as a fifth attach point for the safety belts. Only use the self-gripping strap for proper positioning of the buckle.

Baggage Limits

- Baggage in pressurized cabin at 303 in (7.695 m)
- Baggage in non pressurized forward compartment at 128 in (3.250 m)

Minimum Crew

- One pilot at left front seat

Maximum Occupancy

The number of persons on board is limited by approved seating configuration installed but must not exceed six, including the pilot.

The number of persons must be less than or equal to the number of seats.

Use of Doors

Flight with an open or ajar door is prohibited.

Cargo Net Installation Limits

Small cargo net: maximum loading height = 28 in (710 mm)

PIM TBM 960 - Edition 0 Rev. 01 Page 2.7.1

Large cargo net: maximum loading height = 22 in (565 mm) in cabin, out of baggage compartment.

– CAUTION –

No item may extend forward of the cargo net system to protect door from obstruction.

2.8 - Markings

Airspeed Indicator on PFD(s) and on Standby Airspeed Indicator

Markings and their color code significance are shown in Table 2.8.1.

Marking	KIAS (Value or range)	Significance	
Red strip Below 65		Low airspeed awareness range	
Thick white strip	65 - 81	Full flap operating range	
Thin white strip	81 - 122	65 KIAS is maximum weight V_{S0} in landing configuration	
Thin green strip	81 - 122	Normal operating airspeed range	
Thick green strip	122 - 266	81 KIAS is maximum weight V _{S1} with landing gear and flaps UP	
Red/white barber pole strip	Above 266	266 KIAS = V _{MO}	

Table 2.8.1 - Airspeed Indicator Markings

Pressurization

Table 2.8.2 - Pressurization Marking

Marking	Value	Significance
Red line	6.2 psi	Cabin differential pressure limit

>> preMod: MOD70-0753-00C

Engine Instruments

Gauge Markings

	Red line	Yellow arc	Green arc	Red line
Indication				
	Minimum limit	Time-limited range	No time-limited range	Maximum limit
Oil temperature	- 40 °C (- 40 °F)	- 40 to 0 °C (- 40 to 32 °F) 104 to 110 °C (219.2 to 230 °F)	0 to 104 °C (32 to 219.2 °F)	110 °C (230 °F)
Oil pressure	60 psi	60 to 100 psi 135 to 175 psi	100 to 135 psi	175 psi
Ng		104 to 104.3%	90 to 104%	104.3%
ITT Engine start or		850 to 1,000 °C (1,562 to 1,832	400 to 850 °C (752 to 1,562	900 °C (1,652 °F) (red line) *
Engine OFF		°F)	°F)	1000 °C (1,832 °F)
ITT Engine running		850 to 900 °C (1,562 to 1,652 °F)	400 to 850 °C (752 to 1,562 °F)	900 °C (1,652 °F)
Torque (TRQ)		103 to 118%	0 to Max available**	118%

* Limit for 20 seconds maximum between 850 °C and 900 °C.

** The FADEC continuously sends to the avionics the maximum TRQ available that depends on current airplane operation and current external conditions. The upper boundary of the green arc is updated accordingly. This maximum available TRQ is valid for all flight conditions.

— NOTE —

Propeller RPM (Np) is not presented in the above table as the information is only presented as a digital indicator – refer to <u>Paragraph Digit Colors</u>.

PIM TBM 960 - Edition 0 Rev. 03 Page 2.8.2

Digit Colors

The digit colors of engine parameters depend on the value of the parameter and the duration. They are described in the following tables.

Range (°C)	Time condition	Digit color
-40 ≤ °C < 15 and Ng ≤ 72%	None	Green
15 ≤ °C ≤ 104	None	
-40 ≤ °C < 15 and Ng > 72%	None	Yellow
104 < °C ≤ 110	< 10 minutes	
< -40 °C	None	
104 < °C ≤ 110	≥ 10 minutes	Red
> 110 °C	None	

Table 2.8.5 - Oil Pressure – Digit Colors

Range (psi)	Time condition	Digit color
60 ≤ psi < 100 and Ng ≤ 72%	None	
60 ≤ psi < 100 and Ng > 72%	≤ 5 seconds	Green
100 ≤ psi ≤ 135	None	
40 ≤ psi < 60	≤ 20 seconds	
60 ≤ psi < 100 and Ng > 72%	> 5 seconds	Yellow
135 < psi ≤ 175	≤ 20 seconds	
< 40 psi	None	Red

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 03 Page 2.8.3

► Continuing

Table 2.8.5 - Oil Pressure – Digit Colors

Range (psi)	Time condition	Digit color
40 ≤ psi < 60	> 20 seconds	
60 ≤ psi < 100 and Ng > 72%	> 20 seconds	
135 < psi ≤ 175	> 20 seconds	
> 175 psi	None	

Table 2.8.6 - Ng - Digit Colors

Range (%)	Time condition	Digit color	
50.7% ≤ Ng < 104%	None	Green	
104% ≤ Ng ≤ 104.3%	< 20 seconds	Yellow	
> 104%	≥ 20 seconds	Red	
> 104.3%	None	reu Reu	

Table 2.8.7 - Propeller RPM (Np) - Digit Colors

Range (RPM)	Time condition	Digit color
< 1,905	None	White
1,955 < Np ≤ 2,030	None	
1,905 ≤ Np ≤ 1,955	None	Green
2,030 < Np < 2,100	< 20 seconds	Yellow
> 2,030	≥ 20 seconds	Red
≥ 2,100	None	

PIM TBM 960 - Edition 0 Rev. 03

I

Page 2.8.4

Range (°C)	Time condition	Digit color	
≤ 850 °C	None	Green	
850 < °C ≤ 900	< 20 seconds	Green	
900 < °C ≤ 1,000	< 5 seconds	Yellow	
> 850 °C	≥ 20 seconds		
> 900 °C	≥ 5 seconds	Red	
> 1,000 °C	None		

Table 2.8.9 - ITT (Engine running) – Digit Colors

Range (°C)	Time condition	Digit color	
≤ 850 °C	None	Green	
850 < °C ≤ 900	< 20 seconds	Yellow	
> 850 °C	≥ 20 seconds	Red	
> 900 °C	None		

Table 2.8.10 - Torque - Digit Colors

Range (%)	Time condition	Digit color	
≤ 103%	None	Green	
103% < TRQ ≤ 118%	< 5 seconds	Green	
103% < TRQ ≤ 118%	≥ 5 seconds	Yellow	
> 103%	≥ 20 seconds	Rod	
> 118%	None	Red	

>> A//

PIM TBM 960 - Edition 0 Rev. 03

>> postMod: MOD70-0753-00C

Engine Instruments

The display of the gauges for engine parameters and the color of the parameter digital value depend on some criteria defined for each parameter, based on the parameter value and the duration:

- Normal,
- Caution, possibly associated with a caution CAS message,
- Warning, possibly associated with a warning CAS message.

The definition of the criteria, along with the gauge display depending on these criteria, is given for each engine parameter in the following paragraphs.

The digit color for the current parameter value depends directly on the criterion:

Criterion	Digit color
Normal	Green
Caution	Yellow
Warning	Red

NOTE -

When warning criterion is true for a parameter, it is only reset to false when the parameter gets back into the Normal range.

Torque

Table 2.8.11 - Torque - Criteria Definition

Range (%)	Time condition	Criterion
< 103%	None	Normal
103% ≤ TRQ ≤ 118%	≤ 20 seconds	Caution
> 103%	≥ 20 seconds	Warping
> 118%	None	Warning

PIM TBM 960 - Edition 0 Rev. 03 Page 2.8.6

Figure 2.8.1 - Torque – Gauge Display

* The FADEC continuously sends to the avionics the maximum TRQ available that depends on current airplane operation and current external conditions. The upper boundary of the green arc is updated accordingly. This maximum available TRQ is valid for all flight conditions.

Ng

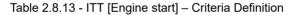

Range (%)	Time condition	Criterion
< 104%	None	Normal
104% ≤ Ng ≤ 104.3%	< 20 seconds	Caution
> 104%	≥ 20 seconds	Warning
> 104.3%	None	vvarning

Figure 2.8.2 - Ng - Gauge Display


ITT (Engine start)

Range (°C)	Time condition	Criterion
< 850 °C	None	Normal
850 ≤ °C ≤ 1,000	< 20 seconds	Caution
900 < °C ≤ 1,000	< 5 seconds	Caution
> 850 °C	≥ 20 seconds	
> 900 °C	≥ 5 seconds	Warning
> 1,000 °C	None	

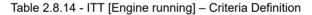
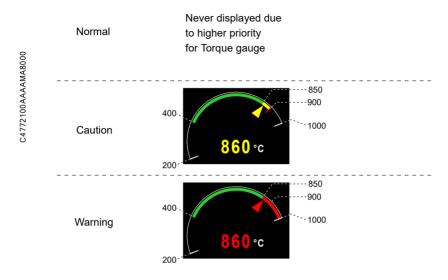

PIM TBM 960 - Edition 0 Rev. 03 Page 2.8.8

Figure 2.8.3 - ITT [Engine start] - Gauge Display

ITT (Engine running)



Range (°C)	Time condition	Criterion
≤ 850 °C	None	Normal
850 < °C ≤ 900	< 20 seconds	Caution
> 850 °C	≥ 20 seconds	Warning
> 900 °C	None	Warning

PIM TBM 960 - Edition 0 Rev. 03 Page 2.8.9

Figure 2.8.4 - ITT [Engine running] - Gauge Display

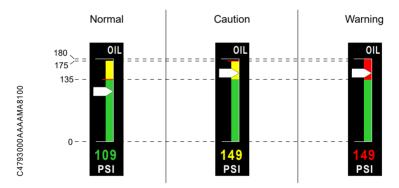
Propeller RPM (Np)

Range (RPM)	Time condition	Criterion
< 1,905	None	White digits
1,955 < Np ≤ 2,030	None	White digits
1,905 ≤ Np ≤ 1,955	None	Normal
2,030 < Np < 2,100	< 20 seconds	Caution
> 2,030	≥ 20 seconds	Warning
≥ 2,100	None	vvaritilig

NOTE

Propeller RPM (Np) is only presented as a digital indicator.

PIM TBM 960 - Edition 0 Rev. 03 Page 2.8.10



Oil Pressure (Engine start or commanded shutdown)

Table 2.8.16 - Oil Pressure [Engine start or commanded shutdown] – Criteria Definition

Range (psi)	Time condition	Criterion
0 ≤ psi ≤ 135	None	Normal
135 < psi ≤ 175	≤ 20 seconds	Caution
135 < psi ≤ 175	> 20 seconds	Warping
> 175 psi	None	Warning

Figure 2.8.5 - Oil Pressure [Engine start or commanded shutdown] – Gauge Display

Oil Pressure (Engine running)

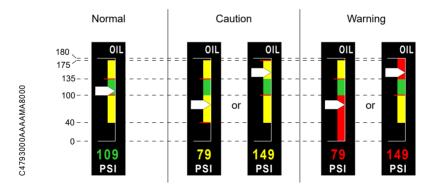
Range (psi)	Time condition	Criterion
100 ≤ psi ≤ 135	None	Normal
40 ≤ psi < 60	≤ 20 seconds	
60 ≤ psi < 100 and Ng ≤ 72%	None	Caution

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 03

PIM - DO NOT USE FOR FLIGHT OPERATIONS

Page 2.8.11



► Continuing

Table 2.8.17 - Oil Pressure [Engine running] - Criteria Definition

Range (psi)	Time condition	Criterion
60 ≤ psi < 100 and Ng > 72%	≤ 20 seconds	
135 < psi ≤ 175	≤ 20 seconds	
< 40 psi	None	
40 ≤ psi < 60	> 20 seconds	
60 ≤ psi < 100 and Ng > 72%	> 20 seconds	Warning
135 < psi ≤ 175	> 20 seconds	
> 175 psi	None	

Figure 2.8.6 - Oil Pressure [Engine running] - Gauge Display

Oil Temperature

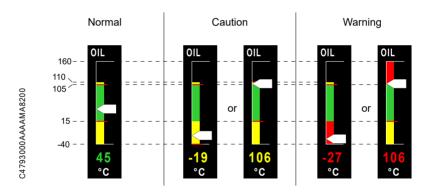
Table 2.8.18 - Oil Temperature - Criteria Definition

Range (°C)	Time condition	Criterion
15 ≤ °C ≤ 104	None	Normal

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 03

PIM - DO NOT USE FOR FLIGHT OPERATIONS


Page 2.8.12

► Continuing

Range (°C)	Time condition	Criterion	
-40 ≤ °C < 15	None	Caution	
104 < °C ≤ 110	< 10 minutes	Caution	
< -40 °C	None		
104 < °C ≤ 110	≥ 10 minutes	Warning	
> 110 °C	None		

Figure 2.8.7 - Oil Temperature – Gauge Display

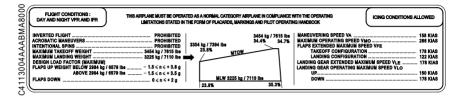
>> All

Section 2 Limitations

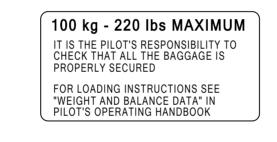
Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 03

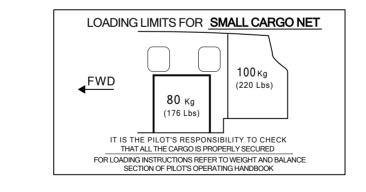
Page 2.8.14



2.9 - Placards


14113500AAABMA18001

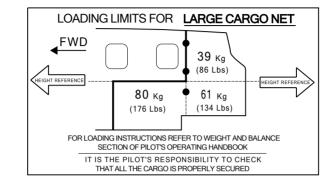
4113500AAAAMA18000

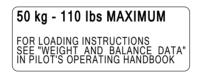

1. Under the left front side window

2. On the pressurized baggage compartment partition wall

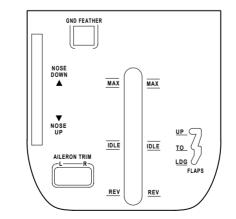
3. For the small cargo net, on the right lower upholstery panel

4. For the large cargo net, on right side upholstery panel, in the rear baggage compartment


PIM TBM 960 - Edition 0 Rev. 03 Page 2.9.1


14113500AAAAMA18100

4112001AAAFMA8000


C4113006AAAAMA8300

5. On the forward baggage compartment door frame (non pressurized)

6. On the pedestal console

7. On the fuel selector

PIM TBM 960 - Edition 0 Rev. 03

Page 2.9.2

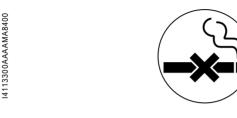
8. Near fuel tank caps

JET-A-FUEL

TOTAL CAPACITY 150.5 us gal - 570 l

ANTI-ICE ADDITIVE REQUIRED.SEE PILOT'S OPERATING HANDBOOK FOR OTHER APPROVED FUELS QUANTITY AND TYPE OF ADDITIVE

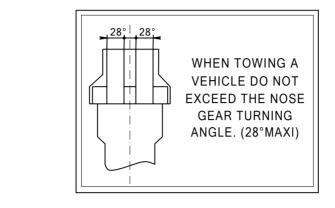
9. On internal face of left-side engine cowling


10. On the landing gear emergency control access door

PIM TBM 960 - Edition 0 Rev. 03 Page 2.9.3

11. Under the window, at left-side intermediate seat

12. Above the passenger's table


13. Under the right control wheel

14. On the nose gear door

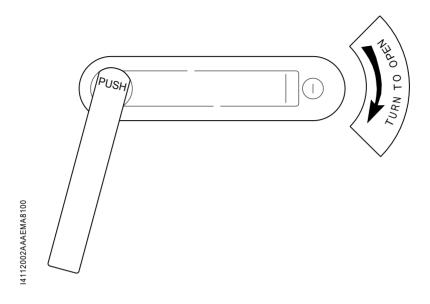
PIM TBM 960 - Edition 0 Rev. 03 Page 2.9.4

15. On the nose gear leg

4112001AAACMA8000

16. On main gear legs

17. On the engine cowling, in front of the compartment door

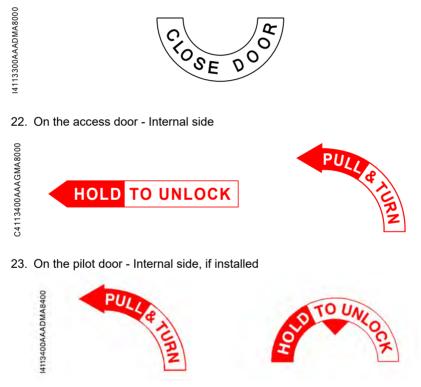

C4112001AABAMA8100

<u> </u>	
	EXTERNAL POWER
	28 VOLTS D.C. NOMINAL
	800 AMPS
	STARTING CAPACITY MIN
	DO NOT EXCEED 1000 AMPS

18. On the pilot door - External side, if installed

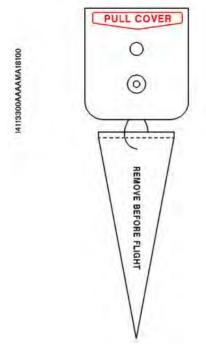
PIM TBM 960 - Edition 0 Rev. 03 Page 2.9.5

19. On the access door - External side


20. On the outer fuselage skin aft of the access door

14112002AAAEMA8000

21. In the cabin forward of the access door



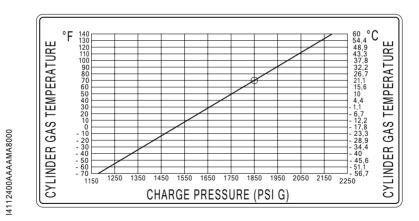
24. On the emergency exit handle

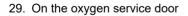
Marking on cover and marking on handle.

PULL TO OPEN

26. On the last step of stairs

PIM TBM 960 - Edition 0 Rev. 03 Page 2.9.8

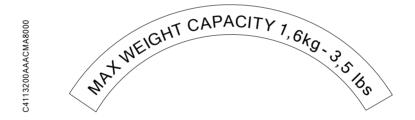


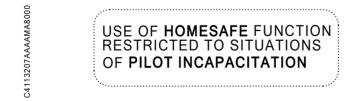


27. On the rear passenger masks containers

28. On internal face of the oxygen cylinder service door

PIM TBM 960 - Edition 0 Rev. 03


14112400AAAAMA8100


30. On the emergency locator transmitter inspection door

31. On each coat and headset hanger

32. Above the AFCS control unit

PIM TBM 960 - Edition 0 Rev. 03 Page 2.9.10

33. On both sides of each buckle positioner

SEAT BUCKLE POSITIONER ONLY

PIM TBM 960 - Edition 0 Rev. 03 Page 2.9.11

Section 2 Limitations

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 03

Page 2.9.12

Section 3

CAS messages

Table of Contents

ABORT APR	3.12.6
ACFT CONF MISM	3A.7.14
AFRM DEICE FAIL	3A.11.1
AP ON YD OFF	3A.12.5
APR DWNGRADE	3A.12.9
AURAL WRN 1 CHL	3.12.5
AURAL WRN FAIL	3.12.4
AUTO SEL	3A.8.2
AUX BP ON	3A.8.1
ВАТ АМР	3A.9.1
BAT OFF	3A.9.2
CABIN ALTITUDE and USE OXYGEN MASK	3.10.3
CABIN DIFF PRESS	3.10.5
CARGO DOOR	3A.13.1
CHIP	3A.3.2
DOOR	3.10.7
ECS DEGRADED	3A.10.1
EDM	3.10.4
ENG OP DEGRADED	3A.3.6
ENG PROT ACTIVE	3A.3.3
ESP DEGRADED AOA	3A.12.3
ESP DEGRADED IAS	3A.12.2
ESP FAIL	3A.12.1
	3A.12.22

FADEC COM 1 CHL	3A.3.8
FADEC FAULT	3A.3.7
FEATHER	3.3.18
FEATHER MISMATCH	3A.3.4
FLAPS ASYM	3.7.4
FUEL CLOGGING	3.8.4
FUEL CLOGGING	3A.8.5
FUEL IMBALANCE	3A.8.3
FUEL LOW L-R	3.8.3
FUEL PRESS	3.8.1
GPU DOOR	3A.13.2
GWX FAIL	3A.12.19
HOMESAFE RQST	3.12.7
HS ABN BRAKES	3A.7.15
HS CONFIG MODE	3.12.10
ICE DETECTED	3A.11.9
ICE DETECTION FAIL	3A.11.10
IGNITION	3A.13.3
INERT SEP FAIL	3A.11.3
ITT	3.3.13
ІТТ НІ	3A.3.1
LDG GEAR UP	3A.7.1
LMTD DISPATCH	3A.13.4
LOW LVL FAIL L-R	3A.8.4
LOW VOLTAGE	3A.9.4
MAIN GEN	3A.9.3
MAIN GEN and LOW VOLTAGE	3A.9.5
NG	3.3.15

NO DISPATCH	3.13.10
NP 2000 MAX	3A.3.9
O2 CYL CLOSED	3.10.6
OIL PRESS	3.3.6
OIL TEMP	3.3.16
PITOT NO HT L-R	3A.11.7
PRESSU BACKUP	3A.10.2
PRESSU OFF	3.10.1
PROP	
PROP DEICE FAIL	3A.11.2
SET PWR TO IDLE	3A.3.5
STALL NO HEAT	3A.11.8
TCAS FAIL	3A.12.20
THROTTLE FAIL and FADEC FAIL	
TRAFFIC FAIL	3A.12.21
USP ACTIVE	3.12.3
VACUUM LOW	3A.10.4
XPDR1 ADS-B FAIL and XPDR2 ADS-B FAIL	3A.12.18
XPDR1 FAIL and XPDR2 FAIL	3A.12.17

Intentionally left blank

Section 3

Emergency Procedures

Table of Contents

3.1	- General Alarm System Recall Procedure Format	3.1.1 3.1.1 3.1.2
3.2	- Rejected Takeoff Engine Failure at Takeoff Before Rotation Rejected Takeoff for Any Other Reason	3.2.1 3.2.1 3.2.2
3.3	Engine Failures Engine Failure Before Rotation Engine Failure After Rotation Engine Failure in Flight OIL PRESS OIL PRESS Engine Regulation Discrepancy, THROTTLE FAIL, or FADEC FAIL without Engine Shutdown PROP ITT ITT	3.3.1 3.3.2 3.3.4 3.3.6 3.3.8 3.3.12 3.3.13 3.3.15 3.3.16 3.3.18
3.4	- Air Start Air Start Envelope Air Start Procedure	3.4.1 3.4.1 3.4.2
3.5	Fire and Smoke Engine Fire on Ground Cabin Fire on Ground Engine Fire in Flight Cabin Electrical Fire or Smoke During Flight Smoke Elimination	3.5.1 3.5.2 3.5.3 3.5.4 3.5.6
3.6	- Emergency Descents Emergency Descents Profiles	3.6.1 3.6.1

	Maximum Rate Descent Maximum Range Descent	3.6.2 3.6.3
3.7	- Emergency Landings, Flaps, Gear Forced Landing or Ditching Tire Blowout during Landing FLAPS ASYM	3.7.1 3.7.1 3.7.3 3.7.4
3.8	- Fuel System FUEL PRESS FUEL LOW L-R FUEL CLOGGING	3.8.1 3.8.1 3.8.3 3.8.4
3.9	- Electrical System BUS Bars Total Loss of Electrical Power	3.9.1 3.9.1 3.9.4
3.10	- Pressurization and Air Conditioning PRESSU OFF CABIN ALTITUDE and USE OXYGEN MASK EDM CABIN DIFF PRESS O2 CYL CLOSED DOOR	3.10.1 3.10.1 3.10.3 3.10.4 3.10.5 3.10.6 3.10.7
3.11	- Deicing System No Emergency Procedures	3.11.1 3.11.1
3.12	 Avionics Miscellaneous Unsuccessful AT Disconnection Trim Runaway USP ACTIVE AURAL WRN FAIL AURAL WRN 1 CHL ABORT APR HOMESAFE RQST HomeSafe Deactivation HS CONFIG MODE 	3.12.1 3.12.2 3.12.3 3.12.3 3.12.4 3.12.5 3.12.6 3.12.6 3.12.7 3.12.8 3.12.10
3.13	- Miscellaneous Crack in Cockpit Window or Window Panel Emergency Exit Use	3.13.1 3.13.1 3.13.2
PIM T Rev.		Page 3.0.2

Emergency Beacon (ELT) Use	3.13.3
Inadvertent Spins	3.13.4
AP Off, Stall Warning	3.13.5
Oxygen Use	3.13.6
Flight into Severe Icing Conditions	3.13.9
NO DISPATCH	3.13.10

Intentionally left blank

3.1 - General

This section provides the recommended procedures in the event of a major failure and/or an emergency situation.

Emergency procedures require immediate action.

Emergency procedures associated with optional or particular equipment which require Pilot's Operating Handbook supplements are provided in Section 9: Supplements.

The pilot must know procedures given in this section and be prepared to take appropriate action should an emergency arise.

Some emergency procedures are a part of pilot basic training. Although these emergencies are discussed here, this information is not intended to replace such training, but only to provide a source of reference and review.

It is important for the pilot to be familiar with standard emergency procedures to be at the optimum efficacy if necessary.

Alarm System Recall

Main failure or state modification of the different systems are provided by warning or caution messages appearing in the CAS window.

The color code philosophy for CAS messages is the following:

- the **RED** warning messages indicate a failure or a condition that requires an immediate action from the pilot,
- the **AMBER** caution messages indicate a failure or a condition that requires an action from the pilot as soon as practicable and,
- the WHITE advisory messages indicate a state of a system that does not require an action from the pilot.

The color code philosophy of the single engine indicator is the following:

Red or amber failure warnings are coupled with the lighting of:

- a red warning indication (e.g **NG 104.5%**) requires immediate engine power reduction to resume operation in the normal operating range,
- an amber cautionary indication (e.g. **ITT 855** °C) requires engine power reduction, as soon as practicable, to resume operation in the normal operating range.

Red or amber failure warnings are coupled with the lighting of:

- a flashing red indicator/pushbutton

PIM TBM 960 - Edition 0 Rev. 00 Page 3.1.1

or

- a fixed amber indicator/pushbutton

Both indicators/pushbuttons are located on the upper part of the left side of the instrument panel. When either one lights up, press it once to reactivate. It will go out and is ready to signal in the case of another failure. In the CAS window, the corresponding failure message remains ON as long as the failure condition is true.

The actions associated to **RED** warning and **AMBER** caution messages are described in this section of the POH for major failure and emergency situations.

NOTE -

For minor failure and/or abnormal situations, refer to Subsection General.

The information associated to the WHITE advisory messages are described in the Garmin Pilot's Guide.

Procedure Format

PROCEDURE TITLES

Name of the procedure 1/X

Procedure introduction or description of symptoms associated with the failure are presented like this at the beginning of the procedure.

1/X is written if the procedure extends over two pages or more.

MEMORY ITEMS

The memory items are indicated in bold font as shown hereafter:

1 - The memory items are written like this.

Through self-training, simulator, initial and recurrent training, the pilot must perfectly know these items in order to take appropriate actions without using any Check-List as soon as the emergency situation occurs and is identified

PIM TBM 960 - Edition 0 Rev. 00 Page 3.1.2

CONDITIONAL STEPS

Conditions are presented like this:

1 - With related actions to perform indented inside.

VALIDITY / EFFECTIVITY

>> Pre/Post-MOD70-xxxx-xx

Before procedure title, represents a specific validity / effectivity for the entire procedure below. If nothing is specified, the procedure applies to all airplanes.

>> Validity inside a procedure is presented like this

1 - With actions related to this validity listed under.

CONTINUATION AND ENDING

The end of the entire procedure is indicated by:

End of procedure.

Procedure completion within the body of the procedure as a result of a condition is indicated by:

End of procedure

Continuation of a procedure on several pages is indicated by:

- *Continue* ► (at the bottom of the page)
- ► Continuing (at the top of the page)

FLY THE AIRPLANE DIRECTIVE

► Fly the airplane < stands for a reminder of a basic flying rule. Despite the critical situation, keep focusing on control of the airplane while performing the necessary procedure.

LANDING DIRECTIVES

► Land as soon as possible < means land on the nearest suitable runway.

CAS MESSAGES

Indicated as displayed in the CAS window:

PIM TBM 960 - Edition 0 Rev. 00 Page 3.1.3

- FUEL PRESS means FUEL PRESS warning CAS message
- MAIN GEN means MAIN GEN caution CAS message.
- **STARTER** means STARTER advisory CAS message.

ANNUNCIATIONS ON PFDs or MFD

Indicated as displayed in the PFD or MFD with specifying "annunciation" next to the message:

- BOTH ON AHRS1 annunciation,
- **HDG** annunciation.

3.2 - Rejected Takeoff

Engine Failure at Takeoff Before Rotation 1 / 1

1	- THROTTLE	IDLE
2	- Brakes	As required

If the airplane cannot be stopped on the runway:

3	- ENGINE MODE switch	OFF
4	- FUEL TANK SELECTOR	OFF
5	- Crash lever F	² ull down
If necessary:		

6 - Evacuate the airplane after coming to complete stop.

Do not unfasten seat belts before complete stop

End of procedure.

Rejected Takeoff for Any Other Reason 1 / 1

1	- TH	ROTTLE	IDLE		
2	- Re	verse	As required		
3	- Br	akes	As required		
lf th	If the airplane cannot be stopped on the runway:				
	4	- ENGINE MODE switch	OFF		
	5	- FUEL TANK SELECTOR	OFF		
	6	- Crash lever	Pull down		
lf n	If necessary:				
	7	- Evacuate the airplane after coming to complete stop.			

Do not unfasten seat belts before complete stop

End of procedure.

3.3 - Engine Failures

Engine Failure Before Rotation 1 / 1

1 - Perform procedure . Engine Failure at Takeoff Before Rotation in Subsection 3.2.

End of procedure.

Engine Failure After Rotation 1 / 2

► Fly the airplane ◄

If height does not allow to choose a suitable landing surface:

► Land straight ahead without changing LANDING GEAR position ◄

1	- FLAPS lever TO	
2	- Airspeed Maintain above 100 KIAS	
3	- THROTTLE IDLE	
4	- ENGINE MODE switch OFF	
5	- FUEL TANK SELECTOR OFF	
Be	fore touchdown:	
6	- FLAPS lever LDG	
7	- Crash lever Pull down	
8	- Evacuate the airplane after coming to complete stop.	
	Do not unfasten seat belts before complete stop	
End of procedure ■		
Continue ►		

Engine Failure After Rotation 2 / 2

► Continuing

If height allows to reach a suitable landing surface:

- 9 LANDING GEAR lever DN
- 10 FLAPS lever As required

Maintain airspeeds	
Flaps UP	105 < KIAS < 178
Flaps TO	100 < KIAS < 178
Flaps LDG	85 < KIAS < 122

11 - THROTTLE	IDLE	
12 - ENGINE MODE switch	OFF	
13 - FUEL TANK SELECTOR	OFF	
Before touchdown:		
14 - Crash lever	. Pull down	

15 - Evacuate the airplane after coming to complete stop.

Do not unfasten seat belts before complete stop

Engine Failure in Flight 1 / 2

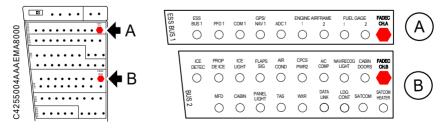
Symptoms:

- loss of power,
- FADEC FAIL with engine shutdown.

► Fly the airplane

If airplane altitude is > 10,000 ft:

	1 - Oxygen masks Use
	Refer to procedure Oxygen Use in Subsection 3.13.
2	- THROTTLE IDLE
3	- ENGINE MODE switch OFF
4	- FUEL TANK SELECTOR OFF
_	


If FADEC FAIL is displayed:

CAUTION

Only one reset of the FADEC breakers should be attempted – refer to Paragraph In-Flight Breaker Use Limits in Subsection 2.6.

- 5 FADEC CH.A & FADEC CH.B breakers Pull
- 6 FADEC CH.A & FADEC CH.B breakers Push

Figure 3.3.1 - Location of FADEC Breakers

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 03 Page 3.3.4

Engine Failure in Flight 2 / 2

► Continuing

7 - Air start envelope Check Refer to <u>Air Start Envelope in Subsection 3.4.</u>

If FADEC FAIL is OFF and air start is possible:

8 - Perform procedure <u>Air Start Procedure in Subsection 3.4.</u>

End of procedure

If **FADEC FAIL** is still ON or air start is not possible:

9 - Perform procedure <u>Maximum Range Descent in Subsection 3.6.</u>

If **FADEC FAIL** is ON, **NO DISPATCH** will be displayed when on ground – refer to procedure <u>NO DISPATCH in Subsection 3.13.</u>.

OIL PRESS or OIL PRESS 1/2

The procedure applies for either low and high oil pressures.

OIL PRESS is displayed if oil pressure is:

- for high pressure:
 - . above 175 PSI, or
 - . above 135 PSI for more than 20 seconds.
- for low pressure:
 - . below 40 PSI, or
 - . below 60 PSI for more than 20 seconds, or
 - . below 100 PSI for more than 20 seconds when Ng > 72%.

OIL PRESS is displayed if oil pressure is:

- for high pressure:
 - . above 135 PSI for less than 20 seconds.
- for low pressure:
 - . below 60 PSI for less than 20 seconds, or

>> preMod: MOD70-0753-00C

. below 100 PSI for more than 5 seconds when Ng > 72%.

>> A//

>> postMod: MOD70-0753-00C

- . below 100 PSI for less than 20 seconds when NG > 72%, or
- . below 100 PSI when NG \leq 72%.

>> All

 OIL PRESS
 and OIL PRESS

 ■ Fly the airplane

Continue ►

OIL PRESS or OIL PRESS 2/2

- ► Continuing
- ► Land as soon as possible ◄
- 1 Oil pressure Monitor
- 2 THROTTLE Minimum power necessary for level flight at 120 KIAS

— CAUTION —

ENG OP DEGRADED may appear – refer to procedure <u>ENG OP DEGRADED</u> <u>in Subsection 3A.3.</u>. Prepare for an engine stop shortly.

If engine power decreases:

If airplane altitude is > 10,000 ft:

	3 - Oxygen masks Use Refer to procedure <u>Oxygen Use in Subsection</u> <u>3.13.</u>
4	- THROTTLE IDLE
5	- ENGINE MODE switch OFF
6	- FUEL TANK SELECTOR OFF
7	- Perform procedure <u>Maximum Range Descent in Subsection 3.6.</u>

End of procedure.

Engine Regulation Discrepancy, **THROTTLE FAIL**, or **FADEC FAIL** without Engine Shutdown 1/4

Symptoms:

- power fluctuations, or
- **THROTTLE FAIL**, or
- FADEC FAIL without engine shutdown, or
- bad autothrottle behavior if engaged.

Fly the airplane

- WARNING ·

If **THROTTLE FAIL** is displayed, the FADEC freezes throttle command (power) at the last valid throttle position.

1 - AT Disconnect

In case engine regulation is back to normal:

► Do not engage AT

► Land as soon as practicable ◄

Inform maintenance department.

Repair before further flight.

End of procedure

If engine power allows for level flight at 120 KIAS or above:

- CAUTION -

Avoid rapid THROTTLE movements. No faster than 10 seconds between IDLE and maximum power positions.

Continue ►

PIM TBM 960 - Edition 0 Rev. 03 Page 3.3.8

Engine Regulation Discrepancy, **THROTTLE FAIL**, or **FADEC FAIL** without Engine Shutdown 2/4

► Continuing

2 • THROTTLE IDLE For 2 seconds, for possible activation of the FADEC degraded torque governing mode
3 - THROTTLE Progressively adjust to minimum power necessary for level flight at 120 KIAS If possible
► Land as soon as practicable <
4 - LANDING GEAR lever DN Only on a glide path on final approach
5 - FLAPS lever LDG Only on short final
► Do not perform a go-around <
► Do not perform a go-around ◄ When runway is assured:
When runway is assured:
When runway is assured: 6 - THROTTLE
When runway is assured: 6 - THROTTLE 7 - ENGINE MODE switch
When runway is assured: IDLE 6 - THROTTLE
When runway is assured: IDLE 6 - THROTTLE

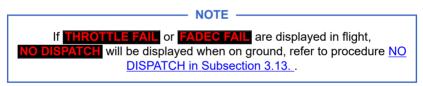
NOTE -

If **THROTTLE FAIL** or **FADEC FAIL** are displayed in flight, **NO DISPATCH** will be displayed when on ground, refer to procedure <u>NO</u> <u>DISPATCH in Subsection 3.13.</u>.

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 03 Page 3.3.9

End of procedure


Engine Regulation Discrepancy, **THROTTLE FAIL**, or **FADEC FAIL** without Engine Shutdown 3 / 4

► Continuing

If engine power does not allow for level flight at 120 KIAS or if any engine parameter exceeds allowed value:

If airplane altitude is > 10,000 ft:

	11 - Oxygen masks Use Refer to procedure Oxygen Use in Subsection 3.13.
12	- THROTTLE IDLE
13	- ENGINE MODE switch OFF
14	- FUEL TANK SELECTOR OFF
15	- Perform procedure Maximum Range Descent in Subsection 3.6.

End of procedure

Rev. 03

If power is excessive to maintain level flight below 178 KIAS:

16 - Prepare for landing as soon as possible.
When approaching appropriate chosen airfield:
17 - Airspeed
18 - INERT SEP switch ON
If ITT > 850 °C:
19 - INERT SEP switch OFF
20 - LANDING GEAR lever DN
21 - FLAPS lever TO
Continue ►
PIM TBM 960 - Edition 0 Page 3.3.10

Engine Regulation Discrepancy, **THROTTLE FAIL**, or **FADEC FAIL** without Engine Shutdown 4/4

► Continuing
22 - Long final or ILS approach Establish At IAS < 178 KIAS
When runway is assured:
23 - THROTTLE IDLE
24 - ENGINE MODE switch OFF
25 - FUEL TANK SELECTOR OFF
26 - FLAPS lever LDG as required At IAS < 122 KIAS
27 - Land normally.
28 - Brakes As required
Inform maintenance department.

Repair before further flight.

- NOTE —

If **THROTTLE FAIL** or **FADEC FAIL** are displayed in flight, **NO DISPATCH** will be displayed when on ground, refer to procedure <u>NO DISPATCH in</u> <u>Subsection 3.13.</u>.

PROP 1/1

Indicates that propeller speed (Np) exceeds:

- 2,030 RPM for more than 20 seconds, or
- 2,100 RPM.

- CAUTION -

May lead to an automatic propeller feathering - refer to procedure FEATHER.

► Fly the airplane ◄

1 - Reduce power and airplane speed to avoid propeller rotation speeds higher than 2,030 RPM.

► Land as soon as possible ◄

Do not perform a go-around

– **NOTE** –

In that case, the go-around may damage the gear reduction box and the reverse efficiency might be lower than expected.

Inform maintenance department.

Repair before further flight.

1/2

When the engine is running, indicates that ITT is more than:

- 900 °C, or
- 850 °C for more than 20 seconds.

During engine start, indicates that ITT is more than:

- 1,000 °C, or
- 900 °C for more than 5 seconds, or
- 850 °C for more than 20 seconds.

CAUTION -

Autothrottle and FADEC engine protection systems do not relieve the pilot's responsibility to monitor and control the engine ITT parameter within the limitations.

During engine start:

– NOTE —

During engine start, if ITT is above 945 °C, the FADEC automatically aborts start sequence.

1 - Starting procedure Abort Refer to procedure Engine Start in Subsection 4.4.

2 - Cancel the flight.

Inform maintenance department.

End of procedure

After engine start:

On ground:

3 - Cancel the flight.

Inform maintenance department.

End of procedure

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 03 Page 3.3.13

	2	/ 2
Continuing		
In flight:		
5		
	Fly the	e airplane ┥
4	- AT	Disconnect
5	- THROTTLE	
Ũ		To get ITT in green sector
►	Land as soon as possible ◀	
Infe	orm maintenance department.	

NG 1/1

Indicates that Ng is more than:

- 104.3%, or
- 104% for more than 20 seconds.
- 1
 - AT Disconnect

 2
 - THROTTLE Reduce To get Ng below 104%
- ► Land as soon as possible ◄

Inform maintenance department.

End of procedure.

OIL TEMP or OIL TEMP 1/2

OIL TEMP is displayed if oil temperature is:

- for high temperature:
 - . above 110 °C, or
 - . above 104 °C for more than 10 minutes.
- for low temperature:
 - . below -40 °C.
- **OIL TEMP** is displayed if oil temperature is:
 - for high temperature:
 - . above 104 °C for less than 10 minutes.
 - for low temperature:
 - >> preMod: MOD70-0753-00C
 - . below 15 °C when Ng > 72%.
 - >> A//
 - >> postMod: MOD70-0753-00C
 - . below 15 °C.
 - >> A//

An oil pressure failure can be expected shortly with **OIL PRESS** or **OIL PRESS** displayed.

► Fly the airplane ◄

- 1 THROTTLE Minimum power necessary for level flight at 120 KIAS
- ► Land as soon as possible ◄

CAUTION ———

ENG OP DEGRADED may appear – refer to procedure <u>ENG OP DEGRADED</u> <u>in Subsection 3A.3.</u>. Prepare for an engine stop shortly.

Continue ►

PIM TBM 960 - Edition 0 Rev. 03 Page 3.3.16

OIL TEMP or OIL TEMP 2/2

► Continuing

If engine power decreases:

If airplane altitude is > 10,000 ft:

	2 - Oxygen masks Use Refer to procedure Oxygen Use in Subsection 3.13.
3	- THROTTLE IDLE
4	- ENGINE MODE switch OFF
5	- FUEL TANK SELECTOR OFF
6	- Perform procedure <u>Maximum Range Descent in Subsection 3.6.</u>

End of procedure.

FEATHER 1/1

Indicates that the propeller is feathered and engine sets to idle after a FADEC system component failure.

► Fly the airplane

- CAUTION ------

May lead to engine shutdown.

1 - THROTTLE IDLE

—— NOTE —

Keeping the engine running at idle enables to pressurize the cabin and to provide electrical power from main generator.

2	- FLAPS and LANDING GEAR levers	UP
4	- I LAI O ANG LANDING OLAN IEVEIS	01

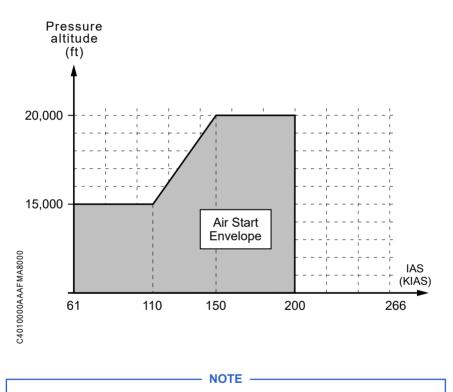
- 3 Airspeed 120 KIAS
- 4 Prepare for a forced landing.

Refer to procedure Forced Landing or Ditching in Subsection 3.7.

—— NOTE ——

NO DISPATCH may be displayed when on ground, refer to procedure <u>NO</u> <u>DISPATCH in Subsection 3.13.</u>.

End of procedure.


PIM TBM 960 - Edition 0 Rev. 03 Page 3.3.18

3.4 - Air Start

Air Start Envelope 1 / 1

Figure 3.4.1 - Air Start Envelope

Air start may be attempted outside of the envelope. However, above 20,000 ft or at lower speeds, ITT tends to increase during start and prudence is recommended.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00 Page 3.4.1

Air Start Procedure 1 / 2

If airplane altitude is > 10,000 ft:

2 - SOURCE selector BATT

----- CAUTION ------

The starter cannot operate if the GENERATOR selector is on ST-BY.

— CAUTION —

BLEED switch set to AUTO may cause overtemperature or abnormal acceleration.

5	- BLEED switch	OFF/RST
6	- FAN selector	OFF
7	- Electric consumption	
8	- FUEL TANK SELECTOR	L or R
9	- THROTTLE	IDLE
10	- ENGINE MODE switch	OFF, then RUN / Guarded
11	- AUX BP switch	AUTO
12	- AUX BP ON	Check ON
13	- STARTER switch	ON 2 seconds, then release
14	- STARTER	Check ON
15	- IGNITION	Check ON
-		

Continue 🕨

Air Start Procedure 2 / 2

► Continuing

– NOTE —

The FADEC system introduces fuel following ignitor excitation.

CAUTION -

The FADEC engine protection system is disabled during engine air start, thus there is no protection against ITT exceedances. Acceptance of a transient ITT exceedance should be considered in such emergency situation. 16 - ITT and Ng Monitor If air start is not successful: 17 - Perform procedure Maximum Range Descent in Subsection 3.6. End of procedure If air start is successful: When Ng above 45%: 18 - Starter Check OFF automatically 19 - STARTER Check OFF 20 - Engine parameters Check Oil pressure, oil temperature and ITT in green sector 21 - THROTTLE As required 22 - TRQ available Check

- ► Land as soon as possible ◄

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00

Intentionally left blank

3.5 - Fire and Smoke

Engine Fire on Ground 1 / 1

Symptoms:

- flames, smoke,
- uncontained engine overtemperature.

1	- THROTTLE	IDLE
2	- ENGINE MODE switch	OFF
3	- FUEL TANK SELECTOR	OFF
4	- BLEED switch	OFF/RST
5	- FAN selector	OFF
6	- Brakes	As required
lf r	necessary:	
	7 - Warn ground assistance.	
8	- Crash lever	Pull down
►	Evacuate as soon as possible ◄	

End of procedure.

Cabin Fire on Ground 1 / 1

1	- THROTTLE	IDLE
2	- ENGINE MODE switch	OFF
3	- FUEL TANK SELECTOR	OFF
4	- Brakes	As required
lf .	necessary:	
	5 - Warn ground assistance.	
6	- Crash lever	Pull down
7	- Cabin fire extinguisher	As required
	Evacuate as soon as possible ◄	

Engine Fire in Flight 1 / 1

Symptoms:

- flames, smoke,
- uncontained engine overtemperature.

► Fly the airplane ◄

If airplane altitude is > 10,000 ft:

	1 - Oxygen masks Use
	Refer to procedure Oxygen Use in Subsection 3.13.
2	- THROTTLE IDLE
3	- ENGINE MODE switch OFF
4	- FUEL TANK SELECTOR OFF
5	- AUX BP switch OFF
6	- BLEED switch OFF/RST
7	- FAN selector OFF

- WARNING -

No air start attempt after an engine fire.

If necessary:

8 - Perform an emergency descent.

Refer to procedure <u>Maximum Rate Descent in</u> <u>Subsection 3.6.</u>.

9 - Perform a forced landing.

Refer to procedure <u>Forced Landing or Ditching in</u> <u>Subsection 3.7.</u>

Cabin Electrical Fire or Smoke During Flight 1 / 2

► Fly the airplane ◄

1 -	Оху	rgen masks and goggles Use Refer to procedure Oxygen Use in Subsection 3.13.
If the	orig	in is known:
	2	- Defective equipment breaker Pull
	3	- Cabin fire extinguisher Use
If the	orig	in is unknown:
	4	- FAN selector OFF
	5	- All unnecessary equipment OFF
lf nec	ess	ary:
	6	- Perform procedure Smoke Elimination
lf smo	oke	or fire persists:
	7	- Fly using the standby instrument.
	8	- SOURCE selector OFF
	9	- GENERATOR selector OFF
	10	- Cabin fire extinguisher Use
	11	- All circuit breakers
	12	- All electrical equipment OFF
		NOTE

Check for possible fire or smoke while re-engaging necessary electrical equipment one after the other.

Continue 🕨

PIM	твм	960	- Editi	on 0
Rev.	00			

Cabin Electrical Fire or Smoke During Flight 2 / 2

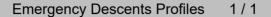
► Continuing

15 - Necessary circuit breakers	Push
16 - Necessary electrical equipment	ON
17 - Defective equipment breaker	Pull
18 - Not affected electrical equipment	ON
	As required

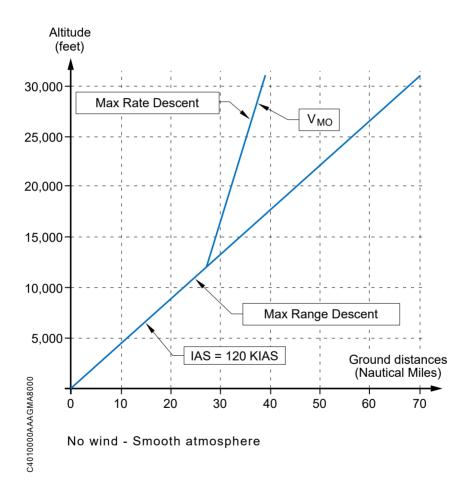
19 - Perform an emergency descent.

Refer to procedure <u>Maximum Rate Descent in</u> <u>Subsection 3.6.</u>

► Land as soon as possible ◄



Smoke Elimination 1 / 1


1	- Oxygen masks and goggles Use Refer to procedure Oxygen Use in Subsection 3.13.
2	- BLEED switch OFF/RST
3	- FAN selector OFF
4	- DUMP switch Press
5	- Wait until the cabin differential pressure drops.
6	- EMERGENCY RAM AIR control knob Pull
lf s	moke decreases:
	► Land as soon as possible <
	End of procedure
lf s	moke increases:
	7 - EMERGENCY RAM AIR control knob Push
	► Land as soon as possible <
—	

3.6 - Emergency Descents

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00 Page 3.6.1

Maximum Rate Descent 1 / 1

1	- Oxygen masks Use		
		Refer to procedure Oxygen Use	in Subsection 3.13.
2	- TH	IROTTLE	IDLE
3	- Pit	tch attitude	10° to -20°
lf si	mootl	th air:	
	4	- FLAPS lever	UP
	5	- LANDING GEAR lever	UP
	6	- Airspeed	V _{MO} = 266 KIAS
lf ro	ough	air or in case of structure problem:	
	7	- Airspeed	Below 178 KIAS
	8	- FLAPS lever	UP
	9	- LANDING GEAR lever	DN

Maximum Range Descent 1 / 2

— **NOTE** –

This procedure is designed for an airplane with propeller feathered, which can be achieved only by shuting down the engine.

- CAUTION -

The cabin pressurization system no longer operates with the engine shut down.

If airplane altitude is > 10,000 ft:

1	- Oxygen masks	Use
		Refer to procedure Oxygen Use in Subsection 3.13.

2	- THROTTLE	IDLE
3	- ENGINE MODE switch	OFF
4	- FUEL TANK SELECTOR	OFF
5	- FLAPS lever	UP
6	- LANDING GEAR lever	UP
7	- Airspeed	120 KIAS
8	- DUMP switch	Press
9	- EMERGENCY RAM AIR control knob	Pull
lf V	/MC and non icing conditions are possible:	
	10 - ESS BUS TIE switch	EMER
	11 - Prepare for a forced landing.	
	Refer to procedure <mark>Forced Landing</mark> <u>Su</u>	or Ditching in bsection 3.7.
	End of procedure ■	

2//4 0/ 0/0000

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 00 Page 3.6.3

Maximum Range Descent 2 / 2

► Continuing

If VMC and non icing conditions are not possible:

Breakers:

	12	- PFI	D 2	Pull
	13	- AD	C 2	Pull
14 - XPDR 2				Pull
	15	- AIF	R COND	Pull
Swi	itches	/ pus	hbuttons / selectors:	
	16	- DE	ICE SYSTEM mode	AUTO
	If ic	cing co	onditions:	
		17	- DE ICE SYSTEM mode	All deicing systems turn on
		18	- PITOT L/R & STALL HTR	Check ON
		19	- Airspeed	Above 135 KIAS Configuration flaps UP
	20	- AU	Х ВР	OFF
	21	- FU	EL SEL	MAN Status light in green
	22	- Lig	hts	All OFF
	23	- BLI	EED	OFF/RST
	24	- FAI	N	OFF
	25	- AP	/TRIMS	OFF
	26	- CA	BIN / ACCESS	OFF
27	- All	perso	nal electrical devices	Disconnect
28	- Pre	pare	for a forced landing.	
				The second different term in the Different term

Refer to procedure <u>Forced Landing or Ditching in</u> <u>Subsection 3.7.</u>

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00 Page 3.6.4

PIM TBM 960 - Edition 0

Rev. 00

Page 3.7.1

3.7 - Emergency Landings, Flaps, Gear

Forced Landing or Ditching 1 / 2

When forced landing or ditching area is chosen:

1	- THROTTLE	IDLE
2	- ENGINE MODE switch	OFF
3	- FUEL TANK SELECTOR	OFF
4	- AUX BP switch	OFF
5	- BLEED switch	OFF/RST
6	- FAN selector	OFF
7	- DUMP switch	Press
8	- Gliding airspeed	Maintain 120 KIAS Until favorable ground approach
9	- ESS BUS TIE switch	To have GEAR and FLAPS available
10	- AP / YD / AT	Disconnect Before 200 ft
If night conditions:		
	11 - LDG lights	ON
For a forced landing (on ground):		
	If landing surface is suitable:	
	12 - LANDING GEAR lever	DN
	If landing surface is not suitable:	
	13 - LANDING GEAR lever	Keep UP
	When chosen landing surface is assure	ed:
	14 - FLAPS lever	LDG
	15 - Crash lever	Pull down
Continue ►		

Forced Landing or Ditching 2 / 2

► Continuing

- 16 Airspeed on final approach 85 KIAS
- 17 Land flaring out.
- 18 Evacuate the airplane after coming to complete stop.

Do not unfasten seat belts before complete stop

End of procedure

For a ditching (on water):

- CAUTION -

In heavy swell with light wind, approach parallel to the swell (rollers). In heavy wind, land facing wind.

- 19 LANDING GEAR lever UP
 20 FLAPS lever LDG
 21 Airspeed Maintain above 85 KIAS
- 22 Maintain a descent rate as low as possible when approaching the water.
- 23 Crash lever Pull down
- 24 Maintain attitude without flaring out until touchdown.
- 25 Evacuate through EMERGENCY EXIT.

Refer to procedure <u>Emergency Exit Use in</u> <u>Subsection 3.13.</u>

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00 Page 3.7.2

Tire Blowout during Landing 1 / 1

- 1 Control direction with brakes and nose wheel steering.
- 2 Reverse As required
- 3 Stop the airplane to minimize damages.
- 4 Shut down the engine.

Refer to procedure Shutdown in Subsection 4.4.

FLAPS ASYM 1 / 1

Indicates a dissymmetry of flap deflection. This immediately stops the flap motor and prevents further operation of the flaps.

► Fly the airplane ◄

- 1 FLAPS breaker Pull
- 2 FLAPS lever UP
- ► Land as soon as possible ◄
- 3 Maintain airspeeds:
 - IAS < 178 KIAS for deflections between UP and TO positions,
 - IAS < 122 KIAS for deflections greater than TO position.

At landing:

4 - Perform procedure Landing with Flaps Malfunction in Subsection 3A.7.

End of procedure.

3.8 - Fuel System

FUEL PRESS 1/2

Indicates a fuel pressure drop at HP engine pump inlet.

► Fly the airplane ◄

1 - Remaining fuel Check		
2 - FUEL TANK SELECTOR Switch tanks		
3 - AUX BP switch AUTO		
If FUEL PRESS remains ON:		
4 - AUX BP switch ON		
5 - AUX BP ON Check ON		
If pressure is normal again and FUEL PRESS is OFF:		
Mechanical pump has failed.		
6 - AUX BP switch Maintain ON		
► Land as soon as practicable <		
End of procedure		
If FUEL PRESS remains ON:		
7 - FUEL TANK SELECTOR Switch tanks		
If FUEL PRESS is OFF:		
A supply problem may have occured from the tank selected first (air vent, fuel icing, etc.).		
End of procedure		
If FUEL PRESS remains ON:		
8 - Fullest tank Select		
9 - Avoid high power and rapid movements of the THROTTLE.		
10 - Altitude Below 18,000 ft		
Continue ►		

PIM TBM 960 - Edition 0 Rev. 00

FUEL PRESS 2/2

► Continuing

► Land as soon as possible ◄

FUEL LOW L-R 1 / 1

Indicates a level drop in the corresponding tank.

- 1 Corresponding gauge Check
- 2 Check that the other tank has been automatically selected.

If other tank not automatically selected:

End of procedure.

Page 3.8.3

FUEL CLOGGING 1 / 1

Indicates that the engine fuel filter is clogged. The fuel is no longer filtered. In flight:

► Fly the airplane ◄

► Land as soon as possible ◄

Inform maintenance department.

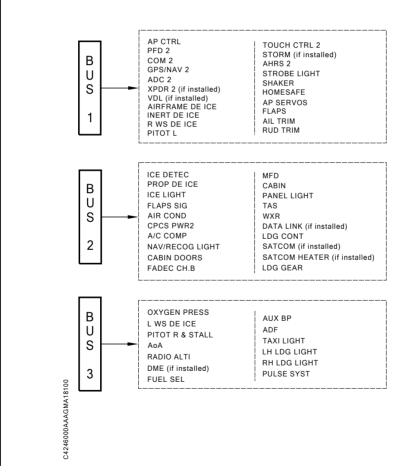
Repair before further flight.

End of procedure

On ground:

► Do not take off

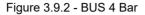
Inform maintenance department.

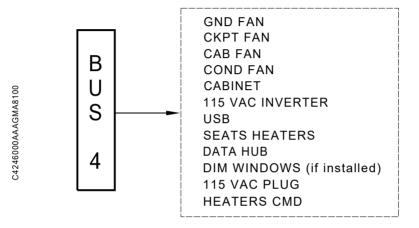

The airplane is grounded, repair before further flight.

3.9 - Electrical System

BUS Bars 1/3

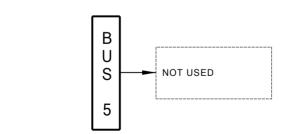
Figure 3.9.1 - BUS 1, BUS 2, BUS 3 Bars


Continue ►


PIM TBM 960 - Edition 0 Rev. 04 Page 3.9.1

BUS Bars 2/3

► Continuing



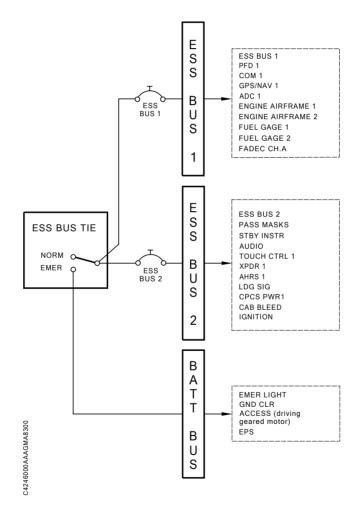
NOTE

Breakers located on Frame C13bis and Frame C15.

Figure 3.9.3 - BUS 5 Bar

Continue ►

C4246000AAAGMA08200


PIM TBM 960 - Edition 0 Rev. 04 Page 3.9.2

BUS Bars 3 / 3

► Continuing

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04 Page 3.9.3

Total Loss of Electrical Power 1 / 1

► Fly the airplane

- 1 Use the MD302 for:
 - attitude,
 - airspeed,
 - altitude, and/or
 - heading.
- ► Land as soon as possible

NOTE -

Airplane power is provided to the MD302 display for normal operation. Operation of the basic system is automatic. The system is powered ON while airplane power is ON. If airplane power is lost, the internal battery will provide power to the MD302 for

one hour.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04 Page 3.9.4

3.10 - Pressurization and Air Conditioning

PRESSU OFF 1/2

Possibly due to:

- system malfunction,
- BLEED switch in OFF/RST position.

If in flight:

If airplane altitude is > 10,000 ft:

1	- Oxygen masks	Use
		Refer to procedure Oxygen Use in Subsection
		<u>3.13.</u>

2	- BLEED switch OFF/RST
3	- CPCS PWR1 and CAB BLEED (ESS BUS 2) breakers Check pushed
4	- CPCS PWR2 (BUS 2) breaker Check pushed
If nonsible:	

If possible:

5 - TRQ Reduce

► Fly the airplane ◄

6 - BLEED switch AUTO

If **PRESSU OFF** is still ON:

If airplane altitude is > 10,000 ft:

If necessary:

7 - Perform an emergency descent.

Refer to procedure <u>Maximum Rate</u> <u>Descent in Subsection 3.6.</u>

8 - Continue the flight.

Continue ►

PIM TBM 960 - Edition 0 Rev. 00 Page 3.10.1

PRESSU OFF 2/2

► Continuing

NOTE -

If the pressure altitude is > 10,000 ft, it may be followed by **CABIN ALTITUDE** and **USE OXYGEN MASK**.

Inform maintenance department.

End of procedure

If on ground:

- 9 BLEED switch OFF/RST
- 10 Taxi back to apron.
- 11 Shut down the engine.

Refer to procedure Shutdown in Subsection 4.4.

Inform maintenance department.

CABIN ALTITUDE and **USE OXYGEN MASK** 1 / 1

Indicates that the cabin altitude is greater than 10,000 ft.

	NOTE
	CABIN ALTITUDE is followed by USE OXYGEN MASK and the "Use oxygen
	mask / Use oxygen mask" voice alert repeated three times.
1	- Oxygen masks Use Refer to procedure Oxygen Use in Subsection 3.13.
	► Fly the airplane ◄
2	- BLEED switch Check AUTO
3	- DUMP switch Check NORM / Guarded
4	- EMERGENCY RAM AIR control knob Check pushed
lf r	ecessary:
	5 - Perform an emergency descent.
	Refer to procedure Maximum Rate Descent in

Refer to procedure <u>Maximum Rate Descent in</u> Subsection 3.6.

6 - Limit flight altitude to maintain cabin altitude below 10,000 ft.

Inform maintenance department before next flight.

EDM 1/1

—— NOTE –

EDM may come on 45 seconds after CABIN ALTITUDE and USE OXYGEN MASK.

– NOTE ————

EDM performs a 90° left heading change and a descent to 15,000 ft. EDM override is possible by pressing the AP/TRIM DISC pushbutton twice. Then, AP can be re-engaged and other AP modes are usable. AT engages automatically and reduces power.

 1
 - Oxygen masks
 Use

 Refer to procedure Oxygen Use in Subsection 3.13.

 2
 - BLEED switch
 Check AUTO

 3
 - DUMP switch
 Check NORM / Guarded

 4
 - EMERGENCY RAM AIR control knob
 Check pushed

—— NOTE —

When the airplane reaches 15,000 ft, **HOMESAFE ROST** is displayed for 15 seconds before HomeSafe starts the automatic landing process.

If EDM has been overridden:

► Fly the airplane ◄

If necessary:

5 - Perform an emergency descent.

Refer to procedure <u>Maximum Rate Descent in</u> <u>Subsection 3.6.</u>

6 - Limit flight altitude to maintain cabin altitude below 10,000 ft.

Inform maintenance department before next flight.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00 Page 3.10.4

CABIN DIFF PRESS 1 / 1

Indicates a cabin differential pressure over 6.4 psi \pm 0.2 psi.			
1 - Pressurization indicator Check			
If cabin differential pressure is > 6.4 psi ± 0.2 psi:			
2 - Oxygen masks Use Refer to procedure Oxygen Use in Subsection 3.13.			
3 - BLEED switch OFF/RST			
► Fly the airplane ◄			
If necessary:			
4 - Perform an emergency descent.			
Refer to procedure <u>Maximum Rate Descent in</u> <u>Subsection 3.6.</u>			

O2 CYL CLOSED 1 / 1

Indicates that the oxygen cylinder isolation valve is closed.

- WARNING -

Flight is prohibited with oxygen cylinder closed.

1 - Oxygen cylinder Open

DOOR 1/1

Indicates that one of the door latches of the door(s) is not correctly locked.

On ground:

- 1 From the airplane synoptics page on the MFD, identify the defective door(s).
- Check the correct locking, as well as the latches position of the door(s).

If **DOOR** is still ON:

► Do not take off

End of procedure

In flight:

► Fly the airplane

- 3 Start a slow descent.
- 4 Decrease cabin differential pressure By selecting a higher LFE LFE between 9,500 ft and 10,000 ft

If cabin altitude increases above 10,000 ft:

5	- Oxygen masks	Refer to procedure <u>Oxygen Use in Subsection</u> <u>3.13.</u>
6	- BLEED switch	OFF/RST
7	- DUMP switch	Press
8	- THROTTLE	IDLE
9	- Airspeed	
Land as soon as possible ৰ		

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00 Page 3.10.7

Intentionally left blank

Page 3.10.8

3.11 - Deicing System

No Emergency Procedures

Refer to Section 3A for Abnormal Procedures.

PIM TBM 960 - Edition 0 Rev. 00 Page 3.11.1

Intentionally left blank

Page 3.11.2

3.12 - Avionics Miscellaneous

Unsuccessful AT Disconnection 1 / 1

Symptoms: AT is still engaged and active after having pressed the AT DISC pushbutton on the THROTTLE.

1 - AT key on AFCS control box Press

If unsuccessfull to disconnect AT using AT key on AFCS control box:

2 - AP/TRIM DISC pushbutton Press AP / YD also disengage Re-engage if needed

If unsuccessfull to disconnect AT using AP/TRIM DISC pushbutton:

3 - THROTTLE Move back To disengage AT by forcing the THROTTLE lever Move forward to manage power manually

If unsuccessfull to disconnect AT by forcing the THROTTLE:

4 - AP/TRIMS switch AP OFF AP / YD is also inoperative Fly the airplane without AP

If unsuccessfull to disconnect AT:

5 - AP SERVOS breaker Pull AP is also inoperative Fly the airplane without AP

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00

Trim Runaway 1 / 1

► Fly the airplane

1 - AP/TRIM DISC pushbutton Press and hold

— **NOTE** –

When AP/TRIM DISC pushbutton is pressed and held, AP / YD / AT are disengaged.

The three trim tabs are disconnected and runaway stops.

2	- AP/TRIMS switch	OFF
3	- AP/TRIM DISC pushbutton	Release

4 - Pitch trim may be used manually.

If necessary:

5 - Airspeed Reduce To reduce control forces

In case of pitch trim runaway:

6 - AP/TRIMS switch AP OFF

The pitch trim may be used manually, the two other trim tabs may be used again electrically.

End of procedure

In case of rudder or aileron trim runaway:

7 - RUD TRIM or AIL TRIM breaker Pull

According to the defective trim

8 - AP/TRIMS switch ON

The two other trim tabs may be used again electrically.

End of procedure.

PIM TBM 960 - Edition 0 Page 3.12.2 Rev. 00 PIM - DO NOT USE FOR FLIGHT OPERATIONS

USP ACTIVE 1 / 1

- 1 Do not disconnect AP.
- 2 Manage the flight.

NOTE -

Stall warning may be triggered but AP will remain ON.

AURAL WRN FAIL 1 / 1

Indicates that no aural warning alerts are available.

CAUTION

No aural stall warning. No aural overspeed warning. No aural landing gear warning.

1 - Maintain airspeeds.

Flaps UP	105 < KIAS < 266
Flaps TO	100 < KIAS < 178
Flaps LDG	85 < KIAS < 122

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00 Page 3.12.4

AURAL WRN 1 CHL 1 / 1

– NOTE –

System switches automatically on the remaining valid aural channel.

ABORT APR 1 / 1

Indicates a loss of GPS navigation.

▶ Perform a go-around ◀

HOMESAFE RQST 1 / 1

Indicates that HomeSafe is active and will take control and declare an emergency in 15 seconds.

If the pilot wants to cancel the HomeSafe request:

1 - AP/TRIM DISC pushbutton Press twice AP / YD / AT also disengage

—— NOTE —

Before reengaging AP / YD and/or AT, check that FD and AT modes are correct.

HomeSafe Deactivation 1 / 2

– WARNING –

HomeSafe deactivation must be performed by a pilot who is:

- fully capable of flying the airplane, and
 - fully aware of all actions needed to be performed in reconfiguring the airplane (the flight plan in the FMS is lost, the landing gear and flap positions may not agree with the lever positions for the landing gear and flaps).

CAUTION

HomeSafe deactivation is not recommended on final approach.

1 - AP/TRIM DISC pushbutton Press twice AP / YD / AT also disengage

— CAUTION —

MFD reconfiguration can take up to one minute. During this time, engine instruments and CAS messages can be displayed on PFD by using DISPLAY BACKUP.

- 2 L.H. DISPLAY BACKUP pushbutton Press
- 3 LVL pushbutton Press
- 4 Before using VHFs, set appropriate frequency and used VHF.
- 5 Inform ATC that the pilot is back and flying the airplane, and ask for altimeter setting.

Inform that the pilot must reenter the flight plan in the

FMS

6	- Altimeter setting	Re-adjust
		If necessary

Continue 🕨

PIM TBM 960 - Edition 0 Page 3.12.8 Rev. 00

HomeSafe Deactivation 2/2

► Continuing

If ACFT CONF MISM is ON:

7 - Perform procedure ACFT CONF MISM in Subsection 3A.7.

HS CONFIG MODE 1 / 1

Indicates that HomeSafe is still in configuration mode after a maintenance operation.

HS CONFIG MODE appears only at avionics initialization.

1 - Do not start the engine.

Inform maintenance department.

3.13 - Miscellaneous

Crack in Cockpit Window or Window Panel 1 / 1

► Fly the airplane

- 1 Descend slowly.

Emergency Exit Use 1 / 1

WARNING -

- Before using emergency exit:
- Wait for airplane complete stop,
- Check cabin differential pressure = 0.
- 1 Check that the anti-theft safety pin has been removed.

>> preMod: MOD70-0793-25

2 - Remove the upholstery panel of the emergency exit. Pull it firmly through the access area to the opening handle.

Refer to Paragraph Emergency Exit in Subsection 7.3.

>> All

- 3 Lift up the opening handle.
- 4 Pull emergency exit assembly towards oneself to release it from its recess.
- 5 Put the emergency exit door inside fuselage or throw it away from the fuselage through the opening.
- 6 Evacuate airplane.

Emergency Beacon (ELT) Use 1 / 1

Before a forced landing or ditching:

If possible:

1 - Transmit a MAY DAY signal on COM VHF 121.5 MHz or on a known ATC frequency.

After landing:

2	- ELT remote control switch	ON
		Maintain ON until aid arrives

Inadvertent Spins 1 / 1

- WARNING -

Voluntary spins are prohibited.

When rotation is stopped:

7 - Level the wings and ease out of the dive.

► Fly the airplane

AP Off, Stall Warning 1 / 1

— NOTE —

Shaker will vibrate simultaneously with stall warning aural alert.

- 1 Fly the airplane, wings levelled and nose down until stall warning stops.
- 2 TRQ As required
- 3 Return to the desired flight path.

Oxygen Use 1/3

With or without USE OXYGEN MASK.

WARNING

Smoking is strictly prohibited when the oxygen system is in use. Before using oxygen, remove any trace of oil, grease, soap and other fatty substances (including lipstick, make-up, etc.) on the user's face.

Continue ►

Oxygen Use 2/3

► Continuing

For front seats:

- 1 Take a mask above the opposite seat (pilot: right-side mask; front passenger: left-side mask).
 - Pull the mask out of the stowage cup and fully uncoil the tube.
 - Press the red side vanes together to inflate the harness.
 - Put the mask on the face and release the red side vanes.

If there is no smoke in cabin:

	2	- Mask regulator control tab N (Normal) 100% as required
	3	- Vent valve Closed
lf tl	here	is smoke in cabin:
	4	- Mask regulator control tab 100%
	5	- EMERGENCY control knob
	6	- Smoke goggles Don and fit to the mask
	7	- Vent valve Open
8	- Ox	xygen flow indicator on mask hose
9	- MI	CRO/MASK switch MASK
10	- PA	SSENGER OXYGEN switch DEPLOY
11	- Pe	rform an emergency descent

If possible:

12 - Perform an emergency descent To an altitude below 10,000 ft Refer to procedure <u>Maximum Rate Descent in</u> <u>Subsection 3.6.</u>

Continue ►

PIM TBM 960 - Edition 0 Rev. 03 Page 3.13.7

Oxygen Use 3 / 3

► Continuing

For intermediate and rear seats:

- 13 Take a mask.
- 14 Fully uncoil the tube.
- 15 Pull on the lanyard cord to pull out the lanyard pin and flow the oxygen.
- 16 Put the mask on the face.
- 17 Check that the green bag inflates.

End of procedure.

Flight into Severe Icing Conditions 1 / 1

Severe icing conditions, particularly freezing rain and freezing drizzle, can be identified by:

- unusually extensive ice accumulation on the airframe and windshield in areas not normally observed to collect ice,
- accumulation of ice on the upper surface of the wing aft of the protected area.
- 1 Perform procedure Flight into Severe Icing Conditions in Subsection 4.5.

NO DISPATCH 1 / 1

Indicates that airplane takeoff is not allowed due to a FADEC system component failure.

NO DISPATCH is only displayed while the airplane is on ground.

► Do not take off

Inform maintenance department.

The airplane is grounded, repair before further flight.

End of procedure.

Section 3A

Abnormal Procedures

Table of Contents

3A.1	-	General	3A.1.1
3A.2	-	Rejected Takeoff No Abnormal Procedures	3A.2.1 3A.2.1
3A.3	-	Engine Failures ITT HI CHIP ENG PROT ACTIVE FEATHER MISMATCH SET PWR TO IDLE ENG OP DEGRADED FADEC FAULT FADEC COM 1 CHL NP 2000 MAX	3A.3.1 3A.3.2 3A.3.3 3A.3.4 3A.3.5 3A.3.6 3A.3.7 3A.3.8 3A.3.9
3A.4	-	Air Start No Abnormal Procedures	3A.4.1 3A.2.1
3A.5	-	Fire and Smoke No Abnormal Procedures	3A.5.1 3A.2.1
3A.6	-	Emergency Descents No Abnormal Procedures	3A.6.1 3A.2.1
3A.7	-	Emergency Landings, Flaps, Gear LDG GEAR UP Flaps Malfunction Landing with Flaps Malfunction Landing Gear Retraction Discrepancy Landing Gear Extension Discrepancy Emergency Gear Extension Landing with Unlocked Main Landing Gear Landing with Defective Nose Landing Gear (Down Unlocked ar Nat Down)	3A.7.1 3A.7.2 3A.7.3 3A.7.4 3A.7.5 3A.7.6 3A.7.9 3A.7.11
		or Not Down)	JA.1.11

Landing with Gear Up	3A.7.12
Landing without Elevator Control	3A.7.13
ACFT CONF MISM	3A.7.14
HS ABN BRAKES	3A.7.15
3A.8 - Fuel System	
AUX BP ON	
AUTO SEL	
LOW LVL FAIL L-R	
FUEL CLOGGING	3A.8.5
3A.9 - Electrical System	3A.9.1
BAT AMP	3A.9.1
BAT OFF	3A.9.2
MAIN GEN	3A.9.3
	3A.9.4
MAIN GEN and LOW VOLTAGE	3A.9.5
3A.10 - Pressurization and Air Conditioning	3A.10.1
ECS DEGRADED	3A.10.1
PRESSU BACKUP	3A.10.2
Cabin Not Depressurized After Landing	3A.10.3
VACUUM LOW	3A.10.4
Defog Malfunction	3A.10.5
3A.11 - Deicing System	3A.11.1
AFRM DEICE FAIL	3A.11.1
PROP DEICE FAIL	3A.11.2
INERT SEP FAIL	3A.11.3
Windshield Deicing Failure	3A.11.4
Windshield Misting or Internal Icing	3A.11.5
PITOT NO HT L-R	3A.11.7
STALL NO HEAT	3A.11.8
	3A.11.9
ICE DETECTION FAIL	3A.11.10
3A.12 - Avionics Miscellaneous	3A.12.1
ESP FAIL	3A.12.1
ESP DEGRADED IAS	3A.12.2

Page 3A.0.2

	ESP DEGRADED AOA	3A.12.3
	Airspeed Indicating System Failure	3A.12.4
	AP ON YD OFF	3A.12.5
	Autopilot or Electric Pitch Trim Malfunction	3A.12.6
	Dual GPS/SBAS failure (DR or GPS LOI annunciation on	
	HSI)	3A.12.7
	APR DWNGRADE	3A.12.9
	PIT in AP Vertical Mode during FD Approach with Vertical	
	Guidance	3A.12.10
	VDI or VDI on Approach	3A.12.11
	Left PFD Failure	3A.12.12
	AHRS Failure	3A.12.13
	ADC Failure	3A.12.15
	MFD Failure	3A.12.16
	XPDR1 FAIL or XPDR2 FAIL	
	XPDR1 ADS-B FAIL or XPDR2 ADS-B FAIL	3A.12.18
	GWX FAIL	3A.12.19
	TCAS FAIL	3A.12.20
	TRAFFIC FAIL	3A.12.21
		3A.12.22
-	Miscellaneous	3A.13.1
	CARGO DOOR	3A.13.1
	GPU DOOR	3A.13.2
		3A.13.3
	LMTD DISPATCH	3A.13.4

3A.13

Intentionally left blank

Page 3A.0.4

3A.1 - General

This section provides the recommended procedures in cases of minor failure and abnormal situation.

Abnormal procedures associated with optional or particular equipment that require Pilot's Operating Handbook supplements are provided in Section 9: Supplements.

The pilot must know procedures given in this section and be prepared to take appropriate action should an abnormal situation occurs.

Minor failures or abnormal situations allow the pilot to use a Check-List. However, some abnormal procedures may include memory items. These items must be perfectly known by the pilot and be executed at the beginning of these procedures. They are included in some of these procedures in order to prevent the abnormal situation from becoming an emergency.

It is important for the pilot to be familiar with standard abnormal procedures.

The actions associated to the **AMBER** caution messages are described in this section of the POH for minor failure and abnormal situations.

– NOTE –

For major failure and/or emergency situations, refer to <u>Subsection 3.1.</u> <u>General</u>.

Refer to <u>Subsection 3.1. General</u> for further information about:

- Alarm system recall,
- Procedure format,

which are also applicable to Abnormal Procedures.

Intentionally left blank

Page 3A.1.2

3A.2 - Rejected Takeoff

No Abnormal Procedures

Refer to Section 3 for Emergency Procedures.

PIM TBM 960 - Edition 0 Rev. 00 Page 3A.2.1

Intentionally left blank

Page 3A.2.2

3A.3 - Engine Failures

ITT HI 1/1

Indicates that ITT is more than 850 °C for less than 20 seconds.

- CAUTION -

Autothrottle engine protection system does not relieve the pilot's responsibility to monitor and control the engine ITT parameter within the limitations.

— NOTE —

Single engine indicator may switch to ITT or NG parameter depending on engine conditions.

1 - AT Disconnect 2 - THROTTLE Reduce

To get ITT in green sector

End of procedure.

Page 3A.3.1

CHIP 1 / 1

Indicates that metallic chips have been detected in the engine oil.

In flight:

► Fly the airplane ◄

Where practicable:

- 1 THROTTLE Reduce
- 2 Engine parameters Monitor
- ► Land as soon as practicable
- Inform maintenance department.
- Repair before further flight.
- End of procedure

On ground:

► Do not take off

Inform maintenance department.

The airplane is grounded, repair before further flight.

End of procedure.

ENG PROT ACTIVE 1 / 1

Indicates that the FADEC engine protection is active on TRQ and/or Ng and limits engine power to comply with engine limitations.

The single engine indicator may switch to NG parameter depending on engine conditions.

– **NOTE** –

If after 10 seconds exceedance is still:

1 - THROTTLE Reduce To get parameter in green sector

FEATHER MISMATCH 1 / 1

Indicates that the propeller is not feathered after a pilot request.

In flight:

Indication is normal. Manual feathering is not possible in flight.

1 - GND FEATHER switch OFF

End of procedure

On ground:

Indication is normal if:

- engine is not running, or
- THROTTLE is out of IDLE position.
- 2 GND FEATHER switch OFF

Inform maintenance department.

End of procedure.

SET PWR TO IDLE 1 / 1

Indicates that throttle is out of idle position when engine is ready for start procedure.

CAUTION -

If engine start is performed with THROTTLE out of IDLE position, the FADEC will command a normal start sequence to reach idle, then Ng will immediately increase to reach the power commanded by the THROTTLE (including reverse range).

- 1 THROTTLE IDLE
- 2 Continue start procedure normally.

٦

ENG OP DEGRADED 1 / 1

Indicates that an engine failure affects engine operation.

► Fly the airplane ◄

1 - TRQ parameter Check

CAUTION _____

	Avoid rapid THROTTLE movements. No faster than 10 seconds between IDLE and maximum power positions.
2 -	- THROTTLE IDLE For 2 seconds, for possible activation of the FADEC degraded torque governing mode
3 -	- THROTTLE As required To acceptable TRQ level
► La	and as soon as practicable ◀
► Do	o not engage AT ◀
► Do	o not perform a go-around ◀
	NOTE

End of procedure.

Page 3A.3.6

FADEC FAULT 1 / 1

Indicates a FADEC system component fault.

A possible impact is inability for the engine to switch from Flight IDLE to Ground IDLE at touchdown with THROTTLE at IDLE.

► Fly the airplane ◄

1 - Check for other possible engine-related CAS messages.

► Land as soon as practicable ◄

— NOTE —

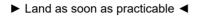
Idle power may not switch from Flight IDLE to Ground IDLE after wheels touch. Landing distances given in <u>Subsection Landing Distances</u> are not impacted.

- NOTE -

NO DISPATCH may be displayed when on ground, refer to procedure <u>NO</u> <u>DISPATCH in Subsection 3.13.</u>.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 03 Page 3A.3.7



FADEC COM 1 CHL 1 / 1

Indicates that the communication between one FADEC channel and avionics is lost.

In flight:

► Fly the airplane ◄

Inform maintenance department.

Repair before further flight.

End of procedure

On ground:

► Do not take off

Inform maintenance department.

The airplane is grounded, repair before further flight.

NP 2000 MAX 1 / 1

Indicates that the FADEC commands a high Np (PROP RPM) due to:

- an avionics failure, or
- an overtorque, or
- a FCU runaway (fuel metering valve fully open).

Fly the airplane

- CAUTION -

The FADEC commands Np (PROP RPM) at 2,000 RPM and maximum torque is reduced to around 96% to comply with engine power limitations.

In flight:

- ► Do not engage AT ◄
 - 1 THROTTLE Reduce

To acceptable TRQ level

Land as soon as practicable

Inform maintenance department.

Repair before further flight.

End of procedure

On ground:

► Do not take off

Inform maintenance department.

The airplane is grounded, repair before further flight.

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 03 Page 3A.3.10

3A.4 - Air Start

No Abnormal Procedures

Refer to Section 3 for Emergency Procedures.

PIM TBM 960 - Edition 0 Rev. 00 Page 3A.4.1

Intentionally left blank

Page 3A.4.2

3A.5 - Fire and Smoke

No Abnormal Procedures

Refer to Section 3 for Emergency Procedures.

PIM TBM 960 - Edition 0 Rev. 00 Page 3A.5.1

Intentionally left blank

Page 3A.5.2

3A.6 - Emergency Descents

No Abnormal Procedures

Refer to Section 3 for Emergency Procedures.

PIM TBM 960 - Edition 0 Rev. 00 Page 3A.6.1

Intentionally left blank

Page 3A.6.2

3A.7 - Emergency Landings, Flaps, Gear

LDG GEAR UP 1 / 1

Indicates that the landing gear is not down-locked when:

- THROTTLE is close to IDLE, and/or
- flaps are close to LDG position.

Associated with:

- the "Landing gear / Landing gear" voice alert above 800 ft AGL, or
- the "Check gear / Check gear" voice alert below 800 ft AGL.

Depending on the flight phase:

1 - Check if the landing gear needs to be extended.

If necessary:

2 - LANDING GEAR lever DN

- NOTE -

Pressing the MASTER CAUTION pushbutton mutes the "Landing gear / Landing gear" voice alert above 800 ft AGL.

Flaps Malfunction 1 / 1

In case of blockage of flaps or inoperative FLAPS control lever between UP and LDG positions, without **FLAPS ASYM**:

- 1 FLAPS breaker Pull
- 2 FLAPS lever UP
- ► Land as soon as possible ◄
- 3 Maintain airspeeds:
 - IAS < 178 KIAS for deflections between UP and TO positions,
 - IAS < 122 KIAS for deflections greater than TO position.

At landing:

4 - Perform procedure Landing with Flaps Malfunction

Landing with Flaps Malfunction 1 / 1

For flaps deflections between UP and TO:

Proceed as for a normal landing with 105 KIAS of approach airspeed.

Provide for a landing distance increased by 60%.

For flaps deflections greater than TO:

Proceed as for a normal landing with 100 KIAS of approach airspeed.

Provide for a landing distance increased by 50%.

Landing Gear Retraction Discrepancy 1 / 1

Symptoms:

- **GEAR UNSAFE** CAS message and **GEAR UNSAFE** red warning light are ON, or
- the amber light is flashing and the three green lights are OFF.

—— NOTE ——

Symptoms have to be considered at the end of the sequence.

- 1 Airspeed Maintain below 150 KIAS
- 2 LDG GEAR breaker Pull

If **GEAR UNSAFE** CAS message and **GEAR UNSAFE** red warning light are OFF:

3 - The flight may be continued without any restriction.

For landing gear extension:

4 - Perform procedure <u>Emergency Gear Extension</u>

End of procedure

If not:

- 5 LDG GEAR breaker Push
- 6 Perform procedure <u>Emergency Gear Extension</u>

Landing Gear Extension Discrepancy 1 / 1

Symptoms:

- **GEAR UNSAFE** CAS message and **GEAR UNSAFE** red warning light are ON, or
- the amber light is flashing and zero to three green lights are OFF.

– NOTE —

Symptoms have to be considered at the end of the sequence.

- 1 Airspeed Maintain below 150 KIAS
- 2 Perform procedure Emergency Gear Extension

End of procedure.

Page 3A.7.5

Emergency Gear Extension

1/3

– NOTE –

Follow this procedure in case of any doubt about the gear extension.

– CAUTION –

Do not enter icing conditions. This could adversely increase drag and weight due to ice accumulation, and lock wheels and struts. Climb performance will be degraded by 50%. Cruise IAS speed will be reduced compared to a clean airplane, because of the drag. This should be taken into account when calculating the airplane range.

1	- Airspeed	Maintain below 150 KIAS
2	- LANDING GEAR lever	DN
3	- LDG GEAR breaker	Pull
4	- Floor hatch	Open
5	- Bypass selector	Fully pull / Locked

CAUTION ·

Depending on the airplane's altitude, the landing gear's full extension and locking requires up to 110 cycles of the hand pump. During the final pumping cycles, increased pressure must be felt while actuating the hand pump to confirm its proper operation in extending and locking the landing gear.

- Landing gear emergency pump handle Actuate 6 With maximum amplitude until pump hardening - MASTER WARNING pushbutton Press 7 To reset the **GEAR UNSAFE**

Continue

PIM TBM 960 - Edition 0 Rev. 01

Page 3A.7.6

Emergency Gear Extension 2 / 3

► Continuing

lf:

- **GEAR UNSAFE** red warning light is OFF, and
- GEAR UNSAFE is OFF, and
- the three green lights are ON:
 - 8 Exit and/or remain outside icing conditions.

Continue flight at airspeed < 178 KIAS.

► Land as soon as practicable ◄

End of procedure

lf:

- GEAR UNSAFE red warning light is ON, and
- GEAR UNSAFE is ON, and
- zero to three green lights are ON:
 - 9 LDG GEAR breaker Push
 - 10 CHECK DOWN pushbutton Press

lf:

- hardening of the pump is marked, and
- three green lights are ON, or
- three green lights are ON and flickering while pressing the CHECK DOWN pushbutton:

11 - Land.

End of procedure

lf:

- emergency pump remains soft, or
- one (or more) green light(s) is(are) not ON and/or flickering while pressing the CHECK DOWN pushbutton:

A gear unlock condition is confirmed.

Continue ►

PIM TBM 960 - Edition 0 Rev. 01 Page 3A.7.7

Emergency Gear Extension 3 / 3

► Continuing

Recycle the landing gear as follows:

- 12 Bypass selector Unlock / Push
- 13 Wait for one minute.
- 14 LANDING GEAR lever UP At airspeed < 150 KIAS
- 15 Perform landing gear extension attempts in the normal mode while applying positive load factors during the maneuver as well as skidding.

In case of failure:

16 - Perform procedure <u>Landing with Unlocked Main Landing</u> <u>Gear</u> or <u>Landing with Defective Nose Landing Gear (Down</u> <u>Unlocked or Not Down)</u>

- CAUTION -

If one main landing gear is not down, it is recommended to land with landing gear up – refer to procedure <u>Landing with Gear Up</u>.

End of procedure.

Landing with Unlocked Main Landing Gear 1 / 2

—— NOTE –

If one main landing gear is not down, it is recommended to land with landing gear up – refer to procedure Landing with Gear Up.

1 - Ask ATC or another airplane to visually check the landing gear position.

If defective gear is down but unlocked:

2	- BLEED switch OFF/RST
3	- DUMP switch Press
4	- FUEL TANK SELECTOR Maintain on defective landing gear side
	To lighten the corresponding wing (maximum fuel

```
imbalance is 15 USG)
```

- 5 Choose a runway with headwind or crosswind blowing from the defective gear side.
- 6 Align the airplane to land on the runway edge opposite to the defective landing gear.
- 7 Perform a normal approach.
- 8 FLAPS lever LDG At airspeed = 90 KIAS
- 9 AP / YD / AT Disconnect Before 200 ft
- 10 Land and set nose gear immediately on ground to assure lateral control.
- 11 Use full aileron during roll-out to lift the wing with the defective landing gear.
- If landing gear drags during landing:

12	- THROTTLE	IDLE
13	- ENGINE MODE switch	OFF
14	- FUEL TANK SELECTOR	OFF
15	- Crash lever I	Pull down

Continue ►

PIM TBM 960 - Edition 0 Rev. 01

Page 3A.7.9

Landing with Unlocked Main Landing Gear 2 / 2

► Continuing

16 - Evacuate the airplane after coming to complete stop.

Do not unfasten seat belts before complete stop

End of procedure

If landing gear does not drag during landing:

- 17 Preferably do not use reverse.
- 18 Complete taxiing with a slight turn towards the defective landing gear.

Refer to procedure Shutdown in Subsection 4.4.

23 - Evacuate.

End of procedure.

Page 3A.7.10

Landing with Defective Nose Landing Gear (Down Unlocked or Not Down) 1 / 1

1 - Ask ATC or another airplane to visually check the landing gear position.

If necessary:

2 - Transfer passengers to the rear.

3	- Perform a normal approach.
4	- FLAPS lever LDG
5	- Airspeed Maintain 90 KIAS
6	- AP / YD / AT Disconnect Before 200 ft
7	- Land with nose-up attitude. Keep nose high.
8	- THROTTLE IDLE
9	- ENGINE MODE switch OFF
10	- FUEL TANK SELECTOR OFF
11	- Touch down slowly with nose wheel and keep elevator at nose-up stop.
12	- Brakes Apply moderately
13	- Crash lever Pull down
14	- Evacuate the airplane after coming to complete stop.
	Do not unfasten seat belts before complete stop

End of procedure.

PIM TBM 960 - Edition 0 Rev. 01 Page 3A.7.11

Landing with Gear Up 1 / 1

1	- Perform a standard final appro	oach.
2	- FLAPS lever	LDG
3	- Airspeed	Maintain 85 KIAS
4	- BLEED switch	OFF/RST
5	- DUMP switch	Press
6	- AP / YD / AT	Disconnect Before 200 ft
Wł	hen runway is assured:	
7	- THROTTLE	IDLE
8	- ENGINE MODE switch	OFF
9	- FUEL TANK SELECTOR	OFF
10	- Flare out.	
Aft	ter touchdown:	
11	- Crash lever	Pull down
12	- Evacuate the airplane after co	oming to complete stop.
	1	Do not unfasten seat belts before complete stop

End of procedure.

Landing without Elevator Control 1 / 1

1	- LANDING GEAR lever	DN
2	- FLAPS lever	LDG
3	- Airspeed	Maintain 95 KIAS
4	- TRQ	To maintain airspeed according to an easy approach slope ≈ 300 ft/min
5	- Adjust elevator by using	g the manual pitch trim wheel.
Wh	en ground approaches:	
6	- Slope	Decrease progressively
7	- TRQ	Reduce progressively
_		

ACFT CONF MISM 1 / 1

With or without **GEAR UNSAFE**.

Indicates that the flaps and/or landing gear positions do not agree with the FLAPS and LANDING GEAR levers positions.

- 1 Flaps and landing gear configuration Check
- 2 FLAPS lever Set to agree with flaps position
- 3 LANDING GEAR lever Set to agree with landing gear position

Maximum airspeeds:		
Flaps TO	178 KIAS	
Flaps LDG	122 KIAS	
Landing gear down	178 KIAS	
Landing gear extension	178 KIAS	
Landing gear retraction	150 KIAS	

If **GEAR UNSAFE** is ON:

4 - Perform procedure Landing Gear Extension Discrepancy

End of procedure.

Page 3A.7.14

HS ABN BRAKES 1 / 1

Indicates that the HomeSafe auto-brake servo is operating.

When possible, and at the latest before 200 ft on final:

1 - AP/TRIM DISC pushbutton Press twice

AP / AT also disengage

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 01 Page 3A.7.16

3A.8 - Fuel System

AUX BP ON 1 / 1

Indicates that the auxiliary booster pump is running. ► Fly the airplane ◄ If AUX BP switch is in ON position: Indication is normal. End of procedure ■

If AUX BP switch is in AUTO position:

- 1 Reset AUX BP switch to ON
- 2 Then, AUX BP switch to AUTO

If AUX BP ON goes OFF:

3 - Continue the flight.

End of procedure

If AUX BP ON remains ON:

Mechanical booster pump has failed.

- 4 AUX BP switch ON
- 5 Avoid high power and rapid movements of the THROTTLE.
- ► Land as soon as possible ◄

AUTO SEL 1 / 1

Indicates that there is no more automatic control mode running.

► Fly the airplane ◄

1	- FUEL SEL pushbutton	Check AUTO
		Status light in blue

If FUEL SEL pushbutton already on AUTO:

Failure is confirmed.

2	- FUEL SEL pushbutton	MAN
		Status light in green
3	- Select tanks manually	As required

- CAUTION —

Maximum fuel imbalance is 15 USG.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00 Page 3A.8.2

FUEL IMBALANCE 1 / 1

Indicates that fuel tanks are imbalanced by more than 15 USG for more than 30 seconds.

If FUEL SEL pushbutton is on AUTO (status light in blue):

1 - Fullest tank Select

By pressing the SHIFT pushbutton

If FUEL SEL pushbutton is on MAN (status light in green):

► Fly the airplane <</p>

- CAUTION ------

Maximum fuel imbalance is 15 USG.

LOW LVL FAIL L-R 1 / 1

Indicates a failure of fuel low level sensor.

- 1 Remaining fuel in tanks Check
- 2 Take decision.

If any doubt:

► Land as soon as practicable ◄

► Fly the airplane ◄

On the ground:

Inform maintenance department.

End of procedure.

FUEL CLOGGING 1 / 1

Indicates an imminent clogging of the engine fuel filter.

In flight:

► Fly the airplane ◄

► Land as soon as practicable

Inform maintenance department.

Repair before further flight.

End of procedure

On ground:

► Do not take off <</p>

Inform maintenance department.

The airplane is grounded, repair before further flight.

Intentionally left blank

Page 3A.8.6

3A.9 - Electrical System

BAT AMP 1/1

Indicates that battery current is over 50 A while on ground.

After starting the engine with airplane power, a battery charge over 50 A is normal.

CAUTION -

Do not take off if battery charge is over 50 A.

If this indication remains steady at a high value:

It may be due to a battery or generation system failure.

BAT OFF 1 / 1

Indicates that:

- the SOURCE selector has been positioned on OFF, or
- the battery plug is disconnected.

► Fly the airplane ◄

1	- SOURCE selector OFF		
2	- SOURCE selector BATT		
lf v	If warning persists:		
	► Land as soon as possible		
3	- Airplane mains voltage Monitor		
End	l of procedure.		

Page 3A.9.2

MAIN GEN 1 / 1

Indicates that the GENERATOR selector has been positioned to OFF or ST-BY, or the main generator is cut off.

1 - GENERATOR selector Check / Correct

If necessary

If warning persists:

Main generator switching is confirmed.

2 - MAIN GENERATOR RESET pushbutton Press

In case of failure:

► Fly the airplane ◄

- 3 Keep the following systems connected:
 - Autopilot system,
 - Deicing systems,
 - STROBE and NAV lights,
 - Cockpit emergency lights,
 - VHF 1,
 - NAV/GPS 1,
 - BLEED,
 - LDG lights on short final.

This will allow to keep electrical consumption below maximum standby capacity

All other not necessary equipment can be disconnected.

4 - GENERATOR selector ST-BY

If necessary:

- 5 ST-BY GENERATOR RESET pushbutton Press
- 6 Maintain ST-BY loads below 100 A.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00 PIM - DO NOT USE FOR FLIGHT OPERATIONS

LOW VOLTAGE 1 / 1

Normal functioning with GENERATOR selector on MAIN.

1 - Voltmeter voltages Check

If voltages are < 26 V:

2 - Monitor a possible voltage drop or any indication of battery discharge.

► Fly the airplane ◄

- 3 Keep the following systems connected:
 - Autopilot system,
 - Deicing systems,
 - STROBE and NAV lights,
 - Cockpit emergency lights,
 - VHF 1,
 - NAV/GPS 1,
 - BLEED,
 - LDG lights on short final.

This will allow to keep electrical consumption below maximum standby capacity

All other not necessary equipment can be disconnected.

- 4 GENERATOR selector ST-BY If necessary:
 - 5 ST-BY GENERATOR RESET pushbutton Press
- 6 Maintain ST-BY loads below 100 A.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00 Page 3A.9.4

MAIN GEN and LOW VOLTAGE 1/3

With GENERATOR selector on ST-BY (after MAIN generator failure), functioning on ST-BY generator.		
1 - GENERATOR selector MAIN		
2 - MAIN GENERATOR RESET pushbutton Press		
► Fly the airplane ◄		
If MAIN GENERATOR successfully connected:		
3 - Disconnect non-essential systems.		
4 - Voltmeter and ammeter Monitor		
► Land as soon as possible <		
End of procedure		
If MAIN GENERATOR not successfully connected:		
5 - GENERATOR selector ST-BY		
6 - ST-BY GENERATOR RESET pushbutton Press		
If ST-BY GENERATOR successfully connected:		
7 - Disconnect non-essential systems.		
8 - Voltmeter and ammeter Monitor		
► Land as soon as possible <		
End of procedure ■		
If ST-BY GENERATOR not successfully connected:		
Both generators failure is confirmed.		
Return to VMC conditions, if possible.		
9 - GENERATOR selector OFF		
If airplane altitude is > 10,000 ft:		
10 - OXYGEN switch ON		

Continue ►

PIM TBM 960 - Edition 0 Page 3A.9.5 Rev. 00 PIM - DO NOT USE FOR FLIGHT OPERATIONS

MAIN GEN and LOW VOLTAGE 2/3

► Continuing		
If VMC and non-icing conditions are possible:		
11 - ESS BUS TIE switch EMER The battery supplies only the ESS BUS and BATT BUS in this configuration		
► Land as soon as possible <		
If use of other than essential systems is required:		
12 - ESS BUS TIE switch NORM		
End of procedure ■		
If VMC and non-icing conditions are not possible:		
13 - Manually disconnect systems as follows:		
Breakers:		
14 - PFD 2 Pull		
15 - ADC 2 Pull		
16 - TAS Pull		
17 - DATA LINK Pull		
18 - XPDR 2 Pull		
Switches / pushbuttons / selector:		
19 - DE ICE SYSTEM mode MAN All deicing systems turn on		
20 - ICE LIGHT OFF Status light in white		
21 - INERT SEP As required		
22 - AIRFRAME DE ICE OFF Status light in white		
23 - PROP DE ICE OFF Status light in white		

Continue ►

PIM TBM 960 - Edition 0 Rev. 00

MAIN GEN and LOW VOLTAGE 3 / 3

► Continuing

24	- WINDSHIELD	OFF Status light in white
25	- TAXI/LDG lights	OFF
26	- PULSE	OFF
27	- STROBE	OFF
28	- BLEED	OFF/RST
29	- FAN	OFF
30	- AUX BP	OFF
31	- FUEL SEL	MAN Status light in green
32	- AP/TRIMS	OFF
33	- CABIN / ACCESS	OFF

If icing conditions:

34	- PITOT L/R & STALL HTR switch	Check ON
35	- WINDSHIELD pushbutton	ON

Status light in green

36 - Maintain minimum recommended airspeeds into known icing conditions.

Flaps UP	> 135 KIAS
Flaps TO	> 115 KIAS
Flaps LDG	> 95 KIAS

If time permits:

- 37 AIR COND breaker Pull
- ► Land as soon as possible ◄

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00 Page 3A.9.7

Intentionally left blank

Page 3A.9.8

3A.10 - Pressurization and Air Conditioning

ECS DEGRADED 1 / 1

Indicates an ECS malfunction.

1 - Shorten the flight.

Inform maintenance department before next flight.

PRESSU BACKUP 1 / 1

Indicates an ECS malfunction.

The cabin altitude reference is set to the default value of 9,800 ft, instead of LFE.

Fly the airplane

1 - Continue the flight.

Inform maintenance department before next flight.

CAUTION -

When the airplane descends below 9,800 ft, cabin descent rate coincides with airplane descent rate. The pilot should take into account the airplane descent profile in order to avoid pressure annoyance.

End of procedure.

Page 3A.10.2

Cabin Not Depressurized After Landing 1 / 1

If cabin differential pressure remains > 0:

- 1 DUMP switch Press
- 2 BLEED switch OFF/RST

If necessary:

- 3 EMERGENCY RAM AIR control knob Pull
- 4 Wait for complete cabin depressurization before opening any door.

End of procedure.

VACUUM LOW 1 / 1

Low vacuum may lead to malfunctioning of leading edge deicing.

1 - Monitor the normal functioning of leading edge deicing.

If necessary:

End of procedure.

Page 3A.10.4

Defog Malfunction 1 / 1

- NOTE –

The demisting function is automatically switched OFF 10 minutes after the DEFOG pushbutton has been set to ON.

If moisture starts to quickly cover the inside of the windscreen with the DEFOG pushbutton already ON (status light in green):

1 - DE	FOG	pushbutton	Press twice Status light in green
If moistu	re cor	ntinues:	
2	- DE	EICE SYSTEM mode switch	MAN All deicing systems turn on
3	- WI	NDSHIELD pushbutton	Check ON Status light in green
If there is no improvement and if the flight safety is engaged:			
	4	- Altitude	Below 10,000 ft
	5	- BLEED switch	OFF/RST
CAUTION			

In flight, the cabin will quickly depressurize. Therefore, the cabin vertical speed indicator and altimeter indications will rapidly meet those of respectively the airplane VSI and altimeter.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00 Page 3A.10.5

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00 Page 3A.10.6

3A.11 - Deicing System

AFRM DEICE FAIL 1 / 1

Symptoms: failure on one of the two pneumatic deicing pulses:

- ice on wing outboard sections,
- or, ice on wing inboard sections and stabilizers,
- AIRFRAME DE ICE status light lit in red.
- ► Leave icing conditions as soon as possible ◄

End of procedure.

PROP DEICE FAIL 1 / 1

Symptoms:

- PROP DE ICE status light lit in red,
- propeller vibrations.
- AT Disconnect
 TRQ Reduce
 ► Fly the airplane ◄
 THROTTLE Actuate To vary RPM within operating range
 Leave icing conditions as soon as possible ◄
 DE ICE SYSTEM mode switch MAN All deicing systems turn on
 PROP DE ICE pushbutton OFF Status light in white

End of procedure.

PIM TBM 960 - Edition 0 Rev. 00 Page 3A.11.2

INERT SEP FAIL 1 / 1

Symptoms:

- **INERT SEP ON** is not displayed within 50 seconds following INERT SEP switch setting ON,
- inertial separator is not retracted after 50 seconds following INERT SEP switch setting OFF,
- INERT DE ICE breaker triggered.
- ► Leave icing conditions as soon as possible

Fly the airplane

End of procedure.

Windshield Deicing Failure 1 / 1

Symptoms:

- windshield being covered uniformly by ice,
- no perception of heat when touching deiced section.

If symptoms result from overheat:

1	- DE ICE SYSTEM mode switch	MAN		
		All deicing systems turn on		
2	- WINDSHIELD pushbutton	OFF / ON		
	·	When necessary		
In case of total failure:				
3	- TEMP selector	Max warm		

4 - DEFOG pushbutton ON

Status light in green

— NOTE —

The demisting function is automatically switched OFF 10 minutes after the DEFOG pushbutton has been set to ON.

Before landing:

5 - Wait for a sufficient visibility.

End of procedure.

Windshield Misting or Internal Icing 1 / 2

Symptoms: mist or ice on windshield internal face.

- 1 TEMP selector Set to 12 o'clock position
- 2 DEFOG pushbutton ON

Status light in green

—— NOTE —

The demisting function is automatically switched OFF 10 minutes after the DEFOG pushbutton has been set to ON.

3 - DE ICE SYSTEM mode switch MAN

All deicing systems turn on

4 - WINDSHIELD pushbutton Check ON Status light in green

If unsuccessful, to get sufficient visibility:

5	- TEMP selector	Max warm
6	- DEFOG pushbutton	ON
		Status light in green

7 - Manually clean a sufficient visibility area.

If necessary:

CAUTION -

In case of sideslip approach with pedal on the right during a long period, select the right-side fuel tank.

CAUTION -

Maximum sideslip duration is 30 seconds.

- 8 Clean the left-side window.
- 9 Perform a sideslip approach with rudder pedals to the right.

To get sufficient landing visual references

Continue ►

PIM TBM 960 - Edition 0 Rev. 00 Page 3A.11.5

Windshield Misting or Internal Icing 2 / 2

► Continuing

For landing:

10	- FLAPS lever	LDG
11	- Airspeed	Maintain above 95 KIAS

PITOT NO HT L-R 1 / 1

Indicates that:

- corresponding pitot tube heating has failed, or
- PITOT L/R & STALL HTR switch is not ON while the engine is running.

If **PITOT NO HT L** is ON:

Icing conditions may alter airspeed indications provided by ADC 1.

1 - Avoid icing conditions.

► Fly the airplane

If not possible:

2 - Perform moderate descent or climb attitudes.

V_{MO} overshoot and stall warning system are always operating.

End of procedure

If **PITOT NO HT R** is ON:

V_{MO} overshoot warning may be altered by icing conditions.

► Fly the airplane ◄

3 - Airspeed Monitor below 266 KIAS

End of procedure.

STALL NO HEAT 1 / 1

Indicates that:

- stall warning vane heating has failed, or
- PITOT L/R & STALL HTR switch is not ON while the engine is running.

Correct operation of the aural stall warning may be altered by severe or prolonged icing.

1 - Airspeed Monitor Maintain minimum airspeed according to airplane configuration and icing conditions

► Fly the airplane ◄

End of procedure.

ICE DETECTED 1 / 1

Indicates that icing conditions have been detected by the ice detector and all deicing systems have been automatically activated.

– NOTE –

ICE DETECTED will only be displayed in AUTO mode.

- 1 DE ICE SYSTEM mode switch MAN
- 2 All deicing systems Check ON

When **NO ICE DETECTED** comes ON:

Icing conditions are no longer detected by the ice detector.

3 - DE ICE SYSTEM mode switch As required

End of procedure.

ICE DETECTION FAIL 1 / 1

Indicates a failure of the ice detector or of the DE ICE SYSTEM panel printed circuit.

1 - DE ICE SYSTEM mode switch MAN

All deicing systems turn on

– NOTE ——

In case of failure of the DE ICE SYSTEM panel printed circuit, INERT SEP / AIRFRAME DE ICE / PROP DE ICE / WINDSHIELD systems will be forced to ON for the remainder of the flight. There is no time limitation to the use of deicing systems.

End of procedure.

Page 3A.11.10

3A.12 - Avionics Miscellaneous

ESP FAIL 1/1

Indicates that pitch, roll, high speed and AoA protections are inoperative. Autothrottle, including engine protection system, may also be inoperative.

Fly the airplane

1 - Maintain the airplane inside the flight envelope.

Flaps UP	105 < KIAS < 266
Flaps TO	100 < KIAS < 178
Flaps LDG	85 < KIAS < 122

2 - Continue the flight.

Inform maintenance department.

End of procedure.

Page 3A.12.1

ESP DEGRADED IAS 1 / 1

Indicates that the high speed protection is inoperative.

Autothrottle, including engine protection system, may also be inoperative.

Fly the airplane

- 1 Airspeed Maintain below 266 KIAS
- 2 Continue the flight.

Inform maintenance department.

ESP DEGRADED AOA 1 / 1

Indicates that the AoA protection at low speed is inoperative.

► Fly the airplane ◄

1 - Airspeed Maintain above 1.3Vs

Flaps UP	105 < KIAS < 266
Flaps TO	100 < KIAS < 178
Flaps LDG	85 < KIAS < 122

2 - Continue the flight.

Inform maintenance department.

End of procedure.

Airspeed Indicating System Failure 1 / 1

Symptoms: erroneous indication in flight.

1 - PITOT L/R & STALL HTR switch Check ON

If symptoms persist:

- 2 ALTERNATE STATIC SOURCE selector Pull thoroughly
- 3 Use standby instrument only.

If symptoms persist, as well as on the electronic standby instrument on the left-side instrument panel:

4 - Perform a precautionary approach maintaining an adequate airspeed.

End of procedure.

AP ON YD OFF 1 / 1

Indicates that the autopilot is ON while Yaw Damper is OFF, so no automatic rudder trim is available.

1 -	- Yaw Damper status	Check
lf neo	cessary:	

2 - Yaw Damper status Correct

Autopilot or Electric Pitch Trim Malfunction 1 / 1

	CAUTION	
When disconnecting the autopilot after a pitch trim malfunction, hold the control wheel firmly. Up to 30 pounds of force on the control wheel may be necessary to hold the airplane level.		
1 -	- AP/TRIM DISC pushbutton Press and hold	
	NOTE	
2 -	- AP/TRIMS switch OFF	
3 -	- AP/TRIM DISC pushbutton Release	
lf neo	cessary:	
	4 - Control wheel Retrim	

Dual GPS/SBAS failure (**DR** or **GPS LOI** annunciation on HSI) 1 / 2

Indicates a loss of GPS/SBAS navigation data.

When both GPS/SBAS receivers are inoperative or GPS navigation information is not available or invalid, the Garmin system will enter one of two modes:

- Dead Reckoning mode (DR), or
- Loss Of Integrity mode (LOI).

The mode is indicated on the HSI by an amber DR or GPS LOI.

Which mode is active depends on the distance from the destination airport in the active flight plan.

If the **GPS LOI** annunciation is displayed, revert to an alternate means of navigation appropriate to the route and phase of flight.

In Dead Reckoning mode, the MAP–NAVIGATION MAP will continue to be displayed with a ghosted airplane icon in the center and an amber **DR** overwriting the icon. Airplane position will be based upon the last valid GPS position, then estimated by Dead Reckoning methods. Changes in true airspeed, altitude, or winds aloft can affect the estimated position substantially. Dead Reckoning is only available in Enroute mode; Terminal and Approach modes do not support DR. Course deviation information will be displayed as an amber CDI on both PFDs and will remain for up to 20 minutes after GPS position data has been lost. The autopilot and/or flight director may be coupled in GPS mode while the system is in Dead Reckoning mode.

Refer to the Garmin Pilot's Guide for further information.

Revert to an alternate means of navigation appropriate to the route and phase of flight.

If alternate navigation sources (ILS, LOC, VOR, DME, ADF) are available:

1 - Navigation Use alternate sources

If no alternate navigation sources are available:

Dead Reckoning (DR) Mode - Active when the airplane is greater than 30NM from the destination airport:

2 - Navigation Use the airplane symbol, magenta course line on the map display and the amber CDI for course information

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 03 Page 3A.12.7

Dual GPS/SBAS failure (**DR** or **GPS LOI** annunciation on HSI) 2/2

► Continuing

All information normally derived from GPS turns amber. All of this information will become less accurate over time. TAWS is inoperative. DR mode uses heading, true airspeed, last known wind data, and the last known GPS position to estimate the airplane's current position. DR information will be available for a maximum of 20 minutes. MAP – TRAFFIC MAP display is not dependent on GPS information. The position of displayed traffic relative to the airplane symbol on the map is still accurate.

Loss Of Integrity (LOI) Mode - Active when the airplane is within 30 NM of departure airport (as calculated from the previous GPS or DR position):

3 - Navigation Fly towards known visual conditions, use ATC or other information sources as possible

NOTE -

All information derived from GPS or DR will be removed from the displays. TAWS is inoperative.

The airplane symbol is removed from all maps. The map will remain centered at the last known position. NO GPS POSITION will be annunciated in the center of the map.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 03 Page 3A.12.8

APR DWNGRADE 1 / 1

Indicates that the Garmin system downgrades the approach upon navigation system integrity failure during a GPS LPV, LNAV/VNAV.

This may be also indicated by an annunciation change on the HSI.

- 1 System will automatically downgrade to LNAV/VNAV or LNAV.
- 2 Update minimums as appropriate.

– NOTE –

In some cases, the approach may be downgraded without **APR DWNGRADE** being displayed to the crew. Please consider the HSI approach annunciation as the primary mean to identify the current mode of operation.

NOTE -

For more details on the approach downgrading process, refer to <u>Paragraph</u> <u>Garmin Integrated Flight Deck (GIFD) Approaches in Subsection 7.15.</u>

End of procedure.

PIM TBM 960 - Edition 0 Rev. 03 Page 3A.12.9

PIT in AP Vertical Mode during FD Approach with Vertical Guidance 1 / 1

Indicates the loss of vertical integrity signal during LPV or LNAV/VNAV.

This may be indicated by an annunciation change on the HSI.

Symptoms:

- AP mode from GP flashing 5 seconds to PIT,
- VDI is flagged and indicates NO GP.

Fly the airplane

Actions:

If automatic downgrade to LNAV:

1 - Update minimums as appropriate.

If not:

▶ Perform a go-around ◀

VDI or VDI on Approach 1 / 1

Symptoms:

- **VDI** or **VDI** at bottom of VDI window.

► Fly the airplane ◄

If possible:

1 - Use LNAV minimums.

If not:

▶ Perform a go-around ◀

End of procedure.

Page 3A.12.11

Left PFD Failure 1 / 1

► Fly the airplane ◄

1	- L.H. DISPLAY BACKUP Engage
TAS	S system is lost.
2	- AT Disconnect
3	- XFR button (on AFCS) Press / to right side then left side
4	- AT As required

AHRS Failure 1 / 2

Symptoms: Autopilot is disconnected.

- On PFD(s) comparator window:

HDG and/or PIT and/or ROL annunciation(s),

- On PFD(s) reversionary sensor window:

BOTH ON AHRS1 or BOTH ON AHRS2 annunciation.

Lost systems:

- AHRS1 or AHRS2,
- Autopilot (AP).

Systems still operative:

- Flight Director (FD), when engaged again,
- Autothrottle remains engaged or may be engaged.

Actions:

Autopilot is not operative.

1 - AHRS1 and/or AHRS2 breaker Check pushed

If **BOTH ON AHRS1** or **BOTH ON AHRS2** annunciation is associated to **HDG** and/or **PIT** and/or **ROL** annunciation(s):

2 - Fly the airplane manually.

If pilot wishes:

3	- FD default mode	Engage
		PIT and ROL

- 4 FD specific modes Engaged as desired HDG, NAV, ALT, etc
- 5 Fly the airplane manually to follow Command Bars.

End of procedure

Continue ►

PIM TBM 960 - Edition 0 Rev. 03 Page 3A.12.13

AHRS Failure 2 / 2

► Continuing

If all annunciations, [HDG] and/or [PIT] and/or [ROL] go off, refer to following condition:

If **BOTH ON AHRS1** or **BOTH ON AHRS2** annunciation is not associated to **HDG** and/or **PIT** and/or **ROL** annunciation(s):

- 6 PFD1 and PFD2 SENSOR softkeys Press
- 7 AHRS1 on PFD1 and/or AHRS2 on PFD2 Reset
- 8 BOTH ON AHRS1 or BOTH ON AHRS2 annunciation Check OFF
- 9 FD Use normally As desired

ADC Failure 1 / 1

Symptoms:

- On PFD(s) comparator window:

IAS and/or **ALT** annunciation(s).

- On PFD(s) reversionary sensor window:

BOTH ON ADC1 or **BOTH ON ADC2** annunciation.

Lost systems:

- ADC1 or ADC2.

Actions:

Autopilot and autothrottle are still operative.

1 - ADC1 and/or ADC2 breaker Check pushed

If **BOTH ON ADC1** or **BOTH ON ADC2** annunciation is associated to **IAS** and/or **ALT** annunciation(s):

2 - No action required.

End of procedure

If all annunciations, **IAS** and **ALT** go off, refer to following condition:

If **BOTH ON ADC1** or **BOTH ON ADC2** annunciation not associated to **IAS** and/or **ALT** annunciation(s):

- 3 PFD1 and PFD2 SENSOR softkeys Press
- 4 ADC1 on PFD1 and/or ADC2 on PFD2 Reset
- 5 BOTH ON ADC1 or BOTH ON ADC2 annunciation Check OFF

- NOTE -

AT may be possibly disengaged.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 03 Page 3A.12.15

MFD Failure 1 / 1

– NOTE —

If PFD 2 is in full screen mode, it will be splitted a few seconds after MFD failure.

Lost systems:

- MFD.

Actions:

1	- L.H. DISPLAY BACKUP bu	tton	Press
2	- MFD breaker	Check	pushed

End of procedure.

Page 3A.12.16

XPDR1 FAIL or **XPDR2 FAIL** 1/1

Indicates that transponder 1 [or transponder 2] is inoperative.

► Fly the airplane

If transponder 2 [or transponder 1] is available:

- 1 Set transponder 2 [or transponder 1] as active.
- 2 Continue the flight.

Inform maintenance department.

End of procedure

If transponder 2 [or transponder 1] is unavailable:

- 3 Inform Air Traffic Control of the loss of the second transponder.
- 4 Leave controlled airspace.
- 5 Continue the flight.

Inform maintenance department.

End of procedure.

XPDR1 ADS-B FAIL or XPDR2 ADS-B FAIL 1/1

Indicates that ADS-B OUT function of transponder 1 [or transponder 2] is inoperative.

Other functions may remain available.

► Fly the airplane

If transponder 2 [or transponder 1] is available:

- Restore ADS-B OUT function by setting transponder 2 [or transponder 1] as active.
- 2 Continue the flight.

Inform maintenance department.

End of procedure

If transponder 2 [or transponder 1] is unavailable:

- 3 Inform Air Traffic Control.
- 4 Leave ADS-B OUT airspace.
- 5 Continue the flight.

Inform maintenance department.

GWX FAIL 1 / 1

Indicates that GWX weather radar is inoperative.

– NOTE ————

No real time weather data available.

- Fly the airplane
- 1 WXR breaker Check pushed
- 2 Continue the flight by using other weather data source, and adjust flight route.

Inform maintenance department.

End of procedure.

Page 3A.12.19

TCAS FAIL 1 / 1

Indicates that Traffic Advisory System is inoperative.

— NOTE ————

No active traffic available, but ADS-B IN traffic may still be displayed.

Inform maintenance department.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 03 Page 3A.12.20

TRAFFIC FAIL 1 / 1

Indicates that Traffic Advisory System is inoperative.

— NOTE — _____

No active traffic available, but ADS-B IN traffic may still be displayed.

Inform maintenance department.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 03 Page 3A.12.21

EXCEEDANCE 1 / 1

Indicates that the avionics has recorded:

- an exceedance of at least one engine parameter,
- an airspeed exceedance (> V_{MO}).

EXCEEDANCE is only displayed at engine shutdown.

Inform maintenance department before next flight.

End of procedure.

Page 3A.12.22

3A.13 - Miscellaneous

CARGO DOOR 1 / 1

Indicates that front cargo door is open.

On ground:

1 - Check and close the door.

In flight:

► Fly the airplane ◄

2 - Airspeed Reduce

To minimum available

► Land as soon as practicable ◄

End of procedure.

Page 3A.13.1

GPU DOOR 1 / 1

Indicates that GPU door is open.

On ground:

1 - Check and close the door.

In flight:

► Fly the airplane ◄

2 - Airspeed Reduce

To minimum available

► Land as soon as practicable ◄

End of procedure.

IGNITION 1 / 1

Indicates that ignition exciter is running.

1 - IGNITION pushbutton Check status

If weather permits:

2 - IGNITION pushbutton AUTO
Status light in blue

► Fly the airplane ◄

NOTE
IGNITION pushbutton may be left ON for a long period.

LMTD DISPATCH 1 / 1

Indicates that a minor FADEC system component fault occured.

LMTD DISPATCH is only displayed while the airplane is on ground.

Airplane dispatch is allowed.

The failure must be repaired within 50 flight hours after the message's first appearance. The full duration of the flight after which **LMTD DISPATCH** first appeared must be counted when calculating the 50-flight-hour time period.

Calculating the 50-flight-hour time period is the pilot's responsibility.

Inform maintenance department to anticipate maintenance action.

Section 4

Normal Procedures

Table of Contents

4.1	-	General	4.1.1
4.2	-	Airspeeds for Normal Operation	4.2.1
4.3	-	Checklist Procedures	4.3.1
		Inside Inspection	4.3.1
		Before Starting Engine	4.3.3
		Engine Start	4.3.4
		Manual Dry Motoring	4.3.6
		After Engine Start with GPU	4.3.7
		After Engine Start	4.3.8
		Before Taxiing	4.3.9
		Before Line Up	4.3.10
		Normal Takeoff	4.3.12
		Short Takeoff	4.3.13
		After Takeoff	4.3.14
		Climb	4.3.15
		Cruise	4.3.16
		Before Descent	4.3.17
		Approach	4.3.18
		Final Approach (in GS) or Downwind Leg (VMC)	4.3.19
		Short Final (Around 500 ft)	4.3.20
		Runway Clear	4.3.21
		Shutdown	4.3.22
		Outside Check after Shutdown	4.3.24
4.4	-	Amplified Procedures	4.4.1
		Preflight Inspection	4.4.1
		Inside Inspection	4.4.17
		Before Starting Engine In-Flight Available Oxygen Quantity (Crew oxygen masks in	4.4.21
		NORMAL mode)	4.4.24
		Engine Start	4.4.25

	Manual Dry Motoring	4.4.28
	After Engine Start with GPU	4.4.30
	After Engine Start	4.4.32
	Before Taxiing	4.4.35
	Taxiing	4.4.38
	Before Line Up	4.4.39
	Normal Takeoff	4.4.43
	Short Takeoff	4.4.46
	After Takeoff	4.4.49
	Climb	4.4.50
	Cruise	4.4.52
	Before Descent	4.4.54
	Approach	4.4.55
	Final Approach (in GS) or Downwind Leg (VMC)	4.4.57
	Short Final (Around 500 ft)	4.4.59
	Landing	4.4.60
	Go-Around with AP OFF	4.4.61
	Go-Around with AP ON	4.4.62
	Touch and Go	4.4.63
	Runway Clear	4.4.65
	Shutdown	4.4.66
	Outside Check after Shutdown	4.4.69
4.5	- Particular Procedures	4.5.1
	Flight into Known Icing Conditions	4.5.2
	Flight into Severe Icing Conditions	4.5.6
	Flight under Heavy Precipitations	4.5.7
	Utilization on Runways Covered with Water	4.5.8
	Utilization on Runways Covered with Melting or Not Tamped	
	Snow	4.5.9
	Utilization on Icy or Covered with Tamped Snow Runways	4.5.12
	Utilization in Cold Weather (0 °C to -25 °C) and Very Cold	
	Weather (-25 °C to -40 °C)	4.5.15
	Utilization in Cold Weather (0 °C to -25 °C) and Very Cold Weather (-25 °C to -40 °C) – Envelope 1	4.5.16
	Utilization in Cold Weather (0° C to - 25 °C) and Very Cold	+.5.10
	Weather (- 25 °C to - 40 °C) – Envelope 2 and 3	4.5.19
	Landing Procedure with Strong Headwind or Crosswind	4.5.25
		1.0.20

Utilization on Grass Runway	
GPS Navigation	

Intentionally left blank

4.1 - General

This section provides procedures for the conduct of normal operation of TBM airplane.

The first part of this section lists the normal procedures required as a check list.

The amplified procedures are developed in the second part of the section.

The normal procedures for optional systems are given in Section 9: Supplements of the POH.

Intentionally left blank

4.2 - Airspeeds for Normal Operation

Conditions:

- Takeoff weight: 7,615 lbs (3,454 kg)
- Landing weight: 7,110 lbs (3,225 kg)

Operation	Configuration	Airspeed (KIAS)
Rotation airspeed (V _R)	Flaps TO	90
Best rate of climb speed (V_Y)	Landing gear and flaps UP	124
Best angle of climb speed (V_X)	Landing gear and flaps UP	100
Maximum airspeed	Flaps TO	178
	Flaps LDG	122
Maximum airspeed landing gear down	Landing gear DN	178
Maximum landing gear operating	Extension	178
airspeeds	Retraction	150
Approach airspeed	Flaps LDG	85
Maximum operating speed (V_{MO})	Landing gear and flaps UP	266
Glide airspeed (maximum L/D ratio)	Landing gear and flaps UP	120

Intentionally left blank

4.3 - Checklist Procedures

Inside Inspection 1 / 2

Initial inside inspection and outside inspection performed. Oxygen cylinder open.

1 - Cab	bin door and pilot door, if installed	Closed / Locked
2 - Bag	ggage	Stowed
3 - EM	ERGENCY EXIT pin	Removed
4 - Sea	ats, pedals, harness	Adjust / Lock
5 - PAS	SSENGER OXYGEN	STBY
6 - OX	YGEN	ON
7 - Cre	ew oxygen masks	Test
8 - EX	T LIGHTS	All OFF
9 - INT	LIGHTS	All OFF
10 - Cra	ash lever	Down
11 - EN	GINE MODE	OFF
12 - AUX	Х ВР	OFF
13 - STA	ARTER	Check OFF
14 - AP/	/TRIMS	OFF
15 - ELT	Г	ARM/OFF
>> Up to	S/N 1463	
16 - SE/	ATS HTRS MASTER	OFF
17 - CB	LIGHT	OFF
>> From	S/N 1465	
18 - SEA	ATS HTRS MASTERSta	tus light in white
19 - CB	LIGHT	
	Sta	tus light in white

Continue ►

PIM TBM 960 - Edition 0 Page 4.3.1 Rev. 04 PIM - DO NOT USE FOR FLIGHT OPERATIONS

Inside Inspection 2 / 2

	► Continuing			
>>	All			
20	- PARK BRAKE	Reset / ON		
21	- LANDING GEAR	DN		
22	- BLEED	OFF/RST		
23	- FAN	OFF		
24	- THROTTLE	IDLE		
25	- FUEL TANK SELECTOR	Open / L or R		
26	- ALTERNATE STATIC SOURCE	/ Pushed		
27	- EMERGENCY RAM AIR	/ Pushed		
28	- ESS BUS TIE	NORM / Guarded		
29	- Breakers	All pushed		

Before Starting Engine 1 / 1

1	- Crash lever	Up
2	- ATIS	Copied
3	- Start clearance	As required
4	- SOURCE	BATT (battery start) or GPU (GPU start)
5	- GENERATOR	MAIN
6	- TEST	Press
7	- MICRO/MASK	MICRO / Guarded
8	- DE-ICE SYSTEM mode	AUTO
9	- PITOT L/R & STALL HTR	OFF
10	- INERT SEP	OFF
11	- BLEED	OFF/RST
12	- DEFOG	Check OFF
13	- Landing gear position indicator	Test
14	- GND FEATHER	Check OFF / Guarded
15	- FUEL SEL	MAN
16	- MFD	Initialize
17	- Fuel on board	Check
18	- VOLTS: BAT > 24.5 V / GPU ≈ 28 V	′ Check
19	- CAS	Check
20	- FLAPS	UP

Engine Start 1 / 2

CAUTION —

After aborted engine starts, wait: 1 minute / 5 minutes / 30 minutes before 2nd / 3rd / 4th new engine start.

1	- THROTTLE	IDLE
2	- IGNITION	Check AUTO
3	- ENGINE MODE	RUN / Guarded
4	- AUX BP	AUTO
5	- AUX BP ON	Check ON
6	- Propeller area	Clear
7	- STARTER	ON
		2 seconds, then release
0	ITT Na OIL °C and OIL DSI	Monitor

8 - ITT, Ng, OIL °C and OIL PSI Monitor

Aborting start procedure:

If ITT > 850 °C:

Manually abort the start sequence as follows:

9 - STARTER ABORT 2 seconds, then release

- CAUTION ------

Do not attempt another engine start after automatic or manual aborted start, except if the previous start sequence was aborted due to:

low battery voltage,
FUEL TANK SELECTOR in the OFF position, or
other than engine-related reason.

For all other cases, the airplane is grounded. Inform maintenance department.

End of procedure

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 04 Page 4.3.4

Engine Start 2 / 2

► Continuing

When Ng > 45%:

10 - Starter Check OFF automatically

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04 Page 4.3.5

Manual Dry Motoring 1 / 1

1	- THROTTLE	IDLE
2	- ENGINE MODE	OFF
3	- IGNITION	Check AUTO
4	- AUX BP	OFF or AUTO
5	- AUX BP ON	Check OFF
6	- Engine crank mode	ON
7	- Propeller area	Clear
8	- STARTER	ON
		Maintain ON during the motoring sequence
Afte	er 30 seconds maximum:	
9	- STARTER	OFF
10	- Engine crank mode	OFF
End	d of procedure.	

After Engine Start with GPU 1 / 1

1	- SOURCE	BATT
2	- AP/TRIMS	ON / Test OK
3	- THROTTLE	IDLE
4	- GND FEATHER	ON
>>	postMod: MOD70-0753-00C	
5	- FEATHER SECURED	Check ON
>>	All	
Wh	en Np < 400 RPM:	
6	- GPU	Disconnect
7	- GPU DOOR	Check OFF
8	- GND FEATHER	OFF
_		

After Engine Start 1 / 1

1 - THROTTLE IDL For 2 minute
2 - Ng Chec
3 - OIL °C and OIL PSI Chec
4 - AUX BP Check AUT
5 - FUEL SEL AUT
6 - SHIFT Tes
7 - AP/TRIMS ON / Test O
Perform generator test.
When MAIN LOAD < 80 A:
8 - GENERATOR ST-B To perform test
9 - GENERATOR MAI
10 - CAS Chec
11 - FAN As require
>> Up to S/N 1463
12 - SEATS HTRS MASTER As require
>> From S/N 1465
13 - SEATS HTRS MASTER As require Check status light colo
>> All
14 - BLEED AUTO
End of procedure.

Before Taxiing 1 / 1

1	- Standby instruments Check
2	- DE ICE SYSTEM mode MAN
3	- All deicing systems Check ON
4	- Visually check functioning of deicer boots during one total cycle.
5	- DE ICE SYSTEM mode AUTO
6	- INERT SEP ON
7	- Flight controls Check
Per	form AP / TRIMS test.
8	- FLAPS UP
MF	Đ
	If requested:
	9 - FPL Set
	10 - LFE Set / Check
	11 - WX radar STBY
12	- EIS Check
13	- CAS Check
14	- TAXI lights ON
End	d of procedure.

Before Line Up 1 / 2

1	- LDG lights	ON	
2	- NAV	ON	
3	- STROBE	ON	
4	- IGNITION	AUTO	
5	- AUX BP	AUTO	
6	- FUEL SEL	AUTO	
7	- DE ICE SYSTEM mode	As required	
8	- PITOT L/R & STALL HTR	ON	
9	- TRIMS	то	
10	- FLAPS	то	
11	- FAN	As required	
12	- BLEED	AUTO	
13	- LFE	Check	
14	- Fuel gauges	Check imbalance	
15	- BATT AMPS	Check below 50 AMPS	
16	- EIS	Check	
17	- CAS	Check	
18	- Altimeters setting	Set / Check	
19	- Instruments departure setting	Check	
20	- SID (PROC)	Set	
21	- ALT SEL	Set	
22	- XPDR squawk	Set	
Cor	Continue 🕨		

PIM TBM 960 - Edition 0 Rev. 04 Page 4.3.10

Before Line Up 2 / 2

► Continuing

CAUTION					
	Setting the INERT SEP switch to ON may result in maximum available TRQ being lower than 100%, depending on runway elevation and outside temperature – refer to <u>Subsection 5.9. Takeoff Distances</u> .				
23	- Takeoff distance	es			Check 9. Takeoff Distances
24	- INERT SEP				As required nditions and takeoff performance
25	- Rotation airspe	ed (V _R)			Check
	VR (KIAS) Airspeed Weight (lbs) (kg)	75 	5,500 	80 6,000	83) 2,800
C4010000AAAIMA8000	VR (KIAS) Airspeed Weight (Ibs) (kg)	82 	85 6,500 6,579 2,984 3,000	7,000	90 7,394 (up to 7,615) 3,354 (up to 3,454)

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04 Page 4.3.11

Normal Takeoff 1 / 1

1	- ADI / HSI / headings	Check
2	- AT	As required
3	- Apply brakes and increase en	gine power.
4	- Brakes	Release
5	- THROTTLE	Full forward
6	- Max TRQ	Check
		Corresponding to takeoff performance tables

— CAUTION —

Do not engage AT below 1,000 ft (300 m) AGL in case of takeoff without autothrottle.

7	- Rotate at V _R .	
8	- Attitude	' Up
Wh	en vertical speed is positive:	
9	- Brakes A	pply
10	- LANDING GEAR	UP
Wh	en airspeed above 115 KIAS:	
11	- FLAPS	UP

Short Takeoff 1 / 1

1	- ADI / HSI / headings Check
2	- AT OFF
3	- Apply brakes and increase engine power.
4	- THROTTLE Full forward
5	- Max TRQ Check Corresponding to takeoff performance tables
6	- Brakes Release
7	- Rotate at V _R .
We	ght < 6,579 lbs (2,984 kg):
	8 - Attitude
We	ght > 6,579 lbs (2,984 kg):
	9 - Attitude 12.5° Up
Wh	en vertical speed is positive:
10	- Brakes Apply
11	- LANDING GEAR UP
Wh	en airspeed above 115 KIAS:
12	- FLAPS UP

After Takeoff 1 / 1

LANDING GEAR Check	UP
FLAPS Check	UP
- TRQ Check 100% m	ıax.
EIS Ch	eck
CAS Ch	eck
DE ICE SYSTEM As requi	red
INERT SEP As requi	red

Climb 1 / 1

1	- ALT SEL	Check
2	- Altimeters setting	As required
3	- AP / YD	Check
4	- AT	As required
5	- TRQ adjustment / ITT / Ng	Check
6	- EIS	Check
7	- CAS	Check
8	- WX radar	As required
9	- Pressurization	Check
10	- Fuel gauges	Check
11	- AMPS / VOLTS	Check
12	- DE ICE SYSTEM	As required
13	- INERT SEP	As required
14	- LDG lights	As required

End of procedure.

Cruise 1/1

1	- Altimeters setting	Check
2	- AP / YD	Check
3	- AT	As required
4	- TRQ adjustement / ITT / Ng	Check
5	- EIS	Check
6	- CAS	Check
7	- Pressurization	Check
8	- Fuel gauges	Check
9	- AMPS / VOLTS	Check
10	- DE ICE SYSTEM	As required
11	- INERT SEP	As required
12	- LDG lights	As required
13	- Top of descent	Computed

Before Descent 1 / 1

1	- Before approach briefing	Completed
2	- Altimeters setting	Check
3	- Pressurization	Check
4	- LFE	Check
5	- Fuel gauges	Check
6	- AMPS / VOLTS	Check
7	- DE ICE SYSTEM mode	As required
8	- INERT SEP	As required

Approach 1/1

1	- Altimeters setting (QNH)	Set / Check
2	- Minimums	Set / Check
3	- COM / NAV / GPS	Set / Check
4	- Pressurization	Check
5	-LFE	Check
6	- Fuel gauges	Check
7	- AMPS / VOLTS	Check
8	- DE ICE SYSTEM mode	As required
9	- INERT SEP	ON
Wh	en below FL 100:	
10	- LDG lights	ON
Enc	d of procedure.	

Final Approach (in GS) or Downwind Leg (VMC) 1 / 1

1	- LDG lights	ON
2	- LANDING GEAR	DN
		Check three green
3	- FLAPS	то

Short Final (Around 500 ft) 1 / 1

1	- LANDING GEAR	Check
		DN and three green
2	- FLAPS	LDG
3	- AP / YD / AT	Disconnect

Runway Clear 1 / 1

1	- THROTTLE	Adjust To get minimum TRQ for taxiing
2	- TAXI lights	ON
3	- NAV	ON
4	- STROBE	OFF
5	- DE ICE SYSTEM mode	AUTO
6	- TRIMS	Reset to TO
7	- FLAPS	UP
8	- FAN	As required
9	- XPDR	Check
10	- WX radar	Check STANDBY

Shutdown 1/2

	1	- PARK BRAKE	Set ON
	2	- EXT LIGHTS	All OFF
	3	- INT LIGHTS	As required
	4	- OXYGEN	OFF
	5	- FUEL SEL	MAN
	6	- AP/TRIMS	OFF
	>>	Up to S/N 1463	
I	7	- SEATS HTRS MASTER	OFF
	>>	From S/N 1465	
I	8	- SEATS HTRS MASTER	OFF Status light in white
	>>	All	
	9	- FAN	OFF
	10	- BLEED	OFF/RST
	11	- THROTTLE	IDLE Verify 2 min cool down
	12	- ENGINE MODE	OFF
	Afte	er automatic dry motoring if any:	
	13	- FUEL TANK SELECTOR	OFF
	14	- INERT SEP	OFF
	15	- AUX BP ON	Check ON
	16	- AUX BP	OFF
	17	- GENERATOR	OFF
	Afte	er inertial separator retraction, about 40 seconds:	
	18	- SOURCE	OFF
	19	- Crash lever	Pull down
	Со	ntinue ►	
		1 TBM 960 - Edition 0 /. 04	Page 4.3.22

Shutdown 2/2

► Continuing

20 - Standby instruments OFF

Outside Check after Shutdown 1 / 1

1 - Oxygen cylinder (right wing fairing) Close

----- CAUTION -

Wait for exhaust stubs to cool temperature before installing covers.

2 - Install air inlet and static port plugs, and exhaust and pitot covers.

_____ NOTE _____

Check oil level within 15 to 20 minutes following engine shutdown.

End of procedure.

4.4 - Amplified Procedures

Preflight Inspection 1 / 16

The preflight inspection procedure is based on a scanning method.

It is divided in 6 subparts to cover all items of the preflight – see Figure 4.4.1.

- I Initial inside inspection
- II Cabin
- III Left-side wing
- IV Fuselage forward section
- V Right-side wing
- VI Fuselage rear section / Empennages

WARNING

During outside inspection, visually check inspection doors and airplane general condition. Check for systems and parts attachments / deflections / leaks / cracks / deteriorations / non-obstructions / nicks / numbers / free movements / position.

In cold weather, remove even small accumulations of frost, ice or snow from wing, tail and control surfaces.

In case of night flight, check good operation of all navigation lights, landing lights, strobe lights and make sure that an emergency lamp is on board.

If icing conditions are foreseen, particularly check good functioning of all electrical and pneumatic ice protection systems.

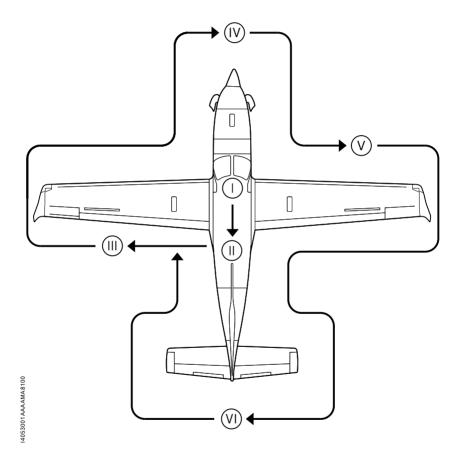
Check that type and quantity of fuel used for refueling are correct. Remove covers on: pitots (2), static ports (2), static dischargers (2), engine air inlet (1), air inlets (2), exhaust cover and propeller locks (2).

WARNING ·

Remove tie-downs.

For quantities, products and specifications of products and materials currently used, refer to Paragraph Maintenance in Subsection 8.7.

Continue 🕨


PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.1

Preflight Inspection 2 / 16

► Continuing

Initial inside inspection

Cockpit - I

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.2

PIM TBM 960 - Edition 0

Rev. 04

Page 4.4.3

Preflight Inspection 3 / 16

► Continuing			
Left instrument panel			
>> Up to S/N 1463			
1 - SEATS HTRS MASTER switch OFF			
>> From S/N 1465			
2 - SEATS HTRS MASTER pushbutton OFF Status light in white			
>> All			
3 - Flight controls lock Removed / Stowed			
NOTE			
The flight controls lock is normally stowed in the front cargo compartment with the towing bar and the blanking covers.			
4 - Flight controls deflections Check			
5 - PARK BRAKE ON			
6 - LANDING GEAR lever DN			
ECS and PRESSURIZATION panels			
7 - BLEED switch OFF/RST			
8 - FAN selector OFF			
9 - FLAPS lever UP			
10 - THROTTLE IDLE			
11 - FUEL TANK SELECTOR L or R			
Open door of emergency landing compartment to check LANDING GEAR emergency control.			
12 - Lever Pushed down			
13 - Bypass selector Fully depressed			
14 - Door In place			
Continue ►			

Preflight Inspection 4 / 16

► Continuing

The bypass selector must be pushed at its maximum stop, so as to have the door in place.

Right instrument panel			
15 - ALTERNATE STATIC SOURCE selector Pushed			
16 - EMERGENCY RAM AIR control knob Pushed			
17 - Breakers panel All breakers checked			
Upper panel			
18 - ELT switch ARM/OFF			
19 - AP/TRIMS switch OFF			
ENGINE / FUEL panel			
20 - STARTER switch Check OFF			
21 - AUX BP switch OFF			
22 - ENGINE MODE switch OFF			
ELECTRIC POWER panel			
23 - Crash lever Up			
24 - GENERATOR selector MAIN			
25 - SOURCE selector OFF			
LIGHTS panels			
26 - ACCESS lighting Check To ensure that the fuse of the BATT BUS operates correctly			
27 - INT LIGHTS panel All OFF			
28 - EXT LIGHTS panel All OFF			
Continue ►			

PIM TBM 960 - Edition 0 Rev. 04

Preflight Inspection 5 / 16

► Continuing			
Overhead panel			
29 - OXYGEN switch OFF			
30 - PASSENGER OXYGEN switch STBY			
31 - Emergency lighting Check			
ELECTRIC POWER panel			
32 - SOURCE selector BATT or GPU			
ENGINE / FUEL panel			
33 - IGNITION pushbutton Check AUTO Status light in blue			
34 - FUEL SEL pushbutton Check AUTO Status light in blue			
Instrument panel			
35 - Standby instrument battery indicator symbol Not displayed			
If a battery symbol appears on the standby instrument display, airplane takeoff is not allowed until the situation is resolved. Refer to the battery details in the standby instrument Pilot's Guide for further information.			
If BATT source:			
36 - Voltage Check > 24.5 Volts			
NOTE			
If not, use a GPU or charge battery. This minimum voltage is not an absolute guarantee for a correctly charged battery. It is recommended to use a GPU in cold weather, when airplane has been stopped more than three hours at a temperature below -10 °C (+14 °F).			
Continue ►			

Page 4.4.5

Preflight Inspection 6 / 16

► Continuing

If GPU source:

CAUTION -

Low voltage (around 24.5 V) may indicate that only the battery is powering the airplane and not the pair GPU + battery. Make sure that a GPU is connected and powering the airplane.

37 - Voltage Check ≈ 28 Volts

_____ NOTE _____

If using a GPU, ensure that it provides a 28-Volts regulated voltage, with negative on earth, as well as it supplies 800 A minimum and 1,000 A maximum. See placard located near ground power receptacle door.

EXT LIGHTS panel

38	- TAXI/LDG lights	DFF
39	- STROBE switch	ON
40	- NAV switch	ON

DE-ICE SYSTEM panel

When the engine is shutdown, do not set the PROP DE ICE switch to ON for more than 10 seconds, damage to the propeller blades could result.

Check AUTO	1 - DE-ICE SYSTEM mode switch	41	
ON	2 - ICE LIGHT pushbutton	42	
Status light in green		40	
າ OFF	3 - PHOT L/R & STALL HTR SWITCH	43	

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.6

Preflight Inspection 7 / 16

► Continuing		
44 - From outside the airplane, check operation of all lights and stall warning alert.		
Reentering the airplane		
EXT LIGHTS panel		
45 - EXT LIGHTS panel All OFF		
Instrument panel, MFD		
46 - CAS display Check		
47 - Left and right fuel quantities Check		
Pedestal		
48 - FLAPS lever LDG		
LANDING GEAR panel		
49 - Warning lights Oheck three green ON		
50 - LIGHT TEST pushbutton Press Check all lights flashing		

DE-ICE SYSTEM panel

— WARNING —

Do not touch pitots nor stall warning vane. They could be hot enough to burn skin.		
	51 - ICE LIGHT pushbutton	OFF Status light in white
	52 - PITOT L/R & STALL HTR switch	ON
	53 - PITOT HT ON L-R	Check ON
	54 - STALL HEAT ON	Check ON

Continue ►

Г

PIM TBM 960 - Edition 0 Rev. 04

Preflight Inspection 8 / 16

► Continuing

NOTE			
Correct operation of pitot (PITOT L and R) tube heating elements and of stall aural warning system (STALL HTR) is indicated by display of corresponding CAS message, when control switches are ON.			
55 - PITOT L/R & STALL HTR switch OFF			
ELECTRIC POWER panel			
56 - Crash lever Pull down			
Cabin - II			
57 - Cabin fire extinguisher Pressure / Attachment			
58 - Seats / belts Check			
59 - Windows General condition / No crack			
60 - Emergency exit Closed / Locked			
61 - Anti-theft safety pin Removed / Stowed			
62 - Baggage compartment Straps in place			
>> 6-seat accommodation			
63 - Partition net General condition / In place			
>> 4-seat accommodation and baggage transportation			
64 - Large net or small net General condition / In place			
>> All			
65 - Doors operation Check			
66 - Stairs condition Condition / Play			
Outside inspection			

The preflight inspection described in $\underline{\mbox{Figure 4.4.1}}$ is recommended before each flight.

Continue ►

PIM TBM 960 - Edition 0 Rev. 04

Preflight Inspection 9 / 16

► Continuing

NOTE -

If a preflight inspection is performed just after the engine shutdown, be careful because the leading edge of engine air inlet, as well as exhaust stubs may be very hot.

If the airplane was in long term storage or if it has undergone major maintenance or if it has been used from emergency airfields, a thorough outside inspection is recommended.

When the airplane is stored outside, the use of the flight control lock and blanking covers is recommended. Propeller should be tied down to prevent rotation without oil pressure.

When the airplane is stored for extended periods of time, a thorough preflight inspection is recommended. Particular attention should be paid to possible blockages in airspeed sensing lines, foreign objects in engine intake and exhaust stubs and water contamination of the fuel system.

Left-side wing - III

67	- Flap Condition / Play
	Also inspect the lower surface, as well as flap fairing, where pebbles (and
	even ice in case of slush on the runway) may have accumulated.

68 - Aileron and trim / Spoiler Condition / Free movement / Deflection

— **NOTE** –

Ensure there are no foreign objects in the spoiler recess. When ailerons are in the neutral position, it is normal that spoilers are lightly extended at upper surface.

- 69 Trailing edge static discharger Condition / Number / Attachment
- 70 Winglet / nav. lights / strobe / landing light /recognition light / taxi light Condition

71 - OAT probe Condition

- 72 Fuel tank cap Closed / Locked
- Continue 🕨

PIM TBM 960 - Edition 0	Page 4.4.9
Rev. 04	
PIM - DO NOT USE FOR FLIGHT OPERATIONS	

Preflight Inspection 10 / 16

► Continuing

Fuel tank caps must be tight (which is characterized by a consequent exertion to lock and unlock them) to avoid water infiltration in case of rain on ground, and to avoid fuel loss in flight.

- NOTE —

73 - Fuel tank air vent Unobstructed

– NOTE ––––

Air vent is not likely to be obstructed by ice or water, as it is located in a wing lower surface recess.

74 - Left-side pitot Condition

Wing lower surface

- 75 Wing lower surface No leak
- 76 Check fuel tank access doors for leaks.
- 77 Check for surface damage.
- 78 Wing deicer boots Condition / Attachment

_____ NOTE _____

Care must be taken when refuelling the airplane to avoid damaging the wing deicer boots. A protective apron should be used if possible.

79 - Fuel tank drain (two on each wing) Drain Fuel free of water and contamination

Continue ►

Preflight Inspection 11 / 16

► Continuing

If water and/or contamination is present, repeatedly take samples from all of the fuel tank drain valves until water and/or contamination has been removed. A long term storage of the airplane causes water accumulation in fuel, which absorbs additive. This phenomenon occurs when an excessive quantity of water accumulates in fuel tank sumps. For servicing operations relative to fuel additives, refer to <u>Paragraph Fuel in Subsection 8.7.</u>.

NOTE -

Left-side main LANDING GEAR

80	- Shock absorber	Check
81	- Doors	Check
82	- Tire	Check
83	- Wheel well	Check

- NOTE ·

If airplane has been used from muddy airfields or in snow, check wheel wells to make sure they are clean and not obstructed. Check frequently all landing gear retraction mechanism components, shock-absorbers, tires and brakes. This is particularly important for airplanes used from hilly fields.

Improperly serviced or worn shock-absorbers may result in excessive loads being transmitted to the airplane structure during ground operations. Without passengers and baggages on board, the unpainted surface of the main gear shock absorber tube must be visible about: - 55 mm (2.17 in) of minimum height with half tank, - 40 mm (1.57 in) of minimum height with full tanks.

Fuselage forward section - IV

Forward compartment

84	- Inside	Check
85	- Door	Close / Lock

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.11

Preflight Inspection 12 / 16

► Continuing

86	- GPU door	Closed If not used
87	- Fuel circuit drain	Drain
		Fuel free of water and contamination

— WARNING -

If the clogging indicator is extended, red collar visible, the flight is not authorized.

- NOTE —

If water and/or contamination is present, repeatedly take samples from all of the fuel tank drain valves until water and/or contamination has been removed.

88 - Filter contamination indicator (clogging indicator) Check

89 - Left-side exhaust stub Condition / No cracks

— NOTE –

Inspect if possible pressure port located inside exhaust stub. A missing port or a cracked port may hinder correct operation of continuous heating of air inlet lip.

90 - Upper engine cowls Open

For the first flight of the day:

	91 - Oil cap	Closed / Locked
	92 - Engine oil level	Check
	93 - Fuel pipes	No leak, deterioration, wear
94	- Engine cowls	Condition
		Closed / Locked

Air inlets

95 - Main No cracks / Unobstructed

Continue 🕨

PIM TBM 960 - Edition 0	Page 4.4.12
Rev. 04	
PIM - DO NOT USE FOR FLIGHT OPERATIONS	

Preflight Inspection 13 / 16

► Continuing

- NOTE -

Check for no cracks, which are sometimes put in evidence by traces of soot resulting from exhaust gases.

96 - Lateral / upper Unobstructed

- NOTE -

Lateral air inlets, which supply air conditioning system and oil cooler, are provided with blanking covers. It is not the case for upper air inlets of RAM AIR system (circular grille located in front of right-side windshield) and of vapor cycle cooling system (two rectangular grilles located forward of the circular grille).

97 - Propeller and spinner No nicks, cracks or oil leaks / Attachment

- NOTE -

In case of operation from contaminated runways, it is necessary to carefully examine propeller blades, where traces of abrasion may be found. Propeller damage may reduce blade life time and degrade performance. Any propeller damage should be referred to maintenance personnel.

Nose gear

!	98	- Shock absorber	Check
!	99	- Doors	Check
	100	- Tire	Check
	101	- Wheel well	Check

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.13

Preflight Inspection 14 / 16

► Continuing

- NOTE -

Without passengers and baggages on board, the unpainted surface of the nose gear shock absorber tube must be visible about:

- 57 mm (2.24 in) of minimum height with full tanks.
- 63 mm (2.48 in) of minimum height with half tank.

NOTE -

Crush or relieve the shock absorber one time or twice before the inspection to remove possible sticking.

In case of doubt, request a check of the shock absorber pressure.

102 - Right-side exhaust stub Condition / No cracks

Right-side wing - V

Additional remarks are identical to those of left-side wing.

103 - Fuel tank drain (two on each wing) Drain Fuel free of water and contamination

— NOTE —

If water and/or contamination is present, repeatedly take samples from all of the fuel tank drain valves until water and/or contamination has been removed.

Right-side main LANDING GEAR

104 - Shock absorber	Check
105 - Doors	Check
106 - Tire	Check
107 - Wheel well	Check
108 - Wing deicer boots Cond	ition / Attachment
Continue ►	

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.14

Preflight Inspection 15 / 16

► Continuing	
109 - Stall warning	Condition / Deflection
110 - Wing lower surface	No leaks
111 - Fuel tank cap	Closed / Locked
112 - Fuel tank air vent	Unobstructed
113 - Right-side pitot	Condition
114 - Winglet / nav. light / strobe / landing light /re	cognition light / taxi light Condition
115 - Trailing edge static discharger	Condition / Number / Attachment
116 - Aileron / spoiler Condi	tion / Free movement / Deflection
117 - Flap	Condition / Play
Right-side wing fairing	
118 - Oxygen cylinder	Open
119 - Oxygen pressure	Check
120 - Confirm oxygen quantity in regards with the	expected flight.
121 - Oxygen pressure	Check
Fuselage rear section / empennages - VI	
Check that outside handle of emergency exit is flu	ish with door skin.
122 - ELT	ARM/OFF
123 - ELT door	Closed / Locked

_____ NOTE _____

Access to ELT is possible through an inspection door located on the right side of fuselage rear section.

124 - Static pressure ports Clean

125 - Ventral fins Condition / Attachments

Continue 🕨

PIM TBM 960 - Edition 0	Page 4.4.15
Rev. 04	
PIM - DO NOT USE FOR FLIGHT OPERATIONS	

Preflight Inspection 16 / 16

► Continuing

- NOTE —

Ventral fins are made of two parts (one fixed part and one removable part with rear lower inspection door). Check that these two parts are connected by the locking roller.

126 - Inspection door under fuselage Attachments / Closed

127 - Horizontal stabilizer deicer boots (right side) Condition / Attachments

128 - Elevator and trim Condition / Deflection free movement /Trim position

– NOTE ———

To check the deflection, hold the two half-elevators near fuselage, inside both elevator trims to avoid stresses.

129 - Static dischargers	Condition
130 - Vertical stabilizer deicer boots	Condition / Attachments
131 - Rudder and trim	Condition / Trim position
132 - Static dischargers	Condition
133 - Tail cone / nav. lights / strobe	Condition
134 - Static pressure ports	Clean

End of procedure.

Inside Inspection 1 / 4

After completion of preflight inspection.

Initial inside inspection and outside inspection performed. Oxygen cylinder open.

1	- Cabin door and pilot door, if installed Closed / Locked
2	- Baggage Stowed
3	- EMERGENCY EXIT pin Removed
4	- Seats, pedals, harness Adjust / Lock

CAUTION ·

It is recommended to set the seat to the highest position before adjusting the front seats fore or aft. Otherwise, moving the seat may damage the upholstery on the side panels.

Adjust pilot seat and right-side front seat, if occupied:

- NOTE –

Adjust seats and harnesses to ensure access to flight controls. The pilot at left-side position must be able to easily reach ECS and PRESSURIZATION panels.

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.17

Inside Inspection 2/4

► Continuing

– NOTE —

Check for the correct locking of belt buckles for the pilot and passengers; as well as automatic locking of shoulder harness by exerting a rapid pull on the harness. Unoccupied seat belts need to be strapped. It is prohibited to fly

with these belts unstrapped.

NOTE Inform passengers that HomeSafe emergency function is intended to automatically land the airplane in case of pilot's incapacitation and that the activation button is located on top of instrument panel. Ensure that the HomeSafe language is set in accordance with passengers' language.

11 - OXYGEN switch ON

— NOTE ——

Make sure to set on STBY the PASSENGER OXYGEN switch before setting the OXYGEN switch to ON to avoid passengers mask deployment.

12 - Crew oxygen masks Test

— NOTE —

Press pushbutton PRESS TO TEST: the blinker shall turn red momentarily, then turns transparent.

13	- EXT LIGHTS panel All OFF	
14	- INT LIGHTS panel All OFF	
15	- CABIN switch OFF	
16	- ACCESS switch OFF	

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.18

Inside Inspection 3 / 4

► (Continuing	
17	- PANEL rheostat	Fully turned to the left
18	- All lights	OFF
19	- Crash lever	Down
20	- ENGINE MODE switch	OFF
21	- AUX BP switch	OFF
22	- STARTER switch	Check OFF
23	- AP/TRIMS switch	OFF
24	- ELT switch	ARM/OFF
>>	Up to S/N 1463	
25	- SEATS HTRS MASTER switch	OFF
26	- CB LIGHT switch	OFF
>>	From S/N 1465	
27	- SEATS HTRS MASTER pushbutton	OFF Status light in white
28	- CB LIGHT pushbutton	OFF Status light in white
>> ,	A//	
29	- PARK BRAKE	Reset / ON
30	- LANDING GEAR lever	DN
31	- BLEED switch	OFF/RST
32	- FAN selector	OFF
33	- Pitch trim wheel	Check
34	- THROTTLE	IDLE
35	- FUEL TANK SELECTOR	Open / L or R
36	- ALTERNATE STATIC SOURCE selector	Normal / Pushed
Cor	ntinue ►	

Inside Inspection 4 / 4

End of procedure.

Before Starting Engine 1 / 3

—— NOTE –

Check that the weight and balance are within the correct limits. The maximum takeoff weight depends on C.G. position.

Brief passengers about use of seat belts and the emergency oxygen system, as well as opening the access door and the emergency exit.

1	- Pre	flight inspection Completed		
2	- Cra	ash lever Up		
3	- ATI	S Copied		
4	- Sta	rt clearance As required		
5	- SO	URCE selector BATT (battery start) or GPU (GPU start)		
lf o	If one screen (left-side or right-side PFD, or MFD) is missing:			
	6	- SOURCE selector OFF		
	7	- Wait for 30 seconds.		
	8	- SOURCE selector BATT (battery start) or GPU (GPU start)		

If GPU use:

— NOTE —

Voltage is higher than 24.5 V which corresponds to the voltage in case of battery use.

Before Starting Engine 2 / 3

► (Continuing
14	- MAIN GEN Check ON
15	- O2 CYL CLOSED Check OFF
lf 🤇	2 CYL CLOSED is ON:
	16 - Open isolation valve of the oxygen cylinder in right wing fairing.
17	- Oxygen quantity Check Verify quantity available for the planned flight See table in procedure <u>In-Flight Available Oxygen</u> <u>Quantity (Crew oxygen masks in NORMAL mode)</u> , and depending on the conditions, see <u>Table 7.11.1</u> , <u>Table</u> <u>7.11.2</u> or <u>Table 7.11.3</u>
18	- TEST pushbutton Press Audio / lights / stick shaker
19	- MICRO/MASK switch MICRO / Guarded
20	- DE-ICE SYSTEM mode switch AUTO
21	- PITOT L/R & STALL HTR switch OFF
22	- INERT SEP switch OFF
23	- DUMP switch NORM / Guarded
24	- BLEED switch OFF/RST
25	- DEFOG pushbutton Check OFF Status light in white
26	- Landing gear position indicator
27	- GND FEATHER switch Check OFF / Guarded
28	- FUEL SEL pushbutton MAN Status light in green
29	- MFD Initialize
30	- Fuel on board Check Check quantity

Continue ►

PIM TBM 960 - Edition 0	Page 4.4.22
Rev. 04	
PIM - DO NOT USE FOR FLIGHT OPERATIONS	

Before Starting Engine 3 / 3

	Continuing
31	- Fullest tank Select
32	- VOLTS: BAT > 24.5 V / GPU \approx 28 V Check
33	- CAS display Check
34	- FLAPS lever UP
35	- PARK BRAKE Check ON Last check before proceeding to engine start
36	- PARK BRAKE Check ON
	PARK BRAKE appearance does not indicate that parking brake is set. For that, press on brake pedals before turning brake selector to the right.

End of procedure.

In-Flight Available Oxygen Quantity (Crew oxygen masks in NORMAL mode) 1 / 1

- 1 Oxygen pressure Read
- 2 Outside air temperature (OAT) Read
- 3 Determine the usable oxygen percent using the chart of Figure 4.4.2.

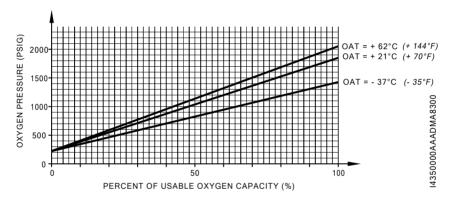


Figure 4.4.2 - Usable Oxygen

4 - Determine the oxygen duration in minutes by multiplying the values read in <u>Table 4.4.1</u> by the percent obtained with the chart of <u>Figure 4.4.2</u>.

Table 4.4.1 -	Oxygen	Duration
---------------	--------	----------

Number of passengers	Duration: Passengers, plus 1 pilot	Duration: Passengers, plus 2 pilots
0	226	113
1	162	94
2	127	81
3	104	71
4	88	65

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.24

Engine Start 1 / 3

_	CAUTION
	After aborted engine starts, wait: 1 minute / 5 minutes / 30 minutes before 2nd / 3rd / 4th new engine start.
1	- STROBE switch ON
2	- DISPLAY BACKUP button Press Composite mode
_	NOTE
ľ	f there is a loss of MFD during start up sequence, that sequence will be ended using the left-side PFD in composite mode.
3	- THROTTLE IDLE
	NOTE
	If THROTTLE is not set to IDLE, SET PWR TO IDLE is displayed.
4	- IGNITION pushbutton Check AUTO Status light in blue
5	- ENGINE MODE switch RUN / Guarded
6	- AUX BP switch AUTO
7	- AUX BP ON Check ON
8	- FUEL PRESS
9	- Propeller area Clear
_	CAUTION
	Starter operation is bound by limitations – refer to <u>Subsection 2.4. Starter</u> <u>Operation Limits</u> .

10 - STARTER switch ON 2 seconds, then release

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.25

Engine Start 2 / 3

► Continuing	
11 - STARTER	. Check ON
12 - MAIN GEN	Check ON
When Ng > 8%:	
13 - IGNITION	. Check ON

NOTE -

The FADEC system introduces fuel following ignitor excitation.

14 - ITT, Ng, OIL °C and OIL PSI Monitor

Aborting start procedure:

The FADEC automatically aborts starting procedure if:

- light-up is not detected within 13 seconds after fuel has been injected into combustion chamber,
- Ng does not increase after light-up,
- ITT exceeds 945 °C.

If ITT > 850 °C:

Manually abort the start sequence as follows:

15 - STARTER switch ABORT

2 seconds, then release

After an aborted start, the FADEC automatically commands a dry motoring run for 30 seconds:

- CAUTION -

If the start sequence is aborted by setting the ENGINE MODE switch to OFF, the FADEC will not command an automatic dry motoring. In this case, perform a manual dry motoring after engine shutdown – refer to procedure <u>Manual Dry Motoring</u>.

16	- ABORTING START		Check ON
----	------------------	--	----------

17 - AUX BP ON Check OFF

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.26

Engine Start 3 / 3

► Co	ontinuing
	18 - IGNITION Check OFF
	After 30 seconds:
	19 - Starter Check OFF automaticall
	20 - STARTER Check OFF
	CAUTION
	 Do not attempt another engine start after automatic or manual aborted start, except if the previous start sequence was aborted due to: low battery voltage, FUEL TANK SELECTOR in the OFF position, or other than engine-related reason. For all other cases, the airplane is grounded. Inform maintenance department.
	End of procedure ■
Wher	n Ng > 45%:
21 -	Starter Check OFF automaticall
22 -	STARTER Check OFF
23 -	AUX BP ON Check OFF
Wher	n Ng > 55%:
24 -	IGNITION Check OFF

25 - Engine parameters Check

– NOTE ———

In ISA conditions at sea level, Ng \approx 58.5%. Ng may vary between 55% and 63% depending on external conditions.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.27

Manual Dry Motoring 1 / 2

To drain fuel accumulated inside the combustion chamber, the FADEC automatically performs a 30-second dry motoring run following an aborted start, before complete engine shutdown.

During engine shutdown in high OAT, the FADEC may automatically perform a 15second dry motoring run before complete engine shutdown.

_____ NOTE ____ There is no Wet Motoring procedure in the POH. 1 - THROTTLE IDLE 2 - ENGINE MODE switch - IGNITION pushbutton Check AUTO 3 Status light in blue 4 - FUFL TANK SELECTOR OFF 5 - AUX BP switch OFF or AUTO 6 - AUX BP ON Check OFF 7 - FUEL PRESS 8 - Engine crank mode ON 9 To activate the engine crank mode in the dedicated GTC sub-menu, press: MFD Home, Aircraft Systems, Engine Crank and then press the crank mode button 10 - Propeller area Clear 11 - STARTER switch ON Maintain ON during the motoring sequence Simultaneously: 13 - STARTER Check ON

Continue 🕨

PIM TBM 960 - Edition 0 Page 4.4.28 Rev. 04 PIM - DO NOT USE FOR FLIGHT OPERATIONS

Manual Dry Motoring 2 / 2

►	Continuing	

If ignition symptoms occur (ITT increasing):

14 - STARTER switch OFF

Dry motoring sequence is stopped.

End of procedure

After 30 seconds maximum:

15 - STARTER switch OFF
16 - STARTER Check OFF
17 - Engine crank mode OFF
To deactivate the engine crank mode, press again the crank mode button in the dedicated GTC sub-menu

NOTE -

It is recommended to avoid more than two consecutive motoring between two engine starts, to minimize potential leakages of the bearing #1 lab seal.

End of procedure.

Rev. 04

After Engine Start with GPU 1 / 2

1	- SOURCE selector	BATT
2	- GENERATOR selector	MAIN
3	- MAIN GEN	Check OFF
		— NOTE
		bes off as soon as STARTER goes off.
lf 🛛	AIN GEN does not go off:	
	4 - Ng	Increase over 70% To start main generator
5	- Electrical network	Check
6	- AP/TRIMS switch	ON / Test OK To secure the feather position
7	- THROTTLE	IDLE
8	- GND FEATHER switch	To allow ground personel to reach GPU plug
>>	postMod: MOD70-0753-00C	
9	- FEATHER SECURED	Check ON
>>	All	
Wł	en Np < 400 RPM:	
10	- GPU	Disconnect Performed by ground personnel
11	- GPU DOOR	Check OFF
12		ound personnel is cleared from propeller area
13	- Generator and battery AMPS	Check charge On EIS of MFD
14	- Battery and ESS. bus VOLTS .	Check voltage ≈ 28 Volts On EIS of MFD
Со	ntinue 🕨	
PIN	/ TBM 960 - Edition 0	Page 4.4.30

After Engine Start with GPU 2 / 2

	Continuing	
15	- CAS display	Check
16	- FAN selector	As required
17	- BLEED switch	AUTO
Wh	en ground personnel is cleared from propeller area:	
18	- Perform procedure	After Engine Start
End	d of procedure.	

After Engine Start 1 / 3

CAUTION				
	Generator load < 200 A.			
1	- THROTTLE IDLE For 2 minutes			
2	- Ng Check			
	NOTE			
	In ISA conditions at sea level, Ng ≈ 58.5%. Ng may vary between 55% and 63% depending on external conditions.			
3	- OIL °C and OIL PSI Check			
4	- AUX BP switch Check AUTO			
5	- FUEL SEL pushbutton			
6	- SHIFT pushbutton Test Verify rotation of FUEL TANK SELECTOR			
7	- AP/TRIMS switch ON / Test OK This initializes the AP and AT systems			
8	- PFD 1, MFD and PFD 2 NORMAL mode			
Pe	form generator test.			
	9 - GENERATOR selector Check MAIN			
	10 - AMPS / VOLTS Check			
	When MAIN LOAD < 80 A:			
	11 - GENERATOR selector ST-BY To perform test			
	12 - AMPS / VOLTS Check			
Со	Continue ►			

PIM TBM 960 - Edition 0 Rev. 04 PIM - DO NOT USE FOR FLIGHT OPERATIONS

After Engine Start 2 / 3

► Continuing

If the ST-BY generator is not connected after 10 seconds (voltage < 27 V is a possible cue):

13 - GENERATOR RESET ST-BY pushbutton Press To reset ST-BY generator

14 - AMPS / VOLTS Check The indicated voltage should be in the green range

15 - GENERATOR selector MAIN

PFD 1, MFD and PFD 2

NOT	E
Detailed control procedures of the avi Garmin Integrated Flight	-
16 - Brightness	Adjust
17 - DISPLAY BACKUP pushbutton	Then return to NORMAL mode
18 - CAS	Check Check engine parameters
19 - FAN selector	As required
20 - TEMP selector	Adjust
>> Up to S/N 1463	
21 - SEATS HTRS MASTER switch	As required
>> From S/N 1465	
22 - SEATS HTRS MASTER pushbutton	As required Check status light color
>> All	
23 - BLEED switch	AUTO
24 - DEFOG pushbutton	As required
Continue ►	
PIM TBM 960 - Edition 0 Rev. 04	Page 4.4.33

After Engine Start 3 / 3

► Continuing

- NOTE -

The demisting function is automatically switched OFF 10 minutes after the DEFOG pushbutton has been set to ON.

End of procedure.

Before Taxiing 1 / 3

1	- Standby instruments	Check
2	- DE ICE SYSTEM mode switch	MAN
		All deicing systems turn on
3	- All deicing systems	Check ON

– NOTE –

Flight into known icing conditions is authorized only when all ice protection equipment are operating correctly. This equipment may be activated before takeoff, even during taxiing, in case of icing conditions on ground. For more details, refer to procedure <u>Flight into Known Icing Conditions in</u> <u>Subsection 4.5.</u>.

– NOTE ––––––

Illumination in green of the PROP DE ICE status light shows that electric power is supplied to blade root electric resistors. It is advised to wait at least a whole half cycle (90 seconds) to check that both blade heating systems are correctly supplied with electric power.

4 - Visually check functioning of deicer boots during one total cycle.

– NOTE –

The cycle lasts 67 seconds. Check both inflation impulses:
the first impulse inflates the external and middle wing boots,
the second impulse inflates the leading edge boots of empennages and inner wing.

5 - DE ICE SYSTEM mode switch AUTO

6 - INERT SEP switchON Keep ON while taxiing in order to avoid ingestion of particles by the engine

7 - Flight controls Check Proper operation from stop to stop, full deflection

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 04

Page 4.4.35

Before Taxiing 2 / 3

► Continuing

Perform AP / TRIMS test.

8 - AP / TRIMS Check

— NOTE -Detailed control procedures of autopilot and electrical pitch trim are described in the Garmin Integrated Flight Deck Pilot's Guide. - Pitch trim UP / DN 9 10 - Pitch trim Adjust in green range Graduated from 12 to 37% 11 - Yaw trim L / R 12 - Yaw trim Adjust in green range Takeoff range 13 - Roll trim 14 - Roll trim Adjust at neutral position 15 - FLAPS lever UP Perform MFD flight management 16 - Weight computing Set / Check 17 - FOB synchronization Set If reauested: 18 - FPL Set 19 - LFE selection Set / Check Landing Field Elevation selection is done on the touchscreen controller using either: an automatic entry of the destination airport from the flight plan in the FMS, or a manual entry by pressing: HOME. AIRCRAFT SYSTEMS. LFE and then MANUAL 20 - VHF / VOR / GPS Adjust / Test Continue PIM TBM 960 - Edition 0 Page 4.4.36

Rev. 04

Before Taxiing 3 / 3

	Contin	uing	
	21	- WX radar	Adjust / Test
	22	- WX radar	STBY
23	- Stor	mscope / TAS / TAWS / radio altimeter, if installed	Adjust / Test
24	- ADI	/ HSI on PFD 1 / PFD 2	Check
25	- Altir	neter setting	Set / Check
26	- EIS		Check
27	- CAS	S display	Check
28	- Pas	senger briefing	As required
29	- TAX	I lights	ON
30	- PAF	RK BRAKE	
		Make sure that chock	s are removed, if used
31	- PAI	RK BRAKE	Check OFF

End of procedure.

Taxiing 1 / 1

CAUTION —

Generator load < 200 A.

— CAUTION ——

Avoid using reverse during taxiing.

— **NOTE** —

Operation in the reverse range is not restricted during ground operations. However, foreign particles (dust, sand, grass, gravel, etc.) may be blown into the air, ingested by the engine (above all if INERT SEP switch is turned OFF) and cause damage to the propeller.

- 1 TAXI lights Check ON
- 2 THROTTLE As required

—— NOTE ——

Ground IDLE is not powerful enough to taxi. Increasing power may be required. After initial acceleration, avoid excessive THROTTLE movements in order to keep a constant ground speed.

4 - Nose wheel steering Check Check that the control wheel moves (roll) in the same direction as the rudder pedals due to the rudder / aileron interconnect

5 - Flight instruments Check Check navigation and communication systems before or during taxiing, check gyroscopic instruments on PFDs 1 / 2 and standby indicator during ground turns

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04

Before Line Up 1 / 4

CAUTION		
	Gene	erator load < 200 A.
1	- PARK BRAKE	ON
2	- PARK BRAKE	Check ON
3	- THROTTLE	IDLE
4	- LDG lights	ON
5	- NAV switch	ON
6	- STROBE switch	ON
7	- IGNITION pushbutton	AUTO Status light in blue
8	- AUX BP switch	AUTO
9	- FUEL SEL pushbutton	AUTO Status light in blue
10	- DE ICE SYSTEM mode swit	ch As required AUTO or MAN
11	- PITOT L/R & STALL HTR sv	vitch ON
If icing conditions are foreseen:		
	12 - Perform procedure	Flight into Known Icing Conditions in Subsection 4.5.
13	- TRIMS	
	Trims adjustment for takeoff	
	14 - Pitch	TO Adjust inside green index sector, depending on the current balance condition
	15 - Yaw	
Col	ntinue ►	

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.39

Before Line Up 2 / 4

Continuing 16 - Roll TO Adjust at neutral position 17 - FLAPS lever TO 18 - Flight controls Check again for proper operation from stop to stop, full deflection 19 - FAN selector As required 20 - BLEED switch AUTO 21 - LFE Check quantity and imbalance

----- CAUTION -------

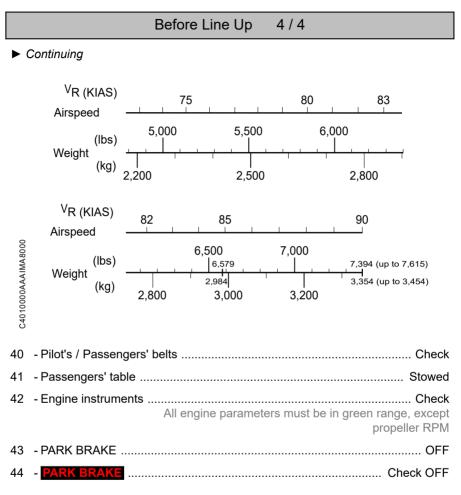
Do not take off if **BAT AMP** is displayed.

_____ NOTE _____

After starting engine with airplane power, a battery charge above 50 A is normal. If this indication remains steady at a high value, it may be then a battery or generation system failure. Do not take off in these conditions.

23	- BATT AMPS Check below 50 AMPS
24	- BAT AMP Check OFF
25	- EIS Check
26	- CAS display Check
	All messages OFF, except PARK BRAKE and, if used
	INERT SEP ON
27	- Altimeters setting Set / Check
28	- Instruments departure setting Check
29	- SID (PROC) Set
30	- ALT SEL Set
Cor	ntinue ►

PIM TBM 960 - Edition 0	Page 4.4.40
Rev. 04	
PIM - DO NOT USE FOR FLIGHT OPERATIONS	



Before Line Up 3 / 4

	Continuing		
31	1 - XPDR squawk Set		
32	- VHF / VOR / GPS / XPDR Adjust / Check		
33	- Stormscope / TAS / TAWS / ADF, if installed Adjust / Check		
34	- WX radar		
35	- Radio altimeter, if installed Adjust / Check		
36	- Transponder code Adjust / Check		
CAUTION Setting the INERT SEP switch to ON may result in maximum available TRQ being lower than 100%, depending on runway elevation and outside temperature – refer to <u>Subsection 5.9. Takeoff Distances</u> .			
37	- Takeoff distances		
28			
50	- INERT SEP switch As required Depending on external conditions and takeoff performance		

Continue 🕨

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04

Normal Takeoff 1 / 3

When lined up, on brakes:

	CAUTION	
lf	heavy precipitation, set IGNITION pushbutton and INERT SEP switch to ON. If icing conditions are foreseen – refer to procedure <u>Flight into Known Icing</u> <u>Conditions in Subsection 4.5.</u> .	
1	- ADI / HSI / headings Check	
2	- Horizon Check attitude \approx +2°	
_	NOTE	
Horizon has been set so as to indicate a 2° nose up attitude, when airplane center of gravity is at a middle average.		
3	- HSI - Heading - Standby instrument heading Check	
4	- LDG lights ON	
5	- AT As required	
6	- Engine instruments Check	
7	- CAS display Check All messages OFF, except IGNITION and INERT SEP ON , if used	
8	- Apply brakes and increase engine power.	
	To get PROP RPM in green sector	
9	- Brakes Release	
10	- THROTTLE Full forward	
11	- Max TRQ Check Corresponding to takeoff performance tables	
<u></u>	ntinuo N	

Continue 🕨

Normal Takeoff 2 / 3

► Continuing

– CAUTION –

Do not engage AT below 1,000 ft (300 m) AGL in case of takeoff without autothrottle.

— NOTE —

If AT is enabled, it will engage automatically when TRQ > around 75%. When AT is enabled, THROTTLE may slightly move to reach AT position.

12	- Rotate at V _R .		
13	- Attitude	10° Up	
Wh	When vertical speed is positive:		
14	- Brakes		
		Briefly	
15	- LANDING GEAR lever	UP	
		Airspeed < 150 KIAS	

----- NOTE ------

 During the sequence: the amber caution light flashes. It indicates that the landing gear pump is running. It goes off when the three landing gears are up locked. GEAR UNSAFE red warning light ON and GEAR UNSAFE indicate an anomaly – refer to procedure Landing Gear Retraction Discrepancy in Subsection 3A.7., it is possible that the three landing gear position green indicator lights flash unevenly then go off at the end of the sequence.
--

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.44

Normal Takeoff 3/3

► Continuing

16 - GEAR UNSAFE red warning light and GEAR UNSAFE Check OFF At the end of the sequence

In case of initial climb at V_X :

	WARNING
	It is recommended not to retract FLAPS to UP before 500 ft AGL.
	7 - Airspeed
Wher	airspeed above 115 KIAS:
18 -	ELAPS lever UP
End o	procedure.

Page 4.4.45

Short Takeoff 1 / 3

When lined up, on brakes:

CAUTION		
lf	heavy precipitation, set IGNITION pushbutton and INERT SEP switch to ON. If icing conditions are foreseen – refer to procedure <u>Flight into Known Icing</u> <u>Conditions in Subsection 4.5.</u> .	
1	- ADI / HSI / headings Check	
2	- Horizon Check attitude \thickapprox +2°	
	NOTE	
	Horizon has been set so as to indicate a 2° nose up attitude, when airplane center of gravity is at a middle average.	
3	- HSI - Heading - Standby instrument heading Check	
4	- LDG lights ON	
5	- AT OFF	
6	- Engine instruments Check	
7	- CAS display Check	
	All messages OFF, except IGNITION and INERT SEP ON , if used	
8	- Apply brakes and increase engine power.	
	To get PROP RPM in green sector	
9	- THROTTLE Full forward	
10	- Max TRQ Check Corresponding to takeoff performance tables	
11	- Brakes Release	
	NOTE	
	On short runway, maximum torque will be applied before brakes release	

On short runway, maximum torque will be applied before brakes release.

Continue ►

PIM TBM 960 - Edition 0 Rev. 04

Short Takeoff 2 / 3

► Continuing	
12 - Rotate at V _R .	
Weight < 6,579 lbs (2,984 kg):	
13 - Attitude	15° Up
Weight > 6,579 lbs (2,984 kg):	
14 - Attitude	12.5° Up
When vertical speed is positive:	
15 - Brakes	
	Briefly
16 - LANDING GEAR lever	
	Airspeed < 150 KIAS

NOTE —

 During the sequence: the amber caution light flashes. It indicates that the landing gear pump is running. It goes off when the three landing gears are up locked. GEAR UNSAFE red warning light ON and GEAR UNSAFE indicate an anomaly – refer to procedure Landing Gear Retraction Discrepancy in Subsection 3A.7., it is possible that the three landing gear position green indicator lights flash unevenly then go off at the end of the sequence.

17 - GEAR UNSAFE red warning light and GEAR UNSAFE Check OFF At the end of the sequence

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.47

٦

Short Takeoff 3 / 3

► Continuing

Г

In case of initial climb at V_X :

— WARNING -

	It is recommended not to retract FLAPS to UP before 500 ft AGL.	
	18 - Airspeed 100 KIAS	3
When airspeed above 115 KIAS:		
19 -	FLAPS lever UF	2

End of procedure.

After Takeoff 1 / 1

1	- LANDING GEAR lever	Check UP
2	- FLAPS lever	Check UP
3	- TRQ	Check 100% max.
4	- Climb airspeed	As required 124 KIAS or 170 KIAS / M 0.40
5	- EIS	Check
6	- CAS display	Check
7	- DE ICE SYSTEM panel	As required
8	- INERT SEP switch	As required

End of procedure.

Climb 1/2

1	- ALT SEL	Check
2	- Altimeters setting	As required
3	- AP / YD	Autopilot status and yaw damper ON
4	- AT	As required
5	- TRQ adjustment / ITT / Ng	Check

— **NOTE** –

The FADEC automatically adjusts the maximum climb power torque setting (MXCL) in accordance with engine operation tables – refer to <u>Subsection 5.8.</u> <u>Engine Operation</u> – without manual adjustment of the THROTTLE. If not, adjust climb power manually.

6	- Climb airspeed	To consult performance tables concerning climb:
	- 6	at 124 KIAS – refer to <u>Paragraph MXCL – Vertical</u> <u>Speeds (IAS = 124 KIAS) in Subsection 5.10.</u> ,
	- a	t 170 KIAS / M 0.40 – refer to <u>Paragraph MXCL –</u> <u>Vertical Speeds (IAS = 170 KIAS / M 0.40) in</u> <u>Subsection 5.10.</u>
7	- EIS	Check
8	- CAS display	Check
9	- WX radar	As required
10	- Pressurization	Check
11	- TEMP selector	Adjust
12		fuel quantity and imbalance, correct if necessary
13	- AMPS / VOLTS	Check
Col	ontinue 🕨	

Climb 2/2

► Continuing

CAUTION	
If heavy precipitation, set IGNITION pushbutton and INERT SEP switch to ON.	
14	- DE ICE SYSTEM panel As required Depending on external conditions, refer to procedure: Flight under Heavy Precipitations in Subsection 4.5., or Flight into Known Icing Conditions in Subsection 4.5., or Flight into Severe Icing Conditions in Subsection 4.5.
15	- INERT SEP switch As required
16	- LDG lights As required

End of procedure.

Cruise 1/2

1	- Altimeters setting	Check
2	- AP / YD	Check
		Autopilot status and yaw damper ON
3	- AT	As required
4	- TRQ adjustement / ITT / Ng	Check

— NOTE —

Engine operation tables give TRQ to be applied according to OAT, in order not to exceed authorized maximum power. For maximum cruise, the FADEC automatically limits the maximum TRQ available in accordance with the associated performance tables - refer to Subsection 5.8. Engine Operation. MXCR power tables are introduced depending on INERT SEP ON/OFF status and bleed status. 5 - EIS Check - CAS display Check 6 7 - Pressurization Check Refer to Subsection 5.4. Cabin Pressurization Envelope 8 - Fuel gauges Check

Regularly check fuel gauges for:

9 - Consumption.

- 10 Expected fuel at destination.
- 11 Tank automatic change every 5 minutes.
- 12 Imbalance.

Maximum imbalance 15 USG

When the cruise parameters are stabilized, after 4 minutes minimum:

13 - AMPS / VOLTS Check

Continue 🕨

PIM TBM 960 - Edition 0 Page 4.4.52 Rev. 04 PIM - DO NOT USE FOR FLIGHT OPERATIONS

Cruise 2 / 2 ► Continuing CAUTION If heavy precipitation, set IGNITION pushbutton and INERT SEP switch to ON. 14 - DE ICE SYSTEM panel Depending on external conditions, refer to procedure: Flight under Heavy Precipitations in Subsection 4.5., or Flight into Known Icing Conditions in Subsection 4.5., or Flight into Severe Icing Conditions in Subsection 4.5. 15 - INERT SEP switch As required 16 - LDG lights As required 17 - Top of descent Computed End of procedure.

Before Descent 1 / 1

1	- Before approach briefing	Completed
2	- Altimeters setting	Check
3	- Pressurization	Check
4	- LFE	Check
5	- Fuel gauges	Check
		Check for quantity and imbalance
6	- Fullest tank	Select
7	- AMPS / VOLTS	Check

– CAUTION –

If heavy precipitation, set IGNITION pushbutton and INERT SEP switch to ON.

Prior to descent in moist conditions and to avoid canopy misting:

9 - DEFOG pushbutton ON Status light in green

- NOTE -

The demisting function is automatically switched OFF 10 minutes after the DEFOG pushbutton has been set to ON.

If misting continues:

- 10 Perform procedure <u>Windshield Misting or Internal Icing in</u> <u>Subsection 3A.11.</u>
- 11 INERT SEP switch As required

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.54

Approach 1/2

1	- Altimeters setting (QNH)	Set / Check
2	- Minimums	Set / Check
3	- COM / NAV / GPS	Set / Check
4	- Pressurization	Check
5	- LFE	Check
6	- Fuel gauges	Check
	5 5	Check for quantity and imbalance
7	- Fullest tank	Select
8	- AMPS / VOLTS	Check

CAUTION -

If heavy precipitation, set IGNITION pushbutton and INERT SEP switch to ON.

Prior to descent in moist conditions and to avoid canopy misting:

10 - DEFOG pushbutton ON Status light in green

- NOTE —

The demisting function is automatically switched OFF 10 minutes after the DEFOG pushbutton has been set to ON.

If misting continues:

11 - Perform procedure <u>Windshield Misting or Internal Icing in</u> <u>Subsection 3A.11.</u>

12 - INERT SEP switch ON

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.55

Approach 2/2

	Continuing	
Wh	en below FL 100:	
13	- LDG lights	ON
14	- Passenger's briefing	As required
15	- Seats, belts, harnesses	Locked
16	- Passenger's table	Stowed

End of procedure.

Final Approach (in GS) or Downwind Leg (VMC) 1 / 2

Lor	ng final:	
1	- Altimeters	Check
2	- Fuel gauges	Check
3	- Fullest tank	Check for quantity and imbalance Select Maximum tolerated imbalance is 15 USG
Wh	en below FL 100:	
4	- LDG lights	ON
5	- INERT SEP switch	ON
6	- SPD knob	MAN
Wh	en airspeed is below 178 KIAS:	
7	- LANDING GEAR lever	DN Check three green
8	- GEAR UNSAFE red warning light	Check OFF
9	- GEAR UNSAFE	Check OFF
10	- Amber light	Check OFF
Coi	ntinue 🕨	

Final Approach (in GS) or Downwind Leg (VMC) 2 / 2

► Continuing

NOTE
 During the sequence: the amber caution light flashes. It indicates that the landing gear pump is running. It goes off when the three landing gears are down locked. GEAR UNSAFE red warning light ON and GEAR UNSAFE indicate an anomaly – refer to procedure Landing Gear Extension Discrepancy in Subsection 3A.7., it is possible that the three landing gear position green indicator lights flash unevenly then go off at the end of the sequence.
11 - FLAPS lever TC Airspeed < 178 KIAS
12 - WX radar mode STBY

End of procedure.

Short Final (Around 500 ft) 1 / 1

Stabilized approach		
1 - LANDING GEAR lever Check DN and three green		
When airspeed is below 122 KIAS:		
2 - FLAPS lever LDG		
NOTE		
However, when autopilot is engaged, in APR mode, with coupled GS/GP, flaps must be extended in LDG position before crossing the OUTER MARKER/FAF.		
Without AP engaged:		
3 - Approach airspeed 85 KIAS		
With AP engaged:		
4 - Approach airspeed Above 85 KIAS		
NOTE		
This is to avoid any vertical deviation in case of late FLAPS extension to LDG position in short final.		
5 - AP / YD / AT Disconnect Before 200 ft		
NOTE		

Disconnect the yaw damper at DH/MDA. Otherwise, pilot will be pushing rudder pedals against the servo. This is particularly significant when landing in a crosswind.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.59

Landing 1/1

- WARNING -

Reduce power smoothly. Quickly pulling power to idle during the flare will cause sudden deceleration which may lead to a drop down of the airplane.

1 - THROTTLE IDLE

- NOTE -

Land with a positive flight attitude about 3° nose high with main landing gear first.

After wheels touch:

— NOTE –

Idle power switches from flight IDLE to ground IDLE.

- CAUTION -

	Do not use reverse below 40 KIAS.		
2	- Reverse	As required Reverse may be applied as soon as the wheels touch the ground	
3	- Brakes	As required	

Wheels may lock if applying maximum braking at speeds higher than 40 KIAS.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.60

Go-Around with AP OFF 1 / 1

1 - Go-Around pushbutton Press

It causes Flight Director bars climb to +10°

Simultaneously:

If AT is engaged:

The THROTTLE will advance to full forward.

If AT is not engaged:

2 - THROTTLE Advance manually to full forward

—— NOTE ——

The airplane will tend to yaw to the left when power is applied. Use right rudder pressure to maintain coordinated flight until the rudder trim is adjusted.

- 3 Attitude 10° Up

If airspeed has been maintained at 85 KIAS or more and TRQ 100%, select FLAPS to TO position as soon as the 10° Up attitude has been attained.

When rate of climb is positive and airspeed is at or above 90 KIAS:

5	- LANDING GEAR lever	UP
		All warning lights OFF

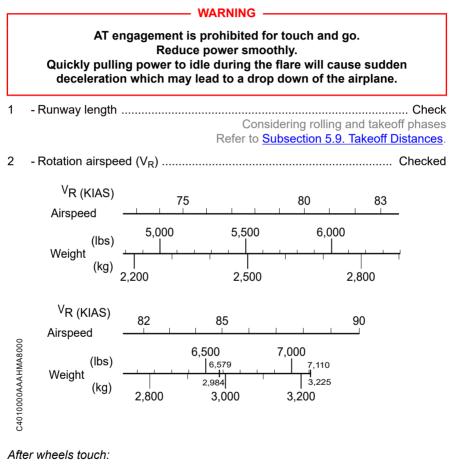
When airspeed is at or above 115 KIAS:

6	- FLAPS lever UP
7	- Climb airspeed As required
8	- TRQ As required

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.61

Go-Around with AP ON 1 / 1


1	- Go-Around pushbutton	
Sim	nultaneously:	
	If AT is engaged:	
	The THROTTLE will advance to full forward.	
	If AT is not engaged:	
	2 - THROTTLE Advance manually to full forward	
3	- FLAPS lever TO	
If airspeed has been maintained at 85 KIAS or more and TRQ 100%, select FLAPS to TO position as soon as the 10° Up attitude has been attained.		
Wh	en rate of climb is positive and airspeed is at or above 90 KIAS:	
4	- LANDING GEAR lever UP All warning lights OFF	
Wh	en airspeed is at or above 115 KIAS:	
5	- FLAPS lever UP	
6	- Climb airspeed As required	
7	- TRQ As required	
End	d of procedure	

End of procedure.

Touch and Go 1 / 2

Before deciding to perform a touch and go:

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.63

Touch and Go 2 / 2

► Continuing

4 - Elevator trim Green sector It is faster to use manual elevator trim control than electric one Ensure that runway length is sufficient to complete this sequence

– WARNING –

Confirm that flaps have reached the TO position before increasing power. Do not increase power with full flaps, as airplane may lift off prematurely at low speed.

—— NOTE —

The POH does not supply distances for touch and go. The pilot must decide whether the runway length is sufficient.

— NOTE — _____

Do not engage AT below 1,000 ft (300 m) AGL.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.64

Runway Clear 1 / 1

Runway clear - airplane stopped

CAUTION -

Generator load < 200 A.

1	- THROTTLE	Adjust
		To get minimum TRQ for taxiing

NOTE -

A two minutes minimum cool down period is required prior to engine shutdown. It starts when exiting the runway and ends at shutdown. Taxi time can be accounted provided that Ng never exceeds 70% and reverse is not used.

2	- TAXI lights ON
3	- NAV switch ON
4	- STROBE switch OFF
5	- DE ICE SYSTEM mode switch AUTO
6	- INERT SEP switch Check ON
7	- PITOT L/R & STALL HTR switch OFF
8	- TRIMS Reset to TO
9	- FLAPS lever UP
10	- FAN selector As required
11	- XPDR Check GND
12	- WX radar Check STANDBY The weather radar automatically sets to STANDBY upon touchdown

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04

Shutdown 1/3

1	- PARK BRAKE	Set ON
2	- PARK BRAKE	Check ON
3	- EXT LIGHTS panel	All OFF
4	- INT LIGHTS panel	As required
5	- OXYGEN switch	OFF
6	- FUEL SEL pushbutton	MAN Status light in green
7	- AP/TRIMS switch	OFF
>>	Up to S/N 1463	
8	- SEATS HTRS MASTER switch	OFF
>>	From S/N 1465	
9	- SEATS HTRS MASTER pushbutton	OFF Status light in white
>> All		
10	- FAN selector	OFF
11	- BLEED switch	OFF/RST
12	- Check for cabin depressurization (cabin differential pre	essure = 0 psi).
13		IDLE Verify 2 min cool down
14	- ENGINE MODE switch	OFF
_	NOTE	

During engine shutdown in high OAT, the FADEC may automatically perform a 15-second dry motoring run before complete engine shutdown.

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.66

Shutdown 2/3

► Continuing

WARNING ·

During automatic dry motoring run, the propeller continues turning. Remain clear of propeller area.

After automatic dry motoring if any:

15	- FUEL TANK SELECTOR OFF		
16	- INERT SEP switch OFF		
17	- AUX BP ON Wait for AUX BP to activate to confirm it works when fuel pressure decreases		
18	- AUX BP switch OFF		
19	- GENERATOR selector OFF		
Afte	After inertial separator retraction, about 40 seconds:		
20	- SOURCE selector OFF		
21	- Crash lever Pull down		
22	- PARK BRAKE As required		
23	- Standby instruments OFF		
	MD302 normal turn off procedure:		

 - No pilot action is required to turn the MD302 off. It will automatically turn off within 60 seconds following electrical power switch-off.

MD302 manual turn off procedure:

– NOTE –––––

The MD302 can be manually turned off when operating on internal battery to conserve battery power.

25 - Press and hold the control knob for approximately two seconds.

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.4.67

Shutdown 3/3

► Continuing

26 - Turn the control knob to select POWER OFF on the menu and press the control knob to turn the standby attitude module off.

End of procedure.

Outside Check after Shutdown 1 / 1

1 - Oxygen cylinder (right wing fairing) Close

- CAUTION -

Wait for exhaust stubs to cool temperature before installing covers.

2 - Install air inlet and static port plugs, and exhaust and pitot covers.

—— NOTE —

Check oil level within 15 to 20 minutes following engine shutdown. Refer to <u>Paragraph Engine Oil in Subsection 8.7.</u>.

End of procedure.

Intentionally left blank

Page 4.4.70

4.5 - Particular Procedures

— NOTE —

The procedures and procedure elements given in this subsection Particular Procedures supplement the normal procedures or complete certain elements of the normal procedures described in Subsection(s) 4.3 and/or 4.4.

Flight into Known Icing Conditions 1/4

CAUTION -

The stall warning system does not function properly in icing conditions and should not be relied upon to provide adequate stall warning in icing conditions and after leaving icing conditions, if ice accretion remains on the airplane. Moreover, the ESP and USP functions may not be correctly engaged.

General

Icing conditions exist when the OAT on the ground or in flight is +5 °C or below, and visible moisture in any form is present (clouds, fog with visibility of one mile (1.6 km) or less, rain, snow, sleet or ice crystals).

Icing conditions also exist when the OAT on the ground is +5 °C or below and when operating on ramps, taxiways or runways where surface snow, ice, standing water or slush may be ingested by the engine or freeze on engine or cowlings.

- NOTE -

To convert OAT to SAT in flight, refer to Subsection 5.5. SAT - OAT Conversions. SAT = OAT - 2 °C on the ground.

Flight into known icing conditions is authorized when all airplane equipment provided for ice protection is operating correctly. This includes:

- Pneumatic deice system for inboard and outboard wing, for stabilizers and for elevator horns.
- Propeller electrical deice system,
- Electrical heating system for both pitots and for the stall warning incidence sensor.
- Windshield electrical deice system, and

Continue

Flight into Known Icing Conditions 2 / 4

► Continuing

- Inertial separator.

For description of deice systems, refer to Subsection Ice Protection Equipment.

Ice accumulation thickness is monitored by the pilot on the left-side wing leading edge.

At night, a leading edge icing inspection light located on the fuselage left side, activated by the ICE LIGHT pushbutton, is provided.

Boots are automatically cycling at the optimum time to assure proper ice removal. Correct operation of the system can be checked observing the illumination in green of the status light around AIRFRAME DE ICE pushbutton. If correct operation cannot be confirmed, do not enter or leave as soon as possible icing conditions.

If **AFRM DEICE FAIL** is displayed, perform procedure <u>AFRM DEICE FAIL in</u> <u>Subsection 3A.11.</u>.

Ice Protection Procedures

- CAUTION -

Should conditions require it, apply these directives from beginning of taxi onwards.

Prior to entering IMC if OAT < 5 °C and as long as under icing conditions (IMC and OAT < 5 °C) or if **ICE DETECTED** is displayed, whichever comes first:

1 - DE ICE SYSTEM mode switch MAN

All deicing systems turn on

- NOTE _____

Inertial separator position affects engine parameters, particularly TRQ and ITT. The FADEC automatically adjusts the maximum power available depending on the inertial separator position and in accordance with engine operation tables – refer to <u>Subsection 5.8. Engine Operation</u> – without manual adjustment of the THROTTLE. If not, adjust engine power manually.

2 - All deicing systems Check ON

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.5.3

Flight into Known Icing Conditions 3 / 4

► Continuing

3 - IGNITION pushbutton ON Status light in green

_____ NOTE _____

IGNITION pushbutton may be left ON for a long period.

— NOTE –

The INERT SEP switch must be left ON while the airplane remains in icing conditions.

------ CAUTION -------

If airplane leaves icing conditions, maintain INERT SEP switch to ON as long as ice thickness on non-deiced visible parts exceeds 15 mm (or $\frac{1}{2}$ in).

This will avoid ice fragments coming from propeller spinner and being ingested by engine.

Procedures for holding, approach and landing in icing conditions:

- Minimum recommended airspeeds are:

	Weight	
	< 6,579 lbs (2,984 kg)	> 6,579 lbs (2,984 kg)
Flaps UP	130 KIAS	135 KIAS
Flaps TO	110 KIAS	115 KIAS
Flaps LDG	90 KIAS	95 KIAS

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.5.4

Flight into Known Icing Conditions 4 / 4

► Continuing

 If there is ice on the unprotected surfaces of the airplane, during flight end phase, conduct holding with the flaps up. Use flaps as required for final approach and landing at minimum airspeeds noted above.

Ice accumulation effects

When ice has accumulated on the unprotected surfaces of the airplane, aerodynamic characteristics may be changed.

Particularly stall airspeeds may increase by up to:

FLAPS UP	20 KIAS
FLAPS TO	15 KIAS
FLAPS LDG	10 KIAS

In case of severe or prolonged icing, an ice concretion due to refreezing around the heated stall warning may appear. Above-recommended airspeeds take into account, on one side, the stall airspeed increase due to profile shape deterioration and, on the other side, the weight increase of the iced-up airplane, taking as a basis the airplane maximum weight when not iced-up.

Rate of climb values with ice accumulation on the unprotected surfaces are to be decreased by 10%.

Cruise airspeeds may be decreased by 10%.

Cruise airspeeds decrease may be more if engine power is limited.

Because of the higher landing airspeed, landing distances will be increased. In the landing configuration, using 90 KIAS approach airspeed increases landing distance by 20% – refer to <u>Subsection Landing Distances</u>.

End of procedure.

Flight into Severe Icing Conditions 1 / 1

The following weather conditions may be conducive to severe in-flight icing:

- Visible rain at temperatures below 0 °C ambient air temperature,
- Droplets that splash or splatter on impact at temperatures below 0 °C ambient air temperature.

Severe icing conditions, particularly freezing rain and freezing drizzle, can be identified by:

- unusual extensive ice accumulation on the airframe and windshield in areas not normally observed to collect ice,
- accumulation of ice on the upper surface of the wing aft of the protected area.

Procedures for exiting freezing rain or freezing drizzle conditions:

- 1 Inform ATC to exit severe icing conditions by changing the route or the altitude.
- 2 Avoid abrupt and excessive maneuvering that may exacerbate control difficulties.

► Do not engage AP

If the autopilot is engaged:

3 - Hold the control wheel firmly and disengage the autopilot.

If an unusual roll response or uncommanded roll control movement is observed:

4 - Angle-of-attack Reduce

Do not extend flaps when holding in icing conditions

Operation with flaps extended can result in a reduced wing angle-of-attack, with the possibility of ice forming on the upper surface further aft on the wing than normal, possibly aft of the protected area.

If the flaps are extended:

5 - Do not retract flaps until the airframe is clear of ice.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04 Page 4.5.6

Flight under Heavy Precipitations 1 / 1

1 - IGNITION pushbutton ON

Status light in green

– NOTE –––––

This action is intended, in highly improbable case of an engine flameout further to an important ingestion, to ensure immediate restarting without action of the pilot.

2 - INERT SEP switch ON

End of procedure.

Utilization on Runways Covered with Water 1 / 1

If takeoff or landing must be performed on a runway covered with water:

1	- IGNITION pushbutton	ON
	·	Status light in green
2	- INERT SEP switch	ON

End of procedure.

Utilization on Runways Covered with Melting or Not Tamped Snow 1 / 3

If required:

Refer to procedure <u>Utilization in Cold Weather (0 °C to -25 °C) and Very</u> <u>Cold Weather (-25 °C to -40 °C)</u>.

– CAUTION –

When the engine is shutdown, do not set the PROP DE ICE switch to ON for more than 10 seconds, damage to the propeller blades could result.

Preflight inspection:

- Remove any snow or ice from the wings, stabilizers and movable surfaces, landing gear wells and gear doors, as well as flap tracks, actuators and their fairings.
- 2 Spray anti-icing fluid on the wings, stabilizers and movable surfaces (upper and lower surfaces) and in the landing gear wells, shortly before takeoff.

Taxiing:

3	- INERT SEP switcl	h ON
4	- INERT SEP ON	Check ON
5	- FLAPS lever	UP
6	- Taxi airspeed	Max. 5 KIAS
7	- Brakes	To maintain the brake pads warm, this will prevent any subsequent locking due to freezing after takeoff

Before line up:

If the runway is long enough:

8	- FLAPS lever UP	
	Takeoff distances increased by 15%	

9 - Rotation airspeed Increased by 5 KIAS

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.5.9

Utilization on Runways Covered with Melting or Not Tamped Snow $2\,/\,3$

► Continuing

	NOTE
	Takeoff distances must be increased to take into account the flap position (+ 15% compared to the takeoff position) and the runway condition.
	The ground roll may be multiplied by three in some melting or not tamped snow cases.
10	- IGNITION pushbutton ON Status light in green
11	- IGNITION Check ON
12	- INERT SEP switch ON
13	- INERT SEP ON Check ON
Takeoff:	
Du	ring takeoff run:
	- Lightly lift up nose wheel.
	In order to reduce the forward resistance due to snow accumulation against the wheel
Aft	er takeoff:
15	 Normally retract the landing gear, then perform a complete cycle (extension/retraction) at IAS < 150 KIAS.
Before la	anding:
16	- IGNITION pushbutton ON Status light in green
17	- IGNITION Check ON
18	- INERT SEP switch ON
19	- INERT SEP ON Check ON
Continue	

PIM TBM 960 - Edition 0 Rev. 04

Utilization on Runways Covered with Melting or Not Tamped Snow $3\ /\ 3$

Continuing

Touch and Go:

WARNING -

Touch and Go is prohibited.

On the ramp, after landing or taxiing:

- 20 Do not use the parking brake to prevent brake lock.
- 21 Use chocks and/or tie-down the airplane.

End of procedure.

Page 4.5.11

Utilization on Icy or Covered with Tamped Snow Runways 1 / 3

If required:

Refer to procedure <u>Utilization in Cold Weather (0 °C to -25 °C) and Very</u> <u>Cold Weather (-25 °C to -40 °C)</u>.

——— CAUTION ———

When the engine is shutdown, do not set the PROP DE ICE switch to ON for more than 10 seconds, damage to the propeller blades could result.

Preflight inspection:

- Remove any snow or ice from the wings, stabilizers and movable surfaces, landing gear wells and gear doors, as well as flap tracks, actuators and their fairings.
- 2 Spray anti-icing fluid on the wings, stabilizers and movable surfaces (upper and lower surfaces), shortly before takeoff.

Taxiing:

- 3 INERT SEP switch ON
 4 INERT SEP ON Check ON
 5 Taxi airspeed Max. 5 KIAS Apply very smooth variations using THROTTLE
- 6 Steer the airplane using the rudder.

— NOTE ———

Make turns at a very low airspeed, engine torque tends to make the airplane turn to the left.

7 - Use brakes only at very low airspeed and progressively.

Before line up:

8 - IGNITION pushbutton ON

Status light in green

9 - IGNITION Check ON

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.5.12

Utilization on Icy or Covered with Tamped Snow Runways 2 / 3

► Continuing

- 10 INERT SEP switch ON
- 11 INERT SEP ON Check ON

Takeoff:

12 - After takeoff, normally retract the landing gear, then perform a complete cycle (extension/retraction) at IAS < 150 KIAS.

Before landing:

13	- IGNITION pushbutton	ON
		Status light in green
14	- IGNITION	Check ON
15	- INERT SEP switch	ON
16	- INERT SEP ON	Check ON

Landing:

After wheels touch:

17 - Use reverse only if necessary and very progressively by monitoring the airplane behavior.

—— NOTE –

The engine torque tends to make the airplane turn to the left.

- 18 Taxi airspeed Max. 5 KIAS Apply very smooth variations using THROTTLE
- 19 Steer the airplane using the rudder.

Make turns at a very low airspeed, engine torque tends to make the airplane turn to the left.

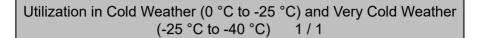
— NOTE —

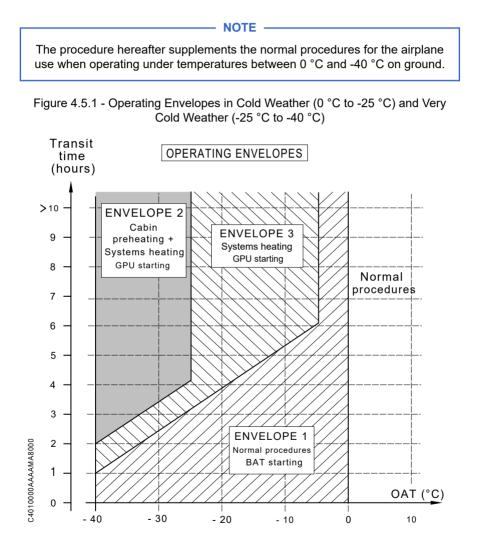
20 - Use brakes only at very low airspeed and progressively.

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.5.13

Utilization on Icy or Covered with Tamped Snow Runways $3\,/\,3$


► Continuing


On the ramp, after landing or taxiing:

- 21 Do not use the parking brake to prevent brake lock.
- 22 Use chocks and/or tie-down the airplane.

End of procedure.

End of procedure.

PIM TBM 960 - Edition 0 Rev. 04 Page 4.5.15

Utilization in Cold Weather (0 °C to -25 °C) and Very Cold Weather (-25 °C to -40 °C) – Envelope 1 1/3

- NOTE ·

The procedure hereafter supplements the normal procedures for the airplane use when operating in the Envelope 1 defined in Figure 4.5.1.

Preflight inspection:

1 - Remove any snow or ice from the wings, stabilizers and movable surfaces.

Depending on the condition of runways and taxiways:

- 2 Perform procedure <u>Utilization on Runways Covered with</u> <u>Melting or Not Tamped Snow</u>
- or
- 3 Perform procedure <u>Utilization on Icy or Covered with Tamped</u> <u>Snow Runways</u>
- 4 Carry out a complete rotation of the propeller to check its free rotation.
- 5 If the airplane is operating permanently under negative temperatures, fuel draining will have to be performed with a maximum interval of once a week after having parked the airplane in a heated hangar.
- 6 Remove chocks and/or release ties from the airplane.
- 7 Check the free deflection of the flight controls and of the elevator trim.

Before starting engine / Engine start / After engine start:

8 - Perform normal procedures defined in Subsection(s) 4.3 and/or 4.4.

Before taxiing / Taxiing / Before line up / Takeoff:

DE ICE SYSTEM panel

9	- DE ICE SYSTEM mode switch	MAN
		All deicing systems turn on

- 10 INERT SEP switch Check ON
- 11 INERT SEP ON Check ON

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 04 Page 4.5.16

Utilization in Cold Weather (0 °C to -25 °C) and Very Cold Weather (-25 °C to -40 °C) – Envelope 1 2/3

► Continuing

12 - PITOT L/R & STALL HTR switch ON

13 - Perform normal procedures defined in Subsection(s) 4.3 and/or 4.4.

Depending on the condition of runways and taxiways:

14 - Perform procedure <u>Utilization on Runways Covered with</u> <u>Melting or Not Tamped Snow</u>

or

15 - Perform procedure <u>Utilization on Icy or Covered with Tamped</u> <u>Snow Runways</u>

Landing / After landing:

16 - Perform normal procedures defined in Subsection(s) 4.3 and/or 4.4.

Depending on the condition of runways and taxiways:

- 17 Perform procedure <u>Utilization on Runways Covered with</u> <u>Melting or Not Tamped Snow</u>
- or

18 - Perform procedure <u>Utilization on Icy or Covered with Tamped</u> Snow Runways

Shutdown:

- 19 PARK BRAKE OFF
- 20 PARK BRAKE Check OFF

– NOTE –

Use of the parking brake in cold or very cold weather is not recommended in order to prevent the brakes from sticking.

- 21 Perform normal procedures defined in Subsection(s) 4.3 and/or 4.4.
- 22 Use chocks and/or tie-down the airplane using anchor points on ground.

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 04

Utilization in Cold Weather (0 °C to -25 °C) and Very Cold Weather (-25 °C to -40 °C) – Envelope 1 3/3

► Continuing

23 - Install air inlet and static port plugs, and exhaust and pitot covers.

End of procedure.

Utilization in Cold Weather (0 °C to - 25 °C) and Very Cold Weather (- 25 °C to - 40 °C) – Envelope 2 and 3 1 / 6

NOTE ·

The procedures hereafter supplement or replace the normal procedures for the airplane use when operating in the Envelope 2 or 3 defined in Figure 4.5.1.

Preflight inspection:

When operating in Envelope 2:

1 - Preheat the cabin.

NOTE Preheating during at least 30 minutes is necessary using a heater (70 °C mini). Hot air pipes must be installed in the cabin by half-opening the door.

2 - Remove any snow or ice from the wings, stabilizers and movable surfaces.

Depending on the condition of runways and taxiways:

- 3 Perform procedure <u>Utilization on Runways Covered with</u> <u>Melting or Not Tamped Snow</u>
- or
- 4 Perform procedure <u>Utilization on Icy or Covered with Tamped</u> <u>Snow Runways</u>
- 5 Spray anti-icing fluid on the wings, stabilizers and movable surfaces (upper and lower surfaces), shorthly before takeoff.
- 6 Carry out a complete rotation of the propeller to check its free rotation.
- 7 Do not perform a fuel draining. If the airplane is operating permanently under negative temperatures, drainings will have to be performed once a week after having parked the airplane in a heated hangar.
- 8 Remove chocks and/or release ties from the airplane.

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.5.19

Utilization in Cold Weather (0 °C to - 25 °C) and Very Cold Weather (- 25 °C to - 40 °C) – Envelope 2 and 3 2 / 6

► Continuing

9 - Check the free deflection of the flight controls and of the elevator trim.

10 - ENGINE MODE switch	OFF
11 - AUX BP switch	OFF or AUTO
12 - AUX BP ON	Check OFF
13 - IGNITION pushbutton	ON During 30 seconds Status light in green
14 - IGNITION	Chock ON
14 - IGNITION	UNCONCERNENT OF THE CARE OF TH
Then:	

—— NOTE ———

This enables to preheat spark igniters before starting the engine.

Before starting engine:

17 - Perform normal procedures defined in Subsection(s) 4.3 and/or 4.4. Engine start:

— CAUTION — — —

The starting must be mandatorily performed using an external power source (GPU).

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.5.20

Utilization in Cold Weather (0 °C to - 25 °C) and Very Cold Weather (- 25 °C to - 40 °C) – Envelope 2 and 3 3/6

► Contin	uing	
21	- Battery and ESS. bus VOLTS	Check voltage ≈ 28 Volts On EIS of MFD
22	- THROTTLE	IDLE
23	- GND FEATHER switch	Check OFF / Guarded
24	- ENGINE MODE switch	RUN / Guarded
25	- AUX BP switch	AUTO
26	- AUX BP ON	Check ON
27	- FUEL PRESS	Check OFF
28	- IGNITION pushbutton	ON Status light in green
29	- IGNITION	Check ON
30	- Propeller area	Clear
31	- STARTER switch	ON 2 seconds, then release
32	- STARTER	Check ON

– NOTE –

Starter limits and checks of starting sequence are unchanged.

When Ng > 45%:

- 35 Engine parameters Check

— NOTE —

Ng depends on external conditions.

36 - AUX BP ON Check OFF

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.5.21

Utilization in Cold Weather (0 °C to - 25 °C) and Very Cold Weather (- 25 °C to - 40 °C) – Envelope 2 and 3 $\,$ 4 / 6

► Continuing
37 - SOURCE selector BATT
38 - BAT OFF Check OFF
39 - IGNITION pushbutton AUTO Status light in blue
40 - IGNITION Check OFF
41 - AP/TRIMS switch ON / Test OK To secure the feather position
42 - GND FEATHER switch ON To allow ground personnel to reach GPU plug
>> postMod: MOD70-0753-00C
43 - FEATHER SECURED Check ON
>> All
44 - Ground power unit Disconnect
45 - GPU door Close
46 - GPU DOOR Check OFF
47 - GND FEATHER switch OFF When ground personnel is cleared from propeller area
48 - GENERATOR selector MAIN
49 - MAIN GEN Check OFF Reset if necessary

After engine start:

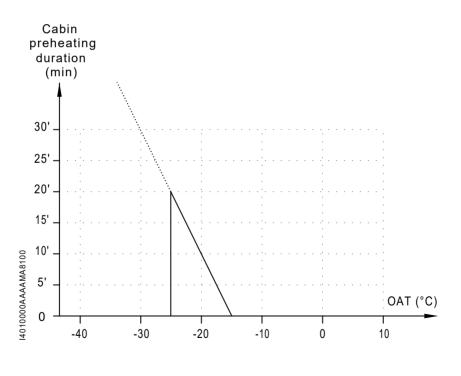
As soon as the current flow is lower than 100 A:

50	- FAN selector	OFF
51	- TEMP selector	Max. warm
52	- BLEED switch	AUTO

Continue 🕨

PIM TBM 960 - Edition 0	Page 4.5.22
Rev. 04	
PIM - DO NOT USE FOR FLIGHT OPERATIONS	

Utilization in Cold Weather (0 °C to - 25 °C) and Very Cold Weather (- 25 °C to - 40 °C) – Envelope 2 and 3 5/6


► Continuing

When operating in Envelope 3:

53 - Allow the cabin to heat respecting defined time – see Figure <u>4.5.2</u>.

Before switching on the navigation and monitoring systems. This allows to respect minimum temperatures necessary for the equipment operation

54 - Perform normal procedures defined in Subsection(s) 4.3 and/or 4.4.

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 4.5.23

Utilization in Cold Weather (0 °C to - 25 °C) and Very Cold Weather (- 25 °C to - 40 °C) – Envelope 2 and 3 6 / 6

► Continuing

Before taxiing / Taxiing / Before line up / Takeoff:

55 - Perform procedure <u>Utilization in Cold Weather (0 °C to -25 °C) and</u> <u>Very Cold Weather (-25 °C to -40 °C) – Envelope 1</u>

Landing / After landing / Shutdown:

56 - Perform procedure <u>Utilization in Cold Weather (0 °C to -25 °C) and</u> Very Cold Weather (-25 °C to -40 °C) – Envelope 1

- NOTE -

If landing is foreseen by cold or very cold weather, or in case of prolonged operation of the airplane in such conditions, it is recommended to prepare the airplane as specified in <u>Subsection Utilization in Cold Weather (-0 °C to -25 °C)</u> or Very Cold Weather (-25 °C to -40 °C).

End of procedure.

Landing Procedure with Strong Headwind or Crosswind 1 / 2

If landing must be performed with strong headwind or crosswind:

- 1 Increase approach airspeed by the greatest of these two following values:
 - $\Delta V = \frac{\text{headwind} 10}{2}$ (Ex. headwind = 30 kt i.e. ΔV = 10 kt),
 - Gust amplitude = wind gust steady wind (Ex. for wind 20G35, Gust amplitude = 15 kt).
- 2 FLAPS lever LDG

- NOTE -

Do not set the flaps in the TO position. Lateral control is not improved, and flare phase is lengthened in time and in distance, with increase of piloting difficulties and landing performance.

During approach with crosswind:

— CAUTION —

Do not use or select the fuel tank on the low wing side during prolonged sideslips with a fuel low warning or gauge indicating low.

- CAUTION -

Maximum sideslip duration is 30 seconds.

3 - Maintain the airplane in drift correction through the last possible moment until beginning the flare.

In short final, on a short runway:

4 - Use normal approach airspeed IAS = 85 KIAS

Before touch-down:

5 - Generate a slideslip with the rudder in order to align fuselage with the runway (i.e left crosswind, left wing low).

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 04 Page 4.5.25

Landing Procedure with Strong Headwind or Crosswind 2 / 2

► Continuing

Immediately after landing:

CAUTION

Do not try to stabilize the airplane by pushing down the elevator control just after the touch; this operation may provide pitch oscillations while increasing the yaw movement to the wind.

Do not deflect ailerons into wind while taxiing. This will raise spoilers and have a detrimental effect. A good solution is to maintain ailerons to neutral position during taxiing after landing and taxiing before takeoff.

6 - FLAPS lever UP

— NOTE ——

Flaps travel is slow and will not have an appreciable effect on landing performance.

Maximum demonstrated crosswind for landing is 20 kt.

The most restrictive situation is as follows:

- takeoff with wind coming from the left,
- wet runway,
- aft C.G.

End of procedure.

Utilization on Grass Runway 1 / 2

——— CAUTION ———

The small wheels of the airplane and its weight may lead it to sink in soaked or soft ground.

Before planning the landing, ensure that the field is hard, smooth and dry enough. Landing and moreover takeoff shall not begin if any doubt exists about the condition of such a runway.

Particular directives

Taxi / Takeoff:

- 1 INERT SEP switch ON
- 2 INERT SEP ON Check ON
- ► Do not use the reverse

— NOTE — _____

In fact, on a flat runway with grass, it is necessary to increase power significantly above IDLE, so the pilot will not be tempted to use the reverse.

Landing:

- 3 INERT SEP switch ON
- 4 INERT SEP ON Check ON

After wheels touch down:

5 - Reverse Only if necessary

- CAUTION -

Do not maintain reverse at airspeeds below 40 KIAS to avoid ingestion of foreign matter.

Continue ►

Page 4.5.27

Utilization on Grass Runway 2 / 2

► Continuing

- NOTE -

Under 40 KIAS, using the reverse makes a cloud of solid particles (dusts, sand, gravels, cut grass, etc.) appear around the front face of the airplane. This will damage the propeller and, after ingestion, the engine internal components (compressor and turbine blades).

End of procedure.

GPS Navigation 1 / 1

Set up conditions

- 1 Verify if the data base is current.
- 2 Verify that altitude data is valid for the GPS prior to flight.

Check the systems availability requirements in Section 2: Limitations – see <u>Table</u> 2.6.1, depending on the planned navigation performance.

GPS flight plan

In the active flight plan, addition of a STAR or an approach is always made at the end of the flight plan. In the scope of these additions, the pilot must pay attention not to duplicate points.

End of procedure.

Page 4.5.30

Rev. 04

Section 5

Performance

Table of Contents

5.1	-	General	5.1.1
5.2	-	Noise Level	5.2.1
5.3	-	Airspeed Calibration	5.3.1
5.4	-	Cabin Pressurization Envelope	5.4.1
5.5	-	SAT - OAT Conversions	5.5.1
5.6	-	Stall Speeds	5.6.1
5.7	-	Wind Components	5.7.1
5.8	-	Engine Operation Maximum Climb Power – 124 KIAS Maximum Climb Power – 170 KIAS / M 0.40	5.8.2
		Maximum Cruise Power	5.8.36
5.9	-	Takeoff Distances	
		Weight 5,512 lbs (2,500 kg) Weight 5,512 lbs (2,500 kg) – INERT SEP	
		Weight 6,579 lbs (2,984 kg)	
		Weight 6,579 lbs (2,984 kg) – INERT SEP	
		Weight 7,394 lbs (3,354 kg)	
		Weight 7,394 lbs (3,354 kg) – INERT SEP	
		Weight 7,615 lbs (3,454 kg) Weight 7,615 lbs (3,454 kg) – INERT SEP	
5.10	_	Climb Performance	
		MXCL – Vertical Speeds (IAS = 124 KIAS)	5.10.2
		MXCL – Vertical Speeds (IAS = 170 KIAS / M 0.40)	5.10.3
		MXCL – Time, Consumption and Climb Distance	5.10.4
		Climb Performance after Go-Around	
		Climb Performance – Flaps TO	5.10.12
5.11	-	Cruise Performance	5.11.1
		Maximum Cruise	5.11.1
PIM T	BI	V 960 - Edition 0	Page 5.0.1

	Recommended Cruise	5.11.31
	Long Range Cruise	5.11.47
5.12	- Time, Consumption and Descent Distance	5.12.1
5.13	- Holding Time	5.13.1
5.14	- Landing Distances	5.14.1
	Weight 7,110 lbs (3,225 kg)	5.14.2
	Weight 6,250 lbs (2,835 kg)	5.14.3
	Weight 5,071 lbs (2,300 kg)	5.14.4

5.1 - General

This section provides all required performance data for airplane operations, along with additional related information.

Performance tables provided in this section are given for the various configurations of the inertial separator, as well as the status of the Engine Bleed Air System.

The title of each table and associated paragraph delineate the specific configuration with the following suffixes:

- No suffix:
 - . INERT SEP is OFF, and
 - P2.5 HI and P3 messages are OFF
- "P2.5 HI or P3":
 - . INERT SEP is OFF, and
 - . P2.5 HI or P3 message is ON
- "INERT SEP":
 - . INERT SEP is ON, and
 - P2.5 HI and P3 messages are OFF
- "INERT SEP P2.5 HI or P3":
 - . INERT SEP is ON, and
 - . P2.5 HI or P3 message is ON.

Supplements in Section 9 provide specific airplane performance associated with optional equipment and systems.

5.2 - Noise Level

	Maximum noise level permitted	Demonstrated noise level
FAR PART 36, Appendix G - Amendment 31	88 dB(A)	77.1 dB(A)
ICAO, Annex 16, Vol. 1, 8th edition, Amendment 12 Chapter 10, Appendix 6	85 dB(A)	77.1 dB(A)

Approved noise levels for TBM airplanes are stated in the EASA.A.010 Type Certificate Data Sheet.

– NOTE —

No determination has been made by the Federal Aviation Administration that the noise levels of this airplane are or should be acceptable or unacceptable for operation at, into or out of any airport.

Page 5.2.2

5.3 - Airspeed Calibration

NOTE —

Indicated airspeeds (IAS): indicated airspeed values assume zero instrument error (power configuration for cruise flight conditions).

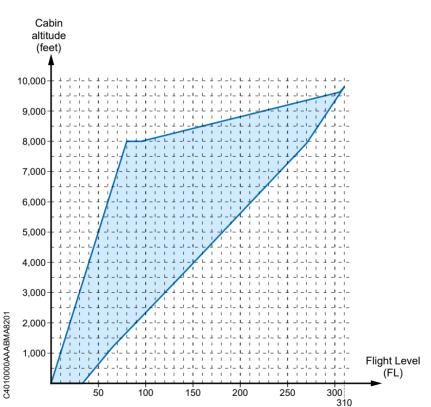
	s UP GR UP	Flap LDG (s TO GR DN	Flaps LDG LDG GR DN		
KIAS	KCAS	KIAS	KCAS	KIAS	KCAS	
125	128	70	69	60	58	
150	154	80	80	70	68	
175	179	90	90	80	78	
200	205	100	101	90	88	
225	230	120	121	100	98	
250	255	140	141	110	108	
266	271	160	162	120	118	
MPH IAS	MPH CAS	MPH IAS	MPH CAS	MPH IAS	MPH CAS	
144	147	81	79	69	67	
173	177	92	92	81	78	
201	206	104	104	92	90	
230	236	115	116	104	101	
259	264	138	139	115	113	
288	293	161	162	127	124	
307	312	184	187	138	136	

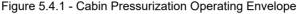
Table 5.3.1 - Normal Static Source

PIM TBM 960 - Edition 0 Rev. 00 Page 5.3.1

	s UP GR UP		s TO GR DN	Flaps LDG LDG GR DN		
KIAS	KCAS	KIAS	KCAS	KIAS	KCAS	
125	124	70	70	60	59	
150	149	80	80	70	69	
175	174	90	90	80	79	
200	199	100	100	90	90	
225	224	120	120	100	100	
250	249	140	139	110	110	
271	270	160	159	120	120	
MPH IAS	MPH CAS	MPH IAS	MPH CAS	MPH IAS	MPH CAS	
144	142	81	81	69	68	
173	171	92	92	81	79	
201	200	104	104	92	91	
230	229	115	115	104	104	
259	258	138	138	115	115	
288	287	161	160	127	127	
312	311	184	183	138	138	

Table 5.3.2 - Alternate Static Source (Bleed AUTO)


PIM TBM 960 - Edition 0 Rev. 00 Page 5.3.2



5.4 - Cabin Pressurization Envelope

NOTE -

The chart below shows the cabin altitude that can be obtained at different flight levels, taking into account the departure airport altitude, cruise flight level and LFE (Landing Field Elevation).

PIM TBM 960 - Edition 0 Rev. 03 Page 5.4.1

5.5 - SAT - OAT Conversions

_____ NOTE _____

These indicated temperatures are provided for stabilized cruise at normal operating power.

Pressure	ISA -	20 °C	ISA -	10 °C	IS	SA	ISA +	10 °C	ISA +	20 °C
altitude (ft)	SAT	OAT	SAT	OAT	SAT	OAT	SAT	OAT	SAT	OAT
SL	- 05	- 04	05	06	15	16	25	26	35	36
2,000	- 09	- 08	01	02	11	12	21	22	31	32
4,000	- 13	- 12	- 03	- 02	07	08	17	18	27	28
6,000	- 17	- 16	- 07	- 06	03	04	13	14	23	24
8,000	- 21	- 20	- 11	- 10	- 01	00	09	10	19	20
10,000	- 25	- 24	- 15	- 14	- 05	- 04	05	06	15	16
12,000	- 29	- 28	- 19	- 18	- 09	- 08	01	02	11	12
14,000	- 33	- 32	- 23	- 22	- 13	- 12	- 03	- 02	07	08
16,000	- 37	- 36	- 27	- 26	- 17	- 16	- 07	- 06	03	04
18,000	- 41	- 40	- 31	- 30	- 21	- 20	- 11	- 10	- 01	00
20,000	- 45	- 44	- 35	- 34	- 25	- 24	- 15	- 14	- 05	- 04
22,000	- 49	- 48	- 39	- 38	- 29	- 28	- 19	- 18	- 09	- 08
24,000	- 53	- 52	- 43	- 42	- 33	- 32	- 23	- 22	- 13	- 12
26,000	- 57	- 56	- 47	- 46	- 37	- 36	- 27	- 26	- 17	- 16
28,000	- 61	- 60	- 51	- 50	- 41	- 40	- 31	- 30	- 21	- 20
30,000	- 65	- 64	- 55	- 54	- 45	- 44	- 35	- 34	- 25	- 24
31,000	- 67	- 66	- 57	- 56	- 47	- 46	- 37	- 36	- 27	- 26

Table 5.5.1	- SAT -	OAT	Conversions
-------------	---------	-----	-------------

5.6 - Stall Speeds

Airplane	Cor	nfig.	Bank											
weight	ID	LE	0°			30°			45°			60°		
lbs (kg)	LDG GR	Flaps	KIA S	KCA S	MPH IAS	KIA S	KCA S	MPH IAS	KIA S	KCA S	MPH IAS	KIA S	KCA S	MPH IAS
	UP	UP	65	66	75	70	71	81	78	79	90	91	93	105
4,850 (2,200)	DN	то	62	63	71	67	68	77	73	75	84	87	89	100
(, ,	DN	LDG	53	53	61	57	57	66	63	63	73	75	75	86
	UP	UP	70	71	81	75	76	86	82	84	94	98	100	113
5,512 (2,500)	DN	то	66	67	76	71	72	82	78	80	90	93	95	107
(, ,	DN	LDG	57	57	66	61	61	70	68	68	78	81	81	93
	UP	UP	75	76	86	80	82	92	88	90	101	105	107	121
6,579 (2,984)	DN	то	71	72	82	75	77	86	84	86	97	100	102	115
(, ,	DN	LDG	61	61	70	66	66	76	73	73	84	86	86	99
7,394 to	UP	UP	81	83	93	88	89	101	97	99	112	117	119	135
7,615* (3,354 to	DN	то	77	77	89	81	83	93	91	92	105	108	109	124
3,454*)	DN	LDG	65	65	75	69	70	79	76	77	88	92	92	106
* Stall spe	eds rema	ain the sa	ame wh	en incre	asing we	eight be	cause C	.G. char	nges at i	the sam	e time.			

Table 5.6.1 - Stall Speeds

PIM TBM 960 - Edition 0 Rev. 03 Page 5.6.1

Page 5.6.2

5.7 - Wind Components

Example:

- Angle between wind direction and flight path: 50°
- Headwind: 8 kts
- Crosswind: 10 kts
- Wind speed: 13 kts

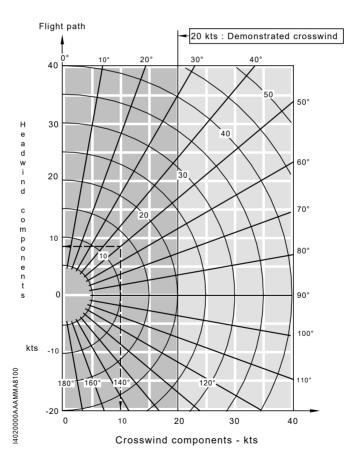


Figure 5.7.1 - Wind Components

Page 5.7.1

PIM TBM 960 - Edition 0 Rev. 00 Page 5.7.2

5.8 - Engine Operation

The following tables or/and the optimum torque indicator must be used during normal operation of the airplane.

General conditions:

The following conditions apply to all the tables in this subsection:

- Landing gear and flaps UP,
- BLEED switch on AUTO,
- represents the ISA conditions at the flight level.

The torque must be set properly based on flight level and OAT.

- NOTE -

During normal operation, the power settings are defined by the FADEC to maintain ITT below 840 °C.

Example, for conditions:

- FL = 260,
- OAT = -22 °C,
- Inertial separator OFF,
- P2.5 HI and P3 messages OFF.

The tables in ths subsection give the maximum torque to be set.

Maximum climb power:

TRQ setting = 82% for IAS = 124 KIAS – see Table 5.8.3.

Maximum cruise power:

TRQ setting = 94% – see <u>Table 5.8.21</u>.

Page 5.8.1

Maximum Climb Power – 124 KIAS

NOTE The following table provides references to torque tables that should be used depending on INERT SEP ON/OFF status and bleed status. In the table below:

- Bleed status "P2.5" = **P2.5 HI** and **P3** messages are OFF, Bleed status "P2.5 HI or P3" = **P2.5 HI** or **P3** message is ON. -

INERT SEP	Bleed status	FL < 200	FL > 200		
OFF	P2.5	<u>Table 5.8.2</u>	<u>Table 5.8.3</u>		
OFF	P2.5 HI or P3	Table 5.8.4	<u>Table 5.8.5</u>		
	P2.5	<u>Table 5.8.6</u>	<u>Table 5.8.7</u>		
ON	P2.5 HI or P3	<u>Table 5.8.8</u>	<u>Table 5.8.9</u>		

Table 5.8.1 - References to MXCL Torgue Tables - 124 KIAS

MXCL Power (FL < 200) – 124 KIAS

NOTE

 Table valid only if INERT SEP ON
 CAS message is OFF, and
 P2.5 HI

 and
 P3
 messages are OFF.

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-24											
-22											
-20											
-18											
-16											
-14											
-12											100
-10											99
-8											97
-6										100	96
-4										99	94
-2										97	92
0									100	95	90
2									98	93	88
4								100	96	91	86
6								99	93	89	84
8							100	96	91	86	
10							99	93	88		
12						100	96	91			
14						98	93				
16					100	95					
18					98						
20				100							

Table 5.8.2 - MXCL Power (FL < 200) - 124 KIAS

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.3

► Continuing

Table 5.8.2 - MXCL Power (FL < 200) - 124 KIAS

OAT		Flight Level (FL)													
(°C)	100	110	120	130	140	150	160	170	180	190	200				
22			100												
24		100													
26	100														

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.4

MXCL Power (FL > 200) – 124 KIAS

NOTE

Table valid only if **INERT SEP ON** CAS message is OFF, and **P2.5 HI** and **P3** messages are OFF.

OAT						Flight Le	evel (FL)					
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-66							94	91	87	84	81	78
-64							95	91	88	85	81	78
-62							95	92	88	85	82	79
-60							96	92	89	86	82	79
-58							96	93	89	86	83	79
-56							97	93	90	86	82	78
-54							97	93	89	85	81	78
-52							96	93	88	84	81	77
-50						100	96	92	88	84	80	77
-48						99	95	91	87	84	80	77
-46						98	94	90	87	83	80	76
-44						98	93	90	86	83	79	75
-42						97	93	89	86	82	79	75
-40					100	96	92	89	85	81	77	74
-38					99	96	92	88	84	80	77	73
-36					99	95	91	87	83	79	75	71
-34					98	94	90	86	82	78	74	70
-32					97	93	89	85	81	77	73	69
-30				100	96	92	88	84	80	76	72	68
-28				99	94	90	86	82	78	75	71	67
-26				97	93	89	85	81	77	73	69	66
-24			100	96	92	88	84	80	76	72	68	64
-22			99	95	90	86	82	78	75	71	67	63

Table 5.8.3 - MXCL Power (FL > 200) - 124 KIAS

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.5

► Continuing

	Table 5.8.3 - MXCL Power (FL > 200) – 124 KIAS														
OAT (°C) -20 -18 -16 -14 -12 -10 -12 -10 -8 -6 -4 -2 0 2 2 4 6		Flight Level (FL)													
(°C)	200	210	220	230	240	250	260	270	280	290	300	310			
-20			97	93	89	85	81	77	73	69	65	61			
-18		100	96	92	88	84	80	76	72	68	64	59			
-16		99	95	90	86	82	79	74	70	66	62	58			
-14		97	93	89	85	81	77	73	68	64	60				
-12	100	96	92	88	84	80	75	71	66	62					
-10	99	95	91	87	82	78	73	69	65						
-8	97	93	89	85	80	76	71	67							
-6	96	92	87	83	78	74	69								
-4	94	90	85	81	76	72									
-2	92	88	83	79	74										
0	90	86	81	77											
2	88	84	79												
4	86	81													
6	84														

/**-**-000 404 1/14

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01

Page 5.8.6

MXCL Power (FL < 200) – 124 KIAS – P2.5 HI or P3

NOTE

Table valid only if **INERT SEP ON** CAS message is OFF, and **P2.5 HI** or **P3** message is ON.

Table 5.8.4 - MXCL Power (FL < 200) – 124 KIAS [P2.5 HI or P3]

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-24											
-22											
-20											
-18											100
-16											99
-14											97
-12										100	95
-10										98	94
-8									100	97	92
-6									99	95	90
-4									98	93	88
-2								100	96	91	86
0								99	94	89	84
2							100	97	91	86	81
4							99	94	89	83	78
6						100	97	91	86	81	76
8						99	94	88	83	78	
10					100	96	91	86	80		
12					99	94	88	83			
14				100	96	91	85				
16				99	93	88					
18			100	95	90						
20			97	92							

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.7

OAT		Flight Level (FL)												
(°C)	100	110	120	130	140	150	160	170	180	190	200			
22		100	94											
24	100	97												
26	99													

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

MXCL Power (FL > 200) - 124 KIAS - P2.5 HI or P3

NOTE Table valid only if **INERT SEP ON** CAS message is OFF, and **P2.5 HI** or **P3** message is ON.

Table 5.8.5 - MXCL Power (FL > 200) - 124 KIAS [P2.5 HI or P3]

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-66							96	92	89	86	82	79
-64							96	93	89	86	83	79
-62							97	93	90	87	82	78
-60							98	94	90	86	81	77
-58							98	93	89	85	80	76
-56							97	92	88	84	79	76
-54						100	96	91	87	83	78	75
-52						99	95	90	86	82	78	74
-50						98	94	89	85	81	77	74
-48						97	92	88	84	80	77	73
-46					100	96	91	87	83	80	76	72
-44					99	95	90	87	83	79	75	71
-42					98	94	90	86	82	78	74	70
-40					97	93	89	85	81	77	73	69
-38				100	96	92	88	84	80	76	72	68
-36				99	95	91	87	83	79	75	71	67
-34				98	94	90	85	81	77	73	69	65
-32			100	97	92	88	84	80	76	72	68	64
-30			99	95	91	87	83	79	75	71	67	63
-28			98	94	90	86	82	78	73	70	66	62
-26			97	93	88	84	80	76	72	69	65	60
-24		100	95	91	87	83	79	75	71	67	63	59
-22		99	94	90	86	82	78	74	70	65	61	57

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.9

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-20		97	93	89	84	80	76	72	68	64	59	55
-18	100	96	91	87	83	79	75	71	66	62	57	52
-16	99	94	90	86	82	77	73	69	64	59	55	50
-14	97	93	88	84	80	76	71	67	62	57	52	
-12	95	91	87	82	78	74	69	64	59	55		
-10	94	89	85	81	76	72	67	62	57			
-8	92	88	83	79	74	69	64	59				
-6	90	86	81	76	71	67	62					
-4	88	84	79	74	69	64						
-2	86	81	76	71	66							
0	84	79	73	69								
2	81	76	71									
4	78	74										
6	76											

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.10

MXCL Power (FL < 200) – 124 KIAS – INERT SEP

NOTE Table valid only if **INERT SEP ON** CAS message is ON, and **P2.5 HI** and **P3** messages are OFF.

Table 5.8.6 - MXCL Power (FL < 200) – 124 KIAS [INERT SEP]

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-54											94
-52										97	93
-50										96	92
-48									100	96	92
-46									99	95	91
-44									98	94	90
-42									98	94	89
-40									97	93	88
-38								100	95	91	87
-36								99	94	90	85
-34								97	92	88	84
-32							100	95	90	86	82
-30							98	93	89	85	81
-28						100	96	91	87	84	80
-26						99	94	90	86	83	79
-24						97	93	89	85	82	78
-22					100	96	91	88	84	80	77
-20					98	94	90	86	83	79	76
-18					97	93	89	85	81	78	74
-16				100	95	91	88	84	80	77	73
-14				98	94	90	86	83	79	76	72
-12				97	93	89	85	81	78	74	71
-10			100	96	91	88	84	80	77	73	70

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.11

L

Table 5.8.6 - MXCL Power (FL < 200) – 124 KIAS [INERT SEP]

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-8			98	94	90	86	82	79	75	72	68
-6			97	92	88	85	81	77	74	70	67
-4		100	95	91	87	83	79	76	72	69	65
-2		98	94	89	85	82	78	74	71	67	63
0	100	96	92	88	84	80	77	73	69	65	61
2	99	95	90	86	82	79	75	71	67	63	59
4	97	93	89	85	81	77	73	69	65	61	57
6	96	91	87	83	79	75	71	67	63	59	55
8	94	89	85	81	77	73	69	64	60	57	
10	91	87	83	79	75	71	66	62	58		
12	89	85	81	77	72	68	64	60			
14	87	83	79	74	70	66	61				
16	85	81	76	71	67	63					
18	83	78	73	69	65						
20	80	75	71	66							
22	77	72	68								
24	74	70									
26	71										

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01

MXCL Power (FL > 200) – 124 KIAS – INERT SEP

NOTE Table valid only if **INERT SEP ON** CAS message is ON, and **P2.5 HI** and **P3** messages are OFF.

Table 5.8.7 - MXCL Power (FL > 200) – 124 KIAS [INERT SEP]

Continue ►

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.13

Table 5.8.7 - MXCL Power (FL > 200) – 124 KIAS [INERT SEP]

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-20	76	72	69	66	62	59	56	53	49	46	43	40
-18	74	71	68	64	61	58	55	51	48	45	41	
-16	73	70	66	63	60	57	53	50	46	43	40	
-14	72	69	65	62	59	55	52	48	45	41		
-12	71	67	64	61	57	54	50	46	43	40		
-10	70	66	63	59	56	52	48	45	41			
-8	68	65	61	58	54	50	46	43				
-6	67	63	59	56	52	48	44					
-4	65	61	58	54	50	46						
-2	63	59	55	52	48							
0	61	57	53	50								
2	59	55	51									
4	57	53										
6	55											

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.14

MXCL Power (FL < 200) – 124 KIAS – INERT SEP – P2.5 HI or P3

NOTE Table valid only if **INERT SEP ON** CAS message is ON, and **P2.5 HI** or **P3** message is ON.

Table 5.8.8 - MXCL Power (FL < 200) - 124 KIAS [INERT SEP - P2.5 HI or P3]

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-54											94
-52										98	93
-50										97	92
-48									100	95	90
-46									98	94	89
-44									97	92	88
-42								100	95	91	86
-40								98	94	89	84
-38							100	97	92	87	82
-36							99	95	90	85	81
-34							98	93	88	84	79
-32						100	96	91	86	82	78
-30						98	94	89	84	81	77
-28					100	96	92	87	83	79	76
-26					99	94	90	86	82	78	74
-24					97	93	88	84	81	77	73
-22				100	95	91	87	83	79	76	72
-20				98	94	90	86	82	78	75	71
-18				97	92	88	84	81	77	73	69
-16			100	95	91	87	83	79	75	72	68
-14			98	94	89	85	81	77	74	70	66
-12		100	96	92	87	84	80	76	72	69	65
-10		99	95	90	86	82	78	74	71	67	63

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.15

Table 5.8.8 - MXCL Power	(FL < 200) – 124 KIAS	[INERT SEP – P2.5 HI or P3]
	(. = = = = = , =	

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-8		97	93	88	84	80	77	73	69	65	61
-6	100	96	91	87	83	79	75	71	67	63	59
-4	99	94	89	85	81	77	73	69	65	61	57
-2	97	92	88	83	79	75	71	67	63	60	55
0	95	90	85	81	77	73	69	65	61	57	53
2	92	88	83	79	75	71	67	63	59	55	50
4	90	86	81	77	73	70	65	61	57	52	48
6	88	84	79	75	71	67	63	59	54	50	45
8	86	82	78	73	69	65	60	56	52	46	
10	84	80	75	71	67	62	58	53	47		
12	82	77	73	68	64	59	55	48			
14	79	75	70	66	61	56	49				
16	77	72	67	63	57	50					
18	74	69	64	58	51						
20	71	66	60	52							
22	68	61	53								
24	62	54									
26	55										

NOTE | Refer to <u>General conditions</u> at the beginning of this subsection.

MXCL Power (FL > 200) - 124 KIAS - INERT SEP - P2.5 HI or P3

NOTE Table valid only if **INERT SEP ON** CAS message is ON, and **P2.5 HI** or **P3** message is ON.

Table 5.8.9 - MXCL Power (FL > 200) - 124 KIAS [INERT SEP - P2.5 HI or P3]

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-66							73	70	67	64	60	57
-64						76	73	70	66	63	59	56
-62					80	76	72	69	65	62	58	55
-60				84	79	76	72	68	64	61	57	54
-58			87	83	79	75	71	67	63	60	56	53
-56		91	86	82	78	74	70	66	62	59	55	52
-54	94	90	85	81	77	73	69	65	61	58	54	51
-52	93	89	84	80	75	71	67	64	60	57	53	50
-50	92	87	83	79	74	70	66	63	59	56	53	50
-48	90	86	81	77	73	69	65	61	58	55	52	49
-46	89	85	80	76	72	68	64	60	57	54	52	48
-44	88	83	79	74	70	66	63	60	57	54	51	48
-42	86	82	77	73	69	65	62	59	56	53	50	47
-40	84	80	75	72	68	64	61	58	55	52	49	45
-38	82	78	74	70	67	64	60	57	54	51	48	44
-36	81	77	73	69	66	63	59	56	53	50	47	43
-34	79	75	72	68	65	62	59	55	52	49	46	42
-32	78	74	71	67	64	61	57	54	51	48	44	41
-30	77	73	70	66	63	60	56	53	50	46	43	40
-28	76	72	69	65	62	58	55	52	48	45	42	
-26	74	71	67	64	61	57	54	50	47	44	40	
-24	73	70	66	63	59	56	52	49	46	42	39	
-22	72	69	65	62	58	55	51	48	44	41		

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.17

Table 5.8.9 - MXCL Pow	er (FL > 200) – 124 KIAS	[INERT SEP – P2.5 HI or P3]

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-20	71	67	64	60	57	53	50	46	42	39		
-18	69	66	62	59	55	52	48	44	40			
-16	68	64	61	57	54	50	46	42	38			
-14	66	63	59	56	52	48	44	40				
-12	65	61	58	54	50	46	42	38				
-10	63	60	56	52	48	44	39					
-8	61	58	54	50	46	41	37					
-6	59	56	52	48	43	39						
-4	57	54	49	45	41	37						
-2	55	51	47	43	38							
0	53	49	44	40								
2	50	46	41									
4	48	43										
6	45											

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01

Maximum Climb Power – 170 KIAS / M 0.40

NOTE

The following table provides references to torque tables that should be used depending on INERT SEP ON/OFF status and bleed status. In the table below:

- Bleed status "P2.5" = **P2.5 HI** and **P3** messages are OFF, Bleed status "P2.5 HI or P3" = **P2.5 HI** or **P3** message is ON. _

INERT SEP	Bleed status	FL < 200	FL > 200
OFF	P2.5	Table 5.8.11	<u>Table 5.8.12</u>
011	P2.5 HI or P3	Table 5.8.13	<u>Table 5.8.14</u>
ON	P2.5	Table 5.8.15	<u>Table 5.8.16</u>
ON	P2.5 HI or P3	Table 5.8.17	<u>Table 5.8.18</u>

Table 5.8.10 - References to MXCL Torque Tables – 170 KIAS / M 0.40

MXCL Power (FL < 200) - 170 KIAS / M 0.40

NOTE

 Table valid only if INERT SEP ON
 CAS message is OFF, and
 P2.5 HI

 and
 P3
 messages are OFF.

L

Table 5.8.11 - MXCL Power (FL < 200) - 170 KIAS / M 0.40

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-24											
-22											
-20											
-18											
-16											
-14											
-12											
-10											
-8											
-6											100
-4											99
-2											97
0										100	95
2										98	93
4									100	95	90
6									98	92	87
8								100	95	90	
10								97	92		
12							100	95			
14							97				
16						100					
18					100						
20				100							

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.20

Table 5.8.11 - MXCL Power (FL < 200) - 170 KIAS / M 0.40

OAT		Flight Level (FL)									
(°C)	100	110	120	130	140	150	160	170	180	190	200
22			100								
24		100									
26	100										

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.21

MXCL Power (FL > 200) - 170 KIAS / M 0.40

NOTE

 Table valid only if INERT SEP ON
 CAS message is OFF, and
 P2.5 HI

 and
 P3
 messages are OFF.

Table 5.8.12 - MXCL Power (FL > 200) - 170 KIAS / M 0.40

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-66								97	92	89	85	81
-64								97	93	89	85	81
-62								98	94	90	86	82
-60								98	94	90	86	82
-58								99	95	91	86	82
-56								98	94	90	85	81
-54								98	93	89	84	80
-52								97	92	88	84	80
-50								96	92	88	83	79
-48							100	95	91	87	83	79
-46							99	95	90	87	83	78
-44							98	94	90	86	82	78
-42							98	93	89	85	81	77
-40							97	93	89	85	80	76
-38							96	92	88	83	79	75
-36						100	95	91	86	82	78	74
-34						99	94	90	85	81	77	72
-32						98	93	88	84	80	76	71
-30					100	96	92	87	83	79	74	70
-28					99	95	90	86	81	77	73	69
-26					98	93	89	85	80	76	72	68
-24					97	92	88	83	79	75	71	66
-22				100	95	91	86	82	78	73	69	65

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.22

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-20				98	94	90	85	81	76	72	68	63
-18				97	93	88	84	79	75	70	66	61
-16			100	96	91	87	82	78	73	69	64	60
-14			98	94	90	86	81	76	71	67	62	
-12			97	93	88	84	79	74	69	65		
-10		100	96	92	87	82	77	72	67			
-8		98	94	90	84	80	75	70				
-6	100	96	92	87	82	78	73					
-4	99	94	90	85	80	76						
-2	97	92	88	83	78							
0	95	90	85	81								
2	93	88	83									
4	90	85										
6	87											

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.23

MXCL Power (FL < 200) - 170 KIAS / M 0.40 - P2.5 HI or P3

NOTE Table valid only if **INERT SEP ON** CAS message is OFF, and **P2.5 HI** or **P3** message is ON.

Table 5.8.13 - MXCL Power (FL < 200) - 170 KIAS / M 0.40 [P2.5 HI or P3]

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-24											
-22											
-20											
-18											
-16											
-14											
-12											100
-10											99
-8											97
-6										100	95
-4										98	93
-2									100	96	90
0									98	93	88
2								100	96	90	85
4								98	93	88	82
6							100	95	90	85	80
8							98	93	87	82	
10						100	95	90	84		
12						98	92	87			
14					100	95	89				
16				100	97	91					
18				99	94						
20			100	96							

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.24

L

Table 5.8.13 - MXCL Power (FL < 200) – 170 KIAS / M 0.40 [P2.5 HI or P3]

OAT		Flight Level (FL)									
(°C)	100	110	120	130	140	150	160	170	180	190	200
22			98								
24		100									
26	100										

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.25

L

MXCL Power (FL > 200) - 170 KIAS / M 0.40 - P2.5 HI or P3

NOTE Table valid only if **INERT SEP ON** CAS message is OFF, and **P2.5 HI** or **P3** message is ON.

Table 5.8.14 - MXCL Power (FL > 200) - 170 KIAS / M 0.40 [P2.5 HI or P3]

OAT						Flight Le	evel (FL)					
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-66								98	94	90	86	82
-64								99	94	91	87	82
-62								99	95	90	86	81
-60								99	94	89	85	80
-58								98	93	88	84	79
-56								97	92	87	82	78
-54								96	91	86	81	77
-52							100	95	90	85	81	77
-50							98	93	88	84	80	76
-48							97	92	88	84	80	75
-46							96	91	87	83	79	75
-44						100	95	91	86	82	78	74
-42						99	94	90	85	81	77	72
-40						97	93	89	84	80	76	71
-38						96	92	88	83	79	74	70
-36					100	95	91	86	82	78	73	69
-34					99	94	90	85	81	76	72	67
-32					98	93	88	84	79	75	71	66
-30					96	92	87	83	78	74	69	65
-28				100	95	90	86	81	77	73	68	64
-26				98	93	89	84	80	75	71	67	62
-24			100	97	92	88	83	79	74	70	65	61
-22			99	95	91	86	82	77	73	68	63	59

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.26

Table 5.8.14 - MXCL Power (FL > 200) – 170 KIAS / M 0.40 [P2.5
--

OAT						Flight Le	evel (FL)					
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-20			98	94	89	85	80	76	71	66	61	56
-18			97	93	88	83	78	74	69	64	59	54
-16		100	95	91	86	81	77	72	67	62	56	52
-14		98	93	89	84	80	75	70	64	59	54	
-12	100	96	91	87	82	78	72	67	62	57		
-10	99	94	90	86	80	75	70	64	59			
-8	97	92	88	83	78	73	67	62				
-6	95	91	85	81	75	70	65					
-4	93	88	83	78	73	68						
-2	90	85	80	75	70							
0	88	83	78	73								
2	85	80	75									
4	82	77										
6	80											

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.27

L

MXCL Power (FL < 200) - 170 KIAS / M 0.40 - INERT SEP

NOTE Table valid only if **INERT SEP ON** CAS message is ON, and **P2.5 HI** and **P3** messages are OFF.

Table 5.8.15 - MXCL Power (FL < 200) – 170 KIAS / M 0.40 [INERT SEP]

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-54											99
-52											99
-50											98
-48											97
-46											97
-44										100	96
-42										99	95
-40										98	93
-38									100	96	92
-36									99	94	90
-34									97	93	88
-32								100	95	91	87
-30								98	94	90	86
-28							100	96	92	88	85
-26							99	95	91	87	84
-24							98	94	90	86	83
-22						100	96	92	89	85	81
-20						99	95	91	87	84	80
-18						98	93	90	86	83	79
-16					100	96	92	88	85	81	78
-14					99	95	91	87	83	80	77
-12					98	94	90	86	82	79	75
-10				100	96	92	88	84	81	77	74

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.28

L

Table 5.8.15 - MXCL Power (FL < 200) – 170 KIAS / M 0.40 [INERT SEP]

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-8				99	95	91	87	83	79	76	72
-6				97	93	89	85	82	78	74	71
-4			100	96	91	88	84	80	76	73	69
-2			98	94	90	86	82	79	75	71	67
0		100	97	92	88	85	81	77	73	69	65
2		99	95	91	87	83	79	75	71	67	63
4		98	93	89	85	81	77	73	68	64	60
6	100	96	91	87	83	79	75	70	66	62	58
8	98	93	89	85	81	77	72	68	64	60	
10	95	91	87	83	79	74	70	66	62		
12	93	89	85	81	76	72	67	63			
14	91	87	83	78	73	69	65				
16	89	85	80	75	71	67					
18	87	82	77	73	68						
20	84	79	74	70							
22	81	76	71								
24	78	73									
26	75										

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01

L

MXCL Power (FL > 200) - 170 KIAS / M 0.40 - INERT SEP

NOTE Table valid only if **INERT SEP ON** CAS message is ON, and **P2.5 HI** and **P3** messages are OFF.

Table 5.8.16 - MXCL Power (FL > 200) - 170 KIAS / M 0.40 [INERT SEP]

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-66							77	74	70	67	64	62
-64						81	77	74	71	68	65	62
-62					85	81	78	74	71	68	65	61
-60				90	86	82	78	75	71	67	64	60
-58			93	90	86	81	78	74	70	67	63	60
-56		96	93	89	85	81	77	73	69	66	62	59
-54	99	96	92	89	84	80	76	72	69	65	61	58
-52	99	95	91	88	84	79	75	71	68	64	61	58
-50	98	94	91	87	83	78	74	71	67	63	60	57
-48	97	94	90	86	82	77	73	70	66	63	60	57
-46	97	93	89	85	80	76	72	69	66	63	59	56
-44	96	92	88	84	79	75	71	68	65	62	59	55
-42	95	91	86	83	78	74	71	68	64	61	58	54
-40	93	89	85	82	77	74	70	67	64	60	57	53
-38	92	88	84	80	76	73	69	66	63	59	56	52
-36	90	86	82	79	75	72	68	65	62	58	55	52
-34	88	85	81	78	74	71	67	64	60	57	54	51
-32	87	84	80	77	74	70	66	63	59	56	53	50
-30	86	83	79	76	72	69	65	62	58	55	52	49
-28	85	82	78	75	71	68	64	61	57	54	51	48
-26	84	80	77	74	70	67	63	60	56	53	50	47
-24	83	79	76	73	69	65	62	58	55	52	49	
-22	81	78	75	72	68	64	61	57	54	51	47	

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.30

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-20	80	77	74	71	67	63	60	56	53	49		
-18	79	76	72	69	66	62	58	55	51			
-16	78	74	71	68	64	61	57	53	49			
-14	77	73	70	67	63	59	55	51				
-12	75	72	68	65	61	57	54					
-10	74	70	67	64	60	56						
-8	72	69	65	62	58	54						
-6	71	67	64	60	56							
-4	69	65	62	58								
-2	67	63	59									
0	65	61	57									
2	63	59										
4	60	57										
6	58											

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.31

MXCL Power (FL < 200) – 170 KIAS / M 0.40 – INERT SEP – P2.5 HI or P3

NOTE

Table valid only if **INERT SEP ON** CAS message is ON, and **P2.5 HI** or **P3** message is ON.

Table 5.8.17 - MXCL Power (FL < 200) – 170 KIAS / M 0.40 [INERT SEP – P2.5 HI or P3]

OAT	Flight Level (FL) 100 110 120 130 140 150 160 170 180 190 200										
(°C)	100	110	120	130	140	150	160	170	180	190	200
-54											100
-52											99
-50											97
-48										100	96
-46										99	94
-44										97	93
-42									100	96	91
-40									99	94	89
-38									97	92	88
-36								100	95	90	86
-34								98	93	88	84
-32							100	96	91	87	83
-30							98	94	89	85	82
-28						100	97	92	88	84	80
-26						99	95	91	86	83	79
-24						98	93	89	85	82	78
-22					100	96	92	88	84	80	77
-20					99	95	90	86	83	79	75
-18					97	93	89	85	81	77	74
-16				100	96	92	87	84	80	76	72
-14				99	94	90	86	82	78	74	71
-12			100	97	92	88	84	80	76	73	69

Continue ►

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.32

						- 1					
OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-10			99	95	91	87	83	79	75	71	67
-8			97	93	89	85	81	77	73	69	65
-6		100	96	91	87	83	79	75	71	67	63
-4		99	94	90	85	81	77	73	69	65	61
-2	100	97	92	88	83	79	75	71	67	63	59
0	99	94	90	85	81	77	73	69	65	61	57
2	97	92	87	83	79	75	71	67	63	58	54
4	94	90	85	81	77	74	69	65	60	56	
6	92	88	84	80	75	71	67	62	58	53	
8	90	86	82	78	73	69	64	60	55		
10	88	84	79	75	70	66	61	57			
12	86	82	77	72	68	63	58				
14	83	79	74	69	65	60	53				
16	81	76	71	67	61	54					
18	78	73	68	62	55						
20	75	70	63	56							
22	72	64	57								
24	65	58									
26	59										

Table 5.8.17 - MXCL Power (FL < 200) – 170 KIAS / M 0.40 [INERT SEP – P2.5 HI or P3]

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.33

MXCL Power (FL > 200) – 170 KIAS / M 0.40 – INERT SEP – P2.5 HI or P3

NOTE

Table valid only if **INERT SEP ON** CAS message is ON, and **P2.5 HI** or **P3** message is ON.

Table 5.8.18 - MXCL Power (FL > 200) – 170 KIAS / M 0.40 [INERT SEP – P2.5 HI or P3]

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-66							78	75	71	68	64	60
-64						82	78	74	70	67	63	59
-62					86	82	77	73	70	66	62	58
-60				90	85	81	76	72	68	65	61	57
-58			93	89	84	80	75	71	67	64	60	56
-56		97	92	88	83	79	74	70	66	62	59	55
-54	100	96	91	87	82	78	73	69	65	61	57	54
-52	99	94	90	86	81	76	72	68	64	60	57	53
-50	97	93	88	84	80	75	71	67	62	59	56	53
-48	96	92	87	83	78	74	69	65	62	59	55	52
-46	94	90	86	82	77	72	68	64	61	58	55	51
-44	93	89	84	80	75	71	67	64	60	57	54	51
-42	91	87	82	78	74	70	66	63	60	56	53	49
-40	89	85	81	77	73	69	65	62	59	55	52	48
-38	88	83	79	76	72	68	64	61	58	54	51	47
-36	86	82	78	75	71	67	64	60	57	53	50	46
-34	84	80	77	74	70	66	63	59	55	52	49	45
-32	83	79	76	73	69	65	61	58	54	51	47	
-30	82	78	75	72	68	64	60	57	53	50		
-28	80	77	74	71	66	63	59	55	52	48		
-26	79	76	72	69	65	61	58	54	50			
-24	78	75	71	68	64	60	56	53	49			

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.34

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-22	77	73	70	66	62	59	55	51				
-20	75	72	68	65	61	57	53					
-18	74	70	67	64	59	56	52					
-16	72	69	65	62	58	54						
-14	71	67	64	60	56							
-12	69	66	62	58								
-10	67	64	60	56								
-8	65	62	58									
-6	63	60	56									
-4	61	58										
-2	59	55										
0	57											
2	54											

Table 5.8.18 - MXCL Power (FL > 200) – 170 KIAS / M 0.40 [INERT SEP – P2.5 HI or P3]

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.35

Maximum Cruise Power

NOTE

The following table provides references to torque tables that should be used depending on INERT SEP ON/OFF status and bleed status. In the table below:

- -
- Bleed status "P2.5" = **P2.5 HI** and **P3** messages are OFF, Bleed status "P2.5 HI or P3" = **P2.5 HI** or **P3** message is ON. _

INERT SEP	Bleed status	FL < 200	FL > 200
OFF	P2.5	Table 5.8.20	<u>Table 5.8.21</u>
01 P	P2.5 HI or P3	Table 5.8.22	<u>Table 5.8.23</u>
ON	P2.5	Table 5.8.24	<u>Table 5.8.25</u>
ON	P2.5 HI or P3	Table 5.8.26	<u>Table 5.8.27</u>

Table 5.8.19 - References to MXCR Torque Tables

Page 5.8.36

MXCR Power (FL < 200)

NOTE

E Use of Recommended Cruise Power is preferred.
 Table valid only if INERT SEP ON CAS message is OFF, and P2.5 HI and P3 messages are OFF.

OAT					Flia	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-24											
-22											
-20											
-18											
-16											
-14											
-12											
-10											
-8											
-6											
-4											
-2											
0											100
2											98
4										100	95
6										98	93
8									100	95	
10									98		
12								100			
14							100				
16						100					
18					100						

Table 5.8.20 - MXCR Power (FL < 200)

Continue ►

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.37

Table 5.8.20 - MXCR Power (FL < 200)

OAT		Flight Level (FL)												
(°C)	100	110	120	130	140	150	160	170	180	190	200			
20				100										
22			100											
24		100												
26	100													

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

MXCR Power (FL > 200)

NOTE

E Use of Recommended Cruise Power is preferred.
 Table valid only if INERT SEP ON CAS message is OFF, and P2.5 HI and P3 messages are OFF.

OAT (°						Flight le	vel (FL)					
C)	200	210	220	230	240	250	260	270	280	290	300	310
-66												97
-64												97
-62												96
-60											100	94
-58											98	93
-56											97	92
-54										100	95	91
-52										99	94	90
-50										98	94	89
-48										98	93	89
-46										97	92	88
-44									100	96	92	87
-42									99	95	90	85
-40									98	93	89	84
-38									97	92	87	82
-36								100	95	90	85	81
-34								99	93	89	84	79
-32								97	92	87	83	78
-30							100	95	90	86	81	76
-28							99	94	89	84	80	75
-26							97	92	87	83	78	73
-24						100	95	91	86	81	77	72

Table 5.8.21 - MXCR Power (FL > 200)

Continue ►

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.39

Table 5.8.21 - MXCR Power (FL > 200)

OAT (°						Flight le	vel (FL)					
C)	200	210	220	230	240	250	260	270	280	290	300	310
-22						99	94	89	84	80	75	69
-20						97	92	88	83	78	72	67
-18					100	96	91	86	81	75	70	65
-16					99	94	89	84	78	73	68	63
-14					97	92	87	81	76	71	66	
-12				100	95	90	84	79	73	68		
-10				98	93	87	82	76	71			
-8			100	96	90	85	79	74				
-6			99	93	87	82	76					
-4		100	96	90	84	79						
-2		99	93	87	82							
0	100	96	90	84								
2	98	93	87									
4	95	90										
6	93											

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

MXCR Power (FL < 200) – P2.5 HI or P3

NOTE

Use of Recommended Cruise Power is preferred.
 Table valid only if INERT SEP ON CAS message is OFF, and P2.5 HI or P3 message is ON.

Table 5.8.22 - MXCR Power (FL < 200) [P2.5 HI or P3]

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-24											
-22											
-20											
-18											
-16											
-14											
-12											
-10											
-8											
-6											100
-4											99
-2										100	96
0										99	93
2									100	96	90
4									99	93	87
6								100	96	90	84
8								99	93	87	
10							100	96	90		
12							98	92			
14						100	95				
16						98					
18					100						

Continue ►

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.41

Table 5.8.22 - MXCR Power (FL < 200) [P2.5 HI or P3]

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
20				100							
22			100								
24		100									
26	100										

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

MXCR Power (FL > 200) – P2.5 HI or P3

NOTE

Use of Recommended Cruise Power is preferred.
 Table valid only if **INERT SEP ON** CAS message is OFF, and **P2.5 HI** or **P3** message is ON.

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-66											100	95
-64											99	94
-62											98	92
-60											96	91
-58										100	94	89
-56										98	93	87
-54										96	91	86
-52									100	95	90	85
-50									98	94	89	84
-48									97	93	88	83
-46									96	92	87	82
-44								100	95	91	86	81
-42								99	94	89	84	79
-40								98	93	88	83	78
-38								96	91	86	81	76
-36							100	95	90	85	80	75
-34							98	93	88	83	78	73
-32							97	92	86	82	77	72
-30						100	95	90	85	80	75	70
-28						99	93	88	83	78	73	68
-26						97	92	87	81	77	72	66
-24					100	95	90	85	80	75	70	64

Table 5.8.23 - MXCR Power (FL > 200) [P2.5 HI or P3]

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.43

► Continuing

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-22					98	93	88	83	78	73	67	62
-20				100	96	91	86	81	76	70	65	59
-18				99	94	89	84	79	73	68	62	56
-16				97	92	87	82	76	70	65	59	54
-14			100	95	90	85	79	73	67	62	56	
-12			98	93	88	82	76	70	65	59		
-10		100	96	91	85	79	73	67	62			
-8		99	93	88	82	76	70	65				
-6	100	96	90	85	79	73	67					
-4	99	94	88	82	76	70						
-2	96	90	84	79	73							
0	93	88	82	76								
2	90	85	79									
4	87	81										
6	84											

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

MXCR Power (FL < 200) – INERT SEP

NOTEUse of Recommended Cruise Power is preferred.Table valid only ifINERT SEP ONCAS message is ON, andP3messages are OFF.

OAT					Flig	ht Level	(FL)				_		
(°C)	100	110	120	130	140	150	160	170	180	190	200		
-48											100		
-46											100		
-44											98		
-42										100	97		
-40										100	95		
-38										98	93		
-36									100	97	92		
-34									100	95	90		
-32								100	98	93	89		
-30								100	96	92	88		
-28								99	95	91	87		
-26								98	94	90	86		
-24							100	97	93	89	85		
-22							100	96	92	88	84		
-20							99	95	90	86	82		
-18						100	97	93	89	85	81		
-16						100	96	92	88	84	80		
-14						99	95	91	87	83	79		
-12					100	98	93	89	85	81	77		
-10					100	96	92	88	84	80	76		
-8					99	95	90	86	82	79	75		
-6				100	97	93	89	85	81	77	73		

Table 5.8.24 - MXCR Power (FL < 200) [INERT SEP]

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.45

► Continuing

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-4				100	96	92	88	84	80	76	72
-2				99	94	90	86	82	78	74	70
0			100	97	93	89	85	81	76	72	68
2			100	95	91	87	83	79	74	70	66
4		100	98	94	89	85	81	77	72	68	63
6		100	96	92	87	84	79	74	70	66	60
8	100	98	94	90	86	81	77	72	68	63	
10	100	97	92	88	84	79	75	70	65		
12	99	95	90	86	81	77	72	67			
14	97	93	88	83	79	74	69				
16	95	90	85	81	76	71					
18	92	88	83	78	73						
20	90	85	79	74							
22	86	81	76								
24	83	78									
26	80										

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.46

MXCR Power (FL > 200) – INERT SEP

NOTE

Use of Recommended Cruise Power is preferred.
 Table valid only if INERT SEP ON CAS message is ON, and P2.5 HI and P3 messages are OFF.

OAT						Flight Le	evel (FL)							
(°C)	200	210	220	230	240	250	260	270	280	290	300	310		
-66							80	77	73	70	67	64		
-64						84	80	77	74	70	66	63		
-62					88	84	80	77	73	69	65	62		
-60				92	88	84	80	76	72	68	65	61		
-58			96	91	87	83	79	75	71	67	64	60		
-56		99	95	91	86	82	78	74	70	66	63	60		
-54		99	94	90	85	81	77	73	69	66	62	59		
-52		98	93	89	84	80	76	72	68	65	62	58		
-50		97	92	88	83	79	75	71	67	64	61	58		
-48	100	96	91	86	82	78	74	70	67	64	61	58		
-46	100	95	90	85	81	77	72	69	66	63	60	57		
-44	98	93	88	84	80	76	72	69	66	63	60	56		
-42	97	92	87	83	78	75	71	68	65	62	59	55		
-40	95	90	86	81	77	74	70	67	64	61	58	54		
-38	93	89	84	80	77	73	70	66	63	60	57	53		
-36	92	87	83	79	76	72	69	66	62	59	56	53		
-34	90	86	82	79	75	71	68	65	61	58	55	52		
-32	89	85	81	78	74	71	67	64	60	57	54	51		
-30	88	84	80	77	73	69	66	63	59	56	53	50		
-28	87	83	79	76	72	68	65	62	58	55	52	49		
-26	86	82	78	74	71	67	64	61	57	54	51	48		
-24	85	81	77	73	70	66	63	60	56	53	50	47		

Table 5.8.25 - MXCR Power (FL > 200) [INERT SEP]

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01

► Continuing

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-22	84	80	76	72	69	65	62	59	55	52	49	44
-20	82	79	75	71	68	64	61	57	54	51	46	41
-18	81	78	74	70	67	63	60	56	53	49	44	39
-16	80	76	72	69	65	62	58	55	51	46	41	37
-14	79	75	71	68	64	60	57	53	48	43	38	
-12	77	74	70	66	63	59	55	51	45	40		
-10	76	72	69	65	61	57	53	47	42			
-8	75	71	67	63	59	55	49	44				
-6	73	69	65	61	57	52	46					
-4	72	68	63	59	54	49						
-2	70	66	61	56	51							
0	68	63	59	54								
2	66	61	56									
4	63	58										
6	60											

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

MXCR Power (FL < 200) – INERT SEP – P2.5 HI or P3

NOTE

Use of Recommended Cruise Power is preferred. Table valid only if **INERT SEP ON** CAS message is ON, and **P2.5 HI** or **P3** message is ON.

Table 5.8.26 - MXCR Power (FL < 200) [INERT SEP – P2.5 HI or P3]

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-54											100
-52											100
-50											99
-48											98
-46										100	96
-44										100	94
-42									100	98	93
-40									100	96	91
-38									99	94	89
-36								100	97	92	87
-34								100	96	91	86
-32								99	94	89	85
-30							100	97	92	88	84
-28							100	95	91	87	83
-26							99	94	89	85	81
-24						100	97	93	88	84	80
-22						100	96	91	87	83	79
-20						99	94	90	86	82	77
-18					100	97	93	88	84	80	76
-16					100	96	91	87	83	79	75
-14					98	94	90	85	81	77	73
-12				100	97	93	88	84	80	76	72

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.49

► Continuing

L

Table 5.8.26 - MXCR Power (FL < 200) [INERT SEP – P2.5 HI or P3]

OAT					Flig	ht Level	(FL)				
(°C)	100	110	120	130	140	150	160	170	180	190	200
-10				100	95	91	86	82	78	74	70
-8			100	98	93	89	85	81	76	72	68
-6			100	96	92	87	83	79	75	70	66
-4		100	99	94	90	85	81	77	73	69	64
-2		100	97	92	88	84	79	75	71	67	62
0		99	95	90	86	82	78	74	69	65	59
2	100	97	93	89	84	80	76	72	67	61	55
4	100	95	91	87	83	78	74	69	64	58	52
6	98	94	89	85	81	76	72	66	60	54	47
8	96	92	87	83	79	74	68	63	57	48	
10	94	90	85	81	76	71	65	59	50		
12	92	88	83	78	73	67	61	52			
14	90	85	80	75	69	63	54				
16	87	82	77	71	65	56					
18	84	79	73	66	57						
20	81	75	68	59							
22	77	69	60								
24	71	62									
26	63										

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.50

MXCR Power (FL > 200) – INERT SEP – P2.5 HI or P3

NOTE

Use of Recommended Cruise Power is preferred. Table valid only if **INERT SEP ON** CAS message is ON, and **P2.5 HI** or **P3** message is ON.

Table 5.8.27 - MXCR Power (FL > 200) [INERT SEP - P2.5 HI or P3]

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-66							80	76	72	68	64	61
-64						83	79	75	71	67	64	60
-62					87	82	78	74	70	66	63	59
-60				91	86	81	77	73	69	65	62	58
-58			94	90	85	80	76	72	68	64	60	57
-56		98	93	88	84	79	75	71	67	63	59	56
-54	100	97	92	87	82	78	74	70	66	62	58	55
-52	100	96	91	86	81	77	73	68	64	61	57	54
-50	99	94	89	84	80	75	71	67	63	60	57	54
-48	98	93	88	83	78	74	70	66	62	59	56	53
-46	96	91	86	82	77	73	68	65	62	59	56	52
-44	94	90	85	80	75	71	68	64	61	58	55	52
-42	93	88	83	79	74	70	67	64	60	57	54	51
-40	91	86	81	77	73	70	66	63	60	56	53	50
-38	89	85	80	76	72	69	65	62	59	55	52	49
-36	87	83	79	75	71	68	65	61	58	54	51	48
-34	86	82	78	74	70	67	64	60	57	53	50	47
-32	85	81	77	73	70	66	62	59	56	52	49	45
-30	84	80	76	72	68	65	61	58	54	51	48	42
-28	83	79	75	71	67	64	60	57	53	50	46	40
-26	81	78	74	70	66	63	59	55	52	48	43	38
-24	80	76	72	69	65	61	58	54	51	46	40	

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 01 Page 5.8.51

► Continuing

L

Table 5.8.27 - MXCR Power (FL > 200) [INERT SEP - P2.5 HI or P3]

OAT						Flight Le	evel (FL))				
(°C)	200	210	220	230	240	250	260	270	280	290	300	310
-22	79	75	71	67	64	60	56	53	49	42	37	
-20	77	74	70	66	62	59	55	51	45	40		
-18	76	72	68	65	61	57	53	48	42	37		
-16	75	71	67	63	59	56	50	44	39			
-14	73	69	66	62	58	53	47	41	36			
-12	72	68	64	60	55	49	43	38				
-10	70	66	62	58	52	45	40	36				
-8	68	64	60	55	48	42	37					
-6	66	62	57	51	45	39	35					
-4	64	60	54	47	42	36						
-2	62	56	50	44	38							
0	59	53	46	40								
2	55	49	42									
4	52	44										
6	47											

NOTE Refer to <u>General conditions</u> at the beginning of this subsection.

5.9 - Takeoff Distances

The following tables provide the takeoff distances for several weight configurations, with inertial separator ON and OFF.

General notes and correction factors:

The following information applies to all the tables in this subsection.

Associated conditions:

- Landing gear DN and flaps TO,
- Short takeoff procedure,
- Hard, dry and level runway.

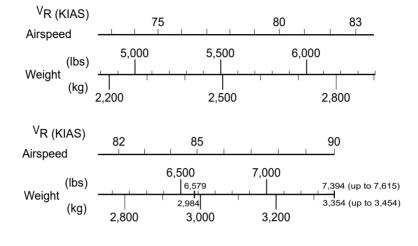
In table headings:

- TRQ = Torque at brake release,
- GR = Ground roll (in feet),
- D₅₀ = Takeoff distance over a 50-foot (15-meter) obstacle (in feet).

Corrections:

- In case of wind, apply the following corrections:
 - . Reduce total distances by 10% every 10 kt of headwind,
 - . Increase total distances by 30% every 10 kt of tail wind.
- Other runway surfaces:

Takeoff distances given in the tables are for takeoff from hard, dry and level runway. Other runway surfaces require the following correction factors.


Increase distances by:

- . 7% on hard grass,
- . 10% on short grass,
- . 15% on wet runway,
- . 25% on high grass,
- . 30% on slippery runway.

Rotation speed determination:

Page 5.9.1

Weight 5,512 lbs (2,500 kg)

CAUTION

Refer to <u>General notes and correction factors</u> at the beginning of this subsection.

At 50 ft = 91 KIAS – 105 MPH IAS											
Pressure	15	SA - 35 °(0	19	SA - 20 °	С	I:	SA - 10 °	С		
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀		
0	100%	705	1,150	100%	755	1,225	100%	800	1,300		
2,000	100%	750	1,225	100%	825	1,345	100%	890	1,435		
4,000	100%	825	1,340	100%	920	1,480	100%	985	1,575		
6,000	100%	915	1,475	100%	1,020	1,630	100%	1,110	1,740		
8,000	100%	1,015	1,625	100%	1,155	1,800	100%	1,245	1,920		
Pressure		ISA		15	SA + 10 °	С	15	SA + 20 °	С		
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀		
0	100%	850	1,380	100%	905	1,460	100% 960		1,545		
2,000	100%	945	1,520	100%	1,005	1,610	100%	1,705			
4,000	100%	1,065	1,675	100%	1,140	1,775	100%	1,215	1,880		
6,000	100%	1,190	1,850	100%	1,275	1,960	100%	1,360	2,075		
8,000	100%	1,335	2,040	100% 1,425 2,160			100% 1,520 2,285				
Pressure	IS	SA + 30 °	с	ISA + 37 °C							
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀		ted cond			
0	100%	1,020	1,630	100%	1,075	1,690	C	N CAS	_		
2,000	100%	1,155	1,800	100%	1,205	1,865	- R	essage (otation s	peed:		
4,000	100%	1,290	1,985	100%	1,350	2,060	V _R = 77 KIAS, - 15° attitude afte				
6,000	100%	1,450	2,190	100%	1,510	2,275		otation.	o uno		
8,000	100%	1,620	2,415	100%	1,695	2,505					
* TRQ at b	rake rele	ase									

Table 5.9.1 - Takeoff Distances (ft) - 5,512 lbs (2,500 kg)

PIM TBM 960 - Edition 0 Rev. 01 Page 5.9.3

Weight 5,512 lbs (2,500 kg) – INERT SEP

CAUTION

Refer to <u>General notes and correction factors</u> at the beginning of this subsection.

Table 5.9.2 - Takeoff Distances (ft) - 5,512 lbs (2,500 kg) - INERT SEP

At 50 ft = 91 KIAS – 105 MPH IAS									
Pressure	15	SA - 35 °(0	19	SA - 20 °	С	I:	SA - 10 °	0
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀
0	100%	705	1,150	100%	755	1,225	100%	800	1,300
2,000	100%	750	1,225	100%	825	1,345	100%	890	1,435
4,000	100%	825	1,340	100%	920	1,480	100%	985	1,575
6,000	100%	915	1,475	100%	1,020	1,630	100%	1,110	1,740
8,000	100%	1,015	1,625	100% 1,155 1,800			100%	1,245	1,920
Pressure		ISA		15	SA + 10 °	С	15	SA + 20 °	С
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀
0	100%	850	1,380	100%	905	1,460	100%	100% 960	
2,000	100%	945	1,520	100%	1,005	1,610	100%	1,705	
4,000	100%	1,065	1,675	100%	1,140	1,775	96%	1,230	1,900
6,000	100%	1,190	1,850	100%	1,275	1,960	91%	1,410	2,160
8,000	100%	1,335	2,040	97% 1,440 2,180			86%	1,640	2,460
Pressure	15	SA + 30 °	с	ISA + 37 °C					
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀		ted condi NERT SE	_
0	89%	1,080	1,710	68%	1,415	2,160	C	N CAS	_
2,000	84%	1,235	1,935	67%	1,595	2,400	- R	nessage (lotation s	peed:
4,000	80%	1,430	2,205	65%	1,780	2,670		_R = 77 Kl 5° attitud	
6,000	75%	1,675	2,530	63%	2,025	3,000		otation.	
8,000	71%	1,960	2,940	61%	2,290	3,385			
* TRQ at b	rake rele	ase							

PIM TBM 960 - Edition 0 Rev. 01 Page 5.9.4

Weight 6,579 lbs (2,984 kg)

CAUTION

Refer to <u>General notes and correction factors</u> at the beginning of this subsection.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MPH IAS	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 °C ISA - 10 °C	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D ₅₀ TRQ * GR	D ₅₀
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1,605 100% 1,180 1,	710
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 1,770 100% 1,320 1,	895
$\begin{array}{c c c c c c c c c } 8,000 & 100\% & 1,525 & 2,155 & 100\% & 1,77 \\ \hline Pressure altitude (ft) & TRQ * & GR & D_{50} & TRQ * & GF \\ \hline 0 & 100\% & 1,260 & 1,820 & 100\% & 1,34 \\ 2,000 & 100\% & 1,415 & 2,010 & 100\% & 1,57 \\ 4,000 & 100\% & 1,580 & 2,225 & 100\% & 1,64 \\ 6,000 & 100\% & 1,765 & 2,460 & 100\% & 1,84 \\ 8,000 & 100\% & 1,990 & 2,715 & 100\% & 2,17 \\ \hline Pressure altitude (ft) & TRQ * & GR & D_{50} & TRQ * & GF \\ \hline 0 & 100\% & 1,530 & 2,160 & 100\% & 1,58 \\ 2,000 & 100\% & 1,710 & 2,390 & 100\% & 1,78 \\ 4,000 & 100\% & 1,930 & 2,645 & 100\% & 2,07 \\ \hline 0 & 100\% & 1,930 & 2,645 & 100\% & 2,07 \\ \hline 0 & 100\% & 1,930 & 2,645 & 100\% & 2,28 \\ \hline \end{array}$	5 1,955 100% 1,475 2,	090
$\begin{array}{c c c c c c c c } \hline Pressure altitude \\ (ft) & $TRQ *$ GR & D_{50} & $TRQ *$ GF \\ \hline $TRQ *$ GR & D_{50} & $TRQ *$ GF \\ \hline 0 & 100% & $1,260$ & $1,820$ & 100% & $1,34$ \\ 2,000$ & 100% & $1,415$ & $2,010$ & 100% & $1,55$ \\ 4,000$ & 100% & $1,580$ & $2,225$ & 100% & $1,63$ \\ 6,000$ & 100% & $1,765$ & $2,460$ & 100% & $1,63$ \\ 8,000$ & 100% & $1,765$ & $2,460$ & 100% & $1,83$ \\ 8,000$ & 100% & $1,765$ & $2,460$ & 100% & $1,83$ \\ 8,000$ & 100% & $1,990$ & $2,715$ & 100% & $2,12$ \\ \hline $Pressure$ \\ altitude \\ (ft) $ $TRQ *$ GR D_{50} $TRQ *$ GF \\ \hline 0 & 100% & $1,530$ & $2,160$ & 100% & $1,55$ \\ 2,000$ & 100% & $1,710$ & $2,390$ & 100% & $1,74$ \\ 4,000$ & 100% & $1,930$ & $2,645$ & 100% & $2,25$ \\ \hline $6,000$ & 100% & $2,155$ & $2,920$ & 100% & $2,25$ \\ \hline 100% & $2,155$ & $2,920$ & 100% & $2,25$ \\ \hline 100% & $2,155$ & $2,920$ & 100% & $2,25$ \\ \hline 100% & $2,155$ & $2,920$ & 100% & $2,25$ \\ \hline 100% & $2,155$ & $2,920$ & 100% & $2,25$ \\ \hline 100% & $2,155$ & $2,920$ & 100% & $2,25$ \\ \hline 100% & $2,155$ & $2,920$ & 100% & $2,25$ \\ \hline 100% & $2,155$ & $2,920$ & 100% & $2,155$ \\ \hline 100% & $2,155$ & $2,920$ & 100% & $2,155$ \\ \hline 100% & $2,155$ & $2,920$ & 100% & $2,155$ \\ \hline 100% & $2,155$ & $2,920$ & 100% & $2,155$ \\ \hline 100% & $2,155$ & $2,920$ & 100% & $2,155$ \\ \hline 100% & $2,155$ & $2,920$ & 100% & $2,155$ \\ \hline 100% & $2,155$ & $2,920$ & 100% & $2,155$ \\ \hline 100% & $2,155$ & $2,920$ & 100% & $2,155$ \\ \hline 100% & $1,150\%$ & $2,155$ & $2,150\%$ & $1,$	5 2,165 100% 1,650 2,	310
altitude (ft) TRQ * GR D_{50} TRQ * GR 0 100% 1,260 1,820 100% 1,34 2,000 100% 1,415 2,010 100% 1,57 4,000 100% 1,580 2,225 100% 1,68 6,000 100% 1,765 2,460 100% 1,88 8,000 100% 1,990 2,715 100% 2,12 Pressure altitude (ft) ISA + 30 °C ISA + 30 ISA + 30 ISA + 30 ISA + 30 0 100% 1,530 2,160 100% 1,530 2,000 100% 1,530 2,160 100% 1,530 2,000 100% 1,710 2,390 100% 1,74 4,000 100% 1,930 2,645 100% 2,020 6,000 100% 2,155 2,920 100% 2,24	5 2,390 100% 1,840 2,	550
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 °C ISA + 20 °C	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D ₅₀ TRQ * GR	D ₅₀
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 1,930 100% 1,440 2,	045
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 2,135 100% 1,610 2,	260
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 2,360 100% 1,800 2,	500
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 2,610 100% 2,025 2,	760
altitude (ft) TRQ * GR D ₅₀ TRQ * GF 0 100% 1,530 2,160 100% 1,530 2,000 100% 1,710 2,390 100% 1,74 4,000 100% 1,930 2,645 100% 2,09 6,000 100% 2,155 2,920 100% 2,29	5 2,880 100% 2,265 3,	045
(ft) TRQ * GR D ₅₀ TRQ * GF 0 100% 1,530 2,160 100% 1,59 2,000 100% 1,710 2,390 100% 1,74 4,000 100% 1,930 2,645 100% 2,09 6,000 100% 2,155 2,920 100% 2,29	7 °C	
2,000 100% 1,710 2,390 100% 1,74 4,000 100% 1,930 2,645 100% 2,0 6,000 100% 2,155 2,920 100% 2,25	D ₅₀ Associated condition	IS:
4,000 100% 1,930 2,645 100% 2,0 6,000 100% 2,155 2,920 100% 2,2	5 2,240 ON CAS	-
6,000 100% 2,155 2,920 100% 2,25	, itotation opeo	d:
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0 2,745 $V_R = 85 \text{ KIAS}$ - 15° attitude af	
	_	.01
8,000 100% 2,410 3,220 100% 2,5	5 3,340	
* TRQ at brake release		

Table 5.9.3 - Takeoff Distances (ft) - 6,579 lbs (2,984 kg)

PIM TBM 960 - Edition 0 Rev. 01 Page 5.9.5

Weight 6,579 lbs (2,984 kg) – INERT SEP

CAUTION

Refer to <u>General notes and correction factors</u> at the beginning of this subsection.

Table 5.9.4 - Takeoff Distances (ft) - 6,579 lbs (2,984 kg) - INERT SEP

	At 50 ft = 94 KIAS – 108 MPH IAS													
Pressure	I:	SA - 35 °(0	19	SA - 20 °	С	1	SA - 10 °	С					
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀					
0	100%	1,035	1,500	100%	1,110	1,605	100%	1,180	1,710					
2,000	100%	1,110	1,605	100%	1,225	1,770	100%	1,320	1,895					
4,000	100%	1,220	1,765	100%	1,365	1,955	100%	1,475	2,090					
6,000	100%	1,360	1,950	100%	1,535	2,165	100%	1,650	2,310					
8,000	100%	1,525	2,155	100% 1,715 2,390			100%	1,840	2,550					
Pressure		ISA		15	SA + 10 °	С	15	SA + 20 °	С					
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀					
0	100%	1,260	1,820	100%	1,345	1,930	100% 1,440		2,045					
2,000	100%	1,415	2,010	100%	1,510	2,135	100%	2,260						
4,000	100%	1,580	2,225	100%	1,685	2,360	96%	1,820	2,535					
6,000	100%	1,765	2,460	100%	1,885	2,610	91%	2,110	2,890					
8,000	100%	1,990	2,715	97% 2,145 2,905			86%	2,445	3,305					
Pressure	15	SA + 30 °	С	ISA + 37 °C										
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀		ted condi NERT SE						
0	89%	1,605	2,275	68%	2,105	2,905	C	N CAS	-					
2,000	84%	1,850	2,590	67%	2,370	3,250		nessage (lotation s						
4,000	80%	2,145	2,970	65%	2,675	3,640		_R = 85 Kl 5° attitud						
6,000	75%	2,505	3,435	63%	3,045	4,115		otation.						
8,000	71%	2,965	4,020	61%	3,490	4,685								
* TRQ at b	rake rele	ase		-			-							

PIM TBM 960 - Edition 0 Rev. 01 Page 5.9.6

Weight 7,394 lbs (3,354 kg)

CAUTION

Refer to <u>General notes and correction factors</u> at the beginning of this subsection.

At 50 ft = 99 KIAS – 114 MPH IAS										
Pressure	18	SA - 35 °	0	19	SA - 20 °	С	I:	SA - 10 °	С	
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	
0	100%	1,395	1,990	100%	1,500	2,135	100%	1,610	2,290	
2,000	100%	1,495	2,130	100%	1,670	2,375	100%	1,800	2,545	
4,000	100%	1,665	2,365	100%	1,865	2,625	100%	2,020	2,805	
6,000	100%	1,855	2,615	100%	2,100	2,905	100%	2,255	3,105	
8,000	100%	2,090	2,890	2,345	3,210	100%	2,520	3,430		
Pressure		ISA		15	SA + 10 °	С	15	SA + 20 °	С	
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	
0	100%	1,720	2,440	100%	1,835	2,590	100%	2,745		
2,000	100%	1,920	2,700	100%	2,065	2,870	100%	3,040		
4,000	100%	2,165	2,990	100%	2,310	3,175	100%	2,465	3,360	
6,000	100%	2,415	3,305	100%	2,580	3,505	100%	2,750	3,710	
8,000	100%	2,700	3,645	100% 2,880 3,865			100%	3,095	4,090	
Pressure	15	SA + 30 °	С	15	ISA + 37 °C					
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀		ted cond		
0	100%	2,095	2,905	100%	2,185	3,015	C	N CAS	_	
2,000	100%	2,345	3,215	100%	2,440	3,335	- R	nessage (lotation s	peed:	
4,000	100%	2,620	3,550	100%	2,730	3,690	 12.5° attitude af 			
6,000	100%	2,950	3,920	100%	3,075	4,070				
8,000	100%	3,285	4,320	100%	3,425	4,485				
* TRQ at b	rake rele	ase		-			-			

Table 5.9.5 - Takeoff Distances (ft) - 7,394 lbs (3,354 kg)

PIM TBM 960 - Edition 0 Rev. 01 Page 5.9.7

Weight 7,394 lbs (3,354 kg) – INERT SEP

CAUTION

Refer to <u>General notes and correction factors</u> at the beginning of this subsection.

Table 5.9.6 - Takeoff Distances (ft) - 7,394 lbs (3,354 kg) - INERT SEP

At 50 ft = 99 KIAS – 114 MPH IAS									
Pressure	I:	SA - 35 °	С	19	SA - 20 °	С	1	SA - 10 °	С
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀
0	100%	1,395	1,990	100%	1,500	2,135	100%	1,610	2,290
2,000	100%	1,495	2,130	100%	1,670	2,375	100%	1,800	2,545
4,000	100%	1,665	2,365	100%	1,865	2,625	100%	2,020	2,805
6,000	100%	1,855	2,615	100%	2,100	2,905	100%	2,255	3,105
8,000	100%	2,090	2,890	100% 2,345 3,210			100%	2,520	3,430
Pressure		ISA		15	SA + 10 °	С	15	SA + 20 °	С
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀
0	100%	1,720	2,440	100%	1,835	2,590	100%	2,745	
2,000	100%	1,920	2,700	100%	2,065	2,870	100%	3,040	
4,000	100%	2,165	2,990	100%	2,310	3,175	96%	2,495	3,410
6,000	100%	2,415	3,305	100%	2,580	3,505	91%	2,900	3,915
8,000	100%	2,700	3,645	97% 2,935 3,905			86%	3,375	4,505
Pressure	18	SA + 30 °	С	15	SA + 37 °	С			
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀		ted condi NERT SE	
0	89%	2,205	3,085	68%	2,935	3,995	C	N CAS	-
2,000	84%	2,560	3,540	67%	3,330	4,505	- R	nessage (lotation s	peed:
4,000	80%	2,985	4,090	65%	3,790	5,100		R = 90 Kl 2.5° attitι	
6,000	75%	3,540	4,770	63%	4,360	5,835		tation.	ide allel
8,000	71%	4,230	5,645	61%	5,050	6,730			
* TRQ at b	rake rele	ase							

PIM TBM 960 - Edition 0 Rev. 01 Page 5.9.8

Weight 7,615 lbs (3,454 kg)

CAUTION

Refer to <u>General notes and correction factors</u> at the beginning of this subsection.

Pressure altitude (ft)I RQ *GRD50TRQ *GRD50TRQ *GRD50TRQ *GRD50100%1,00%1,4502,065100%1,5752,215100%1,6752,3802,000100%1,5702,210100%1,7402,465100%1,8902,6454,000100%1,7352,455100%1,7402,4653,000100%2,1052,9156,000100%1,7502,720100%2,1853,020100%2,3703,2306,000100%2,1753,010100%2,4653,440100%2,6503,5707Fressure altitude (ft)1074GRD50TRQ *GRD50TRQ *GRD50775,255100%1,9252,695100%2,0552,8552,000100%2,2553,110100%2,4553,300100%2,2903,4604,000100%2,5553,110100%2,4553,645100%2,8903,4566,000100%2,5553,110100%2,7553,645100%2,8903,4566,000100%2,8003,020100%2,7553,345100%2,7553,4766,000100%2,7503,695100%2,8753,4763,84010.5512,5° attitute treet7,000100%2,7503,695 <th></th> <th></th> <th></th> <th>At 50 ft =</th> <th>99 KIAS</th> <th>– 114 Mi</th> <th>PHIAS</th> <th></th> <th></th> <th></th>				At 50 ft =	99 KIAS	– 114 Mi	PHIAS			
(ft)TRQ*GRD50TRQ*GRD50TRQ*GRD500100%1,4502,065100%1,5752,215100%1,6752,3802,000100%1,5702,210100%1,7402,465100%1,8902,6454,000100%1,7352,455100%1,9552,730100%2,1052,9156,000100%2,1753,010100%2,4653,340100%2,3703,2308,000100%2,1753,010100%2,4653,340100%2,6503,570Pressure altitude (ft)TRQ*GRD50TRQ*GRD50TRQ*GRD500100%1,8052,535100%1,9252,695100%2,0552,8552,000100%2,0152,805100%2,1552,985100%2,5903,1604,000100%2,5403,435100%2,1553,300100%2,5903,4604,000100%2,8353,795100%3,0304,025100%3,2254,260Pressure altitude (ft)TRQ*GRD50TRQ*SS100%3,2653,4700100%2,1803,020100%2,2753,135SSSSS0100%2,7503,695100%2,2753,136SNNN		19	SA - 35 °	С	1	SA - 20 °	С	1	SA - 10 °	С
2,000100%1,5702,210100%1,7402,465100%1,8902,6454,000100%1,7352,455100%1,9552,730100%2,1052,9156,000100%2,1753,010100%2,4653,340100%2,3703,2308,000100%2,1753,010100%2,4653,340100%2,6503,570Pressure altitude (ft)TRQ*GRD50TRQ*GRD50TRQ*GRD50Z,8552,000100%2,2553,110100%2,4253,300100%2,2953,1604,000100%2,2553,110100%2,4253,300100%2,5903,4956,000100%2,8353,795100%3,0304,025100%2,2953,1609,000100%2,8003,020100%2,2753,135100%3,2554,2059,000100%2,4603,345100%2,2753,135Nester Set		TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	100%	1,450	2,065	100%	1,575	2,215	100%	1,675	2,380
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	2,000	100%	1,570	2,210	100%	1,740	2,465	100%	1,890	2,645
8,000 $100%$ $2,175$ $3,010$ $100%$ $2,465$ $3,340$ $100%$ $2,650$ $3,570$ Pressure altitude (ft) $\exists RQ^*$ GR D_{50} TRQ^* GR D_{50} 0 100% 1,805 2,535 100% 1,925 2,695 100% 2,055 2,855 2,000 100% 2,015 2,805 100% 2,155 2,985 100% 2,295 3,160 4,000 100% 2,255 3,110 100% 2,425 3,300 100% 2,890 3,495 6,000 100% 2,540 3,435 100% 2,715 3,645 100% 3,225 4,260 Pressure altitude (ft) TRQ^* GR D_{50} TRQ^* GR D_{50} TRQ^*	4,000	100%	1,735	2,455	100%	1,955	2,730	100%	2,105	2,915
$\begin{array}{ c c c c c c } \hline Pressure altitude (ft) & ISA & ISA & ISA + 10 \ ^{\circ}C & ISA + 20 \ ^{\circ}C & IRQ \ast & GR & D_{50} & TRQ \ast & GR & D_{50} & TRQ \ast & GR & D_{50} \\ \hline TRQ \ast & GR & D_{50} & TRQ \ast & GR & D_{50} & TRQ \ast & GR & D_{50} \\ \hline 0 & 100\% & 1,805 & 2,535 & 100\% & 1,925 & 2,695 & 100\% & 2,055 & 2,855 \\ 2,000 & 100\% & 2,015 & 2,805 & 100\% & 2,155 & 2,985 & 100\% & 2,295 & 3,160 \\ 4,000 & 100\% & 2,255 & 3,110 & 100\% & 2,425 & 3,300 & 100\% & 2,590 & 3,495 \\ 6,000 & 100\% & 2,540 & 3,435 & 100\% & 2,715 & 3,645 & 100\% & 2,890 & 3,860 \\ 8,000 & 100\% & 2,835 & 3,795 & 100\% & 3,030 & 4,025 & 100\% & 3,225 & 4,260 \\ \hline Pressure altitude (ft) & TRQ \ast & GR & D_{50} & TRQ \ast & GR & D_{50} \\ \hline 100\% & 2,180 & 3,020 & 100\% & 2,275 & 3,135 & Pressure (1SA + 30 \ CAS message OFF, 2,000 & 100\% & 2,750 & 3,695 & 100\% & 2,870 & 3,840 \\ \hline 0 & 100\% & 2,750 & 3,695 & 100\% & 2,870 & 3,840 \\ \hline 0 & 100\% & 3,075 & 4,080 & 100\% & 3,205 & 4,670 \\ \hline 0 & 100\% & 3,455 & 4,500 & 100\% & 3,595 & 4,670 \\ \hline \end{array}$	6,000	100%	1,950	2,720	100%	2,185	3,020	100%	2,370	3,230
altitude (ft)TRQ *GRD50TRQ *GRD50TRQ *GRD500100%1,8052,535100%1,9252,695100%2,0552,8552,000100%2,0152,805100%2,1552,985100%2,2953,1604,000100%2,2553,110100%2,4253,300100%2,5903,4956,000100%2,5403,435100%2,7153,645100%2,8903,8608,000100%2,8353,795100%3,0304,025100%3,2254,260Pressure altitude (ft)IGRD50TRQ *GRD50Associated conditions: TRQ * GR D50 CAS MEXISE MEXISE CAS MEXISE CAS MEXISE CAS MEXISE CAS MEXISE CAS MEXISE CAS MEXISE MEXISE MEXISE MEXISE MEXISE MEXISE MEXISE MEXISE MEXISE MEXI	8,000	100%	2,175	3,010	2,465	3,340	100%	2,650	3,570	
(ft)TRQ*GR D_{50} TRQ*GR D_{50} TRQ*GR D_{50} 0100%1,8052,535100%1,9252,695100%2,0552,8552,000100%2,0152,805100%2,1552,985100%2,2953,1604,000100%2,2553,110100%2,4253,300100%2,5903,4956,000100%2,5403,435100%2,7153,645100%2,8903,8608,000100%2,8353,795100%3,0304,025100%3,2254,260Pressure altitude (ft)TRQ*GR D_{50} TRQ*GR D_{50} Associated conditions:0100%2,1803,020100%2,2753,135Associated conditions:2,000100%2,4603,345100%2,8703,470-4,000100%2,7503,695100%2,8703,840-4,000100%3,0754,080100%3,2054,235-6,000100%3,0754,500100%3,5954,670-			ISA		15	SA + 10 °	С	15	SA + 20 °	С
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	100%	1,805	2,535	100%	1,925	2,695	100% 2,055		2,855
	2,000	100%	2,015	2,805	100%	2,155	2,985	100%	3,160	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4,000	100%	2,255	3,110	100%	2,425	3,300	100%	2,590	3,495
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6,000	100%	2,540	3,435	100%	2,715	3,645	100%	2,890	3,860
altitude (ft) TRQ * GR D ₅₀ TRQ * GR D ₅₀ Associated conditions: - INERTSE ON CAS message OFF, 0 100% 2,180 3,020 100% 2,275 3,135 - INERTSE ON CAS message OFF, - Rotation speed: V _R = 90 KIAS, - Rotation speed: V _R = 90 KIAS, - Rotation speed: V _R = 90 KIAS, - 12.5° attitude after rotation. 6,000 100% 3,075 4,080 100% 3,595 4,670 - </td <td>8,000</td> <td>100%</td> <td>2,835</td> <td>3,795</td> <td colspan="3">100% 3,030 4,025</td> <td>100%</td> <td>3,225</td> <td>4,260</td>	8,000	100%	2,835	3,795	100% 3,030 4,025			100%	3,225	4,260
(ft) TRQ * GR D ₅₀ TRQ * GR D ₅₀ Associated conditions: 0 100% 2,180 3,020 100% 2,275 3,135 •<		18	SA + 30 °	С	15	SA + 37 °	С			
0 100% 2,180 3,020 100% 2,275 3,135 Image: Constraint of the state of t		TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀			
2,000 100% 2,460 3,345 100% 2,565 3,470 - Rotation speed: 4,000 100% 2,750 3,695 100% 2,870 3,840 - V _R = 90 KIAS, 6,000 100% 3,075 4,080 100% 3,205 4,235 - 12.5° attitude after rotation. 8,000 100% 3,455 4,500 100% 3,595 4,670 -	0	100%	2,180	3,020	100%	2,275	3,135	C	N CAS	_
4,000 100% 2,750 3,895 100% 2,870 3,840 - 12.5° attitude after rotation. 6,000 100% 3,075 4,080 100% 3,205 4,235 - 12.5° attitude after rotation. 8,000 100% 3,455 4,500 100% 3,595 4,670 - - 12.5° attitude after rotation.	2,000	100%	2,460	3,345	100%	2,565	3,470	- R	otation s	peed:
6,000100%3,0754,080100%3,2054,235rotation.8,000100%3,4554,500100%3,5954,670	4,000	100%	2,750	3,695	100%	2,870	3,840			
	6,000	100%	3,075	4,080	100%	3,205	4,235		aue allel	
* TRQ at brake release	8,000	100%	3,455	4,500	100%	3,595	4,670			
	* TRQ at b	rake rele	ase		-			-		

Table 5.9.7 - Takeoff Distances (ft) - 7,615 lbs (3,454 kg)

PIM TBM 960 - Edition 0 Rev. 01 Page 5.9.9

Weight 7,615 lbs (3,454 kg) – INERT SEP

CAUTION

Refer to <u>General notes and correction factors</u> at the beginning of this subsection.

Table 5.9.8 - Takeoff Distances (ft) - 7,615 lbs (3,454 kg) - INERT SEP

At 50 ft = 99 KIAS – 114 MPH IAS									
Pressure	18	SA - 35 °(0	19	SA - 20 °	С	I:	SA - 10 °	С
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀
0	100%	1,450	2,065	100%	1,575	2,215	100%	1,675	2,380
2,000	100%	1,570	2,210	100%	1,740	2,465	100%	1,890	2,645
4,000	100%	1,735	2,455	100%	1,955	2,730	100%	2,105	2,915
6,000	100%	1,950	2,720	100%	2,185	3,020	100%	2,370	3,230
8,000	100%	2,175	3,010	100% 2,465 3,340			100%	2,650	3,570
Pressure		ISA		15	SA + 10 °	С	15	SA + 20 °	С
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀
0	100%	1,805	2,535	100%	1,925	2,695	100% 2,055		2,855
2,000	100%	2,015	2,805	100%	2,155	2,985	100%	3,160	
4,000	100%	2,255	3,110	100%	2,425	3,300	96%	2,620	3,545
6,000	100%	2,540	3,435	100%	2,715	3,645	91%	3,050	4,080
8,000	100%	2,835	3,795	97% 3,060 4,065			86%	3,550	4,700
Pressure	15	SA + 30 °	с	ISA + 37 °C					
altitude (ft)	TRQ *	GR	D ₅₀	TRQ *	GR	D ₅₀		ed conditi NERT SE	
0	89%	2,320	3,210	68%	3,085	4,170	_	N CAS	
2,000	84%	2,690	3,685	67%	3,500	4,705		nessage (lotation s	
4,000	80%	3,140	4,265	65%	3,990	5,335		R = 90 KI 2.5° attitι	
6,000	75%	3,730	4,985	63%	4,595	6,115		tation.	ide allel
8,000	71%	4,455	5,905	61%	5,375	7,070			
* TRQ at b	rake rele	ase		-					

PIM TBM 960 - Edition 0 Rev. 01 Page 5.9.10

5.10 - Climb Performance

This subsection provides performance data for the climb phase, as well as vertical speeds for climb after a go-around and climb with the flaps in the TO position.

PIM TBM 960 - Edition 0 Rev. 01 Page 5.10.1

MXCL – Vertical Speeds (IAS = 124 KIAS)

NOTE Conditions:

- Maximum climb power TRQ = 100%,
- Landing gear and flaps UP,
- IAS = 124 KIAS,
- BLEED switch on AUTO.

Table valid only if **INERT SEP ON** CAS message is OFF, and **P2.5 HI** and **P3** messages are OFF.

Table 5.10.1 - MXCI	– Vertical Speeds	(IAS = 124 KIAS)
---------------------	-------------------	------------------

Airplana	Pressure			Rate of cli	mb (ft/min)		
Airplane weight	altitude (ft)	ISA - 20 °C	ISA - 10 °C	ISA	ISA + 10 °C	ISA + 20 °C	ISA + 30 °C
	SL	2,885	2,870	2,855	2,845	2,830	2,810
	2,000	2,860	2,845	2,830	2,810	2,795	2,775
5,794 lbs (2,628 kg)	4,000	2,840	2,820	2,805	2,785	2,765	2,750
	6,000	2,810	2,790	2,770	2,750	2,735	2,710
	8,000	2,775	2,755	2,735	2,710	2,690	2,665
	SL	2,440	2,425	2,410	2,400	2,380	2,365
	2,000	2,415	2,400	2,385	2,365	2,350	2,330
6,594 lbs (2,991 kg)	4,000	2,395	2,375	2,360	2,340	2,325	2,305
() ()	6,000	2,365	2,345	2,330	2,310	2,290	2,270
	8,000	2,335	2,315	2,290	2,270	2,250	2,230
	SL	2,080	2,065	2,050	2,040	2,020	2,005
	2,000	2,055	2,040	2,025	2,005	1,990	1,975
7,394 lbs (3,354 kg)	4,000	2,035	2,015	1,995	1,980	1,965	1,945
() ()	6,000	2,005	1,985	1,970	1,950	1,930	1,910
	8,000	1,975	1,955	1,935	1,910	1,890	1,870
	SL	2,000	1,985	1,970	1,955	1,940	1,925
	2,000	1,980	1,965	1,950	1,935	1,920	1,900
7,615 lbs (3,454 kg)	4,000	1,960	1,945	1,925	1,910	1,890	1,870
., .,	6,000	1,940	1,920	1,900	1,880	1,860	1,840
	8,000	1,915	1,895	1,870	1,850	1,830	1,810

PIM TBM 960 - Edition 0 Rev. 01 Page 5.10.2

MXCL – Vertical Speeds (IAS = 170 KIAS / M 0.40)

Conditions: NOTE

(2,991 kg)

- Maximum climb power TRQ = 100%, _
- Landing gear and flaps UP,
- IAS = 170 KIAS / M 0.40,
- BLEED switch on AUTO.

Table valid only if INERT SEP ON CAS message is OFF, and P2.5 HI and P3 messages are OFF.

Airplane	Pressure			Rate of clir	mb (ft/min)		
weight	altitude (ft)	ISA - 20 °C	ISA - 10 °C	ISA	ISA + 10 °C	ISA + 20 °C	ISA + 30 °C
	SL	2,420	2,390	2,365	2,335	2,310	2,285
	2,000	2,385	2,355	2,325	2,295	2,265	2,235
5,794 lbs (2,628 kg)	4,000	2,345	2,315	2,280	2,250	2,220	2,190
(_,	6,000	2,305	2,270	2,235	2,205	2,170	2,140
	8,000	2,260	2,225	2,190	2,155	2,120	2,085
	SL	2,075	2,050	2,025	2,000	1,975	1,955
	2,000	2,045	2,015	1,990	1,965	1,935	1,910
6,594 lbs	4 000	2 0 1 0	1 095	1 050	1 020	1 905	1 965

2,010 1,985 1,950 1,920

Table 5.10.2 - MXCL – Vertical Speeds (IAS = 170 KIAS / M 0.40)

()** 5/	6,000	1,975	1,940	1,910	1,880	1,850	1,820
	8,000	1,930	1,900	1,870	1,835	1,805	1,770
	SL	1,800	1,775	1,755	1,730	1,710	1,685
	2,000	1,770	1,745	1,720	1,695	1,670	1,645
7,394 lbs (3,354 kg)	4,000	1,735	1,710	1,685	1,655	1,630	1,605
()))	6,000	1,705	1,670	1,645	1,615	1,590	1,560
	8,000	1,660	1,635	1,605	1,575	1,545	1,515
	SL	1,755	1,730	1,705	1,680	1,660	1,635
	2,000	1,720	1,695	1,670	1,645	1,620	1,595
7,615 lbs (3,454 kg)	4,000	1,690	1,660	1,635	1,605	1,580	1,555
(0, . 0 1 Ng)	6,000	1,655	1,625	1,595	1,565	1,540	1,510
	8,000	1,615	1,585	1,555	1,525	1,495	1,465

4,000

1,895

1,865

MXCL – Time, Consumption and Climb Distance

The following table provides references to climb performance tables that should be used depending on climb airspeed.

Airspeed	ISA - 20 °C	ISA	ISA + 20 °C
124 KIAS	Table 5.10.4	<u>Table 5.10.5</u>	<u>Table 5.10.6</u>
170 KIAS / M 0.40	Table 5.10.7	Table 5.10.8	Table 5.10.9

Table 5.10.3 - References to MXCL Performance Tables

MXCL – Time, Consumption and Climb Distance – IAS = 124 KIAS – ISA - 20 $^{\circ}\mathrm{C}$

NOTE Conditions:

- ISA 20 °C,
- Maximum climb power,
- Landing gear and flaps UP,
- IAS = 124 KIAS,
- BLEED switch on AUTO.

Table valid only if **INERT SEP ON** CAS message is OFF, and **P2.5 HI** and **P3** messages are OFF.

Table 5.10.4 - MXCL – Time, Consumption and Climb Distance – IAS = 124 KIAS – ISA - 20 $^\circ\text{C}$

Pressure	5,794	Weight Ibs (2,62	8 kg)	6,579	Weight Ibs (2,98	4 kg)	7,394	Weight Ibs (3,35	4 kg)	7,615	Weight Ibs (3,45	4 kg)
(ft)	Time (min:s)	Cons. (USG)	Dist. (NM)									
SL	00:00	0	0	00:00	0	0	00:00	0	0	00:00	0	0
2,000	00:45	1.0	1	00:45	1.2	2	01:00	1.4	2	01:00	1.4	2
4,000	01:30	2.0	3	01:45	2.4	3	02:00	2.8	4	02:00	2.8	4
6,000	02:15	3.0	4	02:30	3.5	5	03:00	4.1	6	03:00	4.2	6
8,000	03:00	3.9	6	03:30	4.6	7	04:00	5.5	8	04:00	5.5	9
10,000	03:30	4.9	8	04:15	5.7	9	05:00	6.8	11	05:15	6.8	11
12,000	04:15	5.8	9	05:15	6.8	11	06:00	8.0	13	06:15	8.1	13
14,000	05:00	6.7	11	06:00	7.9	13	07:15	9.3	16	07:15	9.4	16
16,000	05:45	7.6	13	07:00	9.0	15	08:15	10.6	18	08:30	10.7	19
18,000	06:30	8.5	15	07:45	10.0	18	09:15	11.9	21	09:30	12.0	22
20,000	07:30	9.4	17	08:45	11.1	20	10:30	13.2	24	10:45	13.2	25
22,000	08:15	10.3	19	09:45	12.2	23	11:30	14.4	27	12:00	14.5	28
24,000	09:00	11.1	21	10:45	13.2	25	12:45	15.7	30	13:00	15.8	31
26,000	09:45	12.0	24	11:45	14.3	28	13:45	17.0	34	14:15	17.2	35
28,000	10:30	13.0	26	12:45	15.4	31	15:00	18.4	38	15:30	18.5	39
30,000	11:30	13.9	29	13:45	16.6	35	16:30	19.8	42	17:00	20.0	43
31,000	12:00	14.4	31	14:30	17.2	37	17:15	20.6	44	17:45	20.8	46

PIM TBM 960 - Edition 0 Rev. 01 Page 5.10.5

MXCL – Time, Consumption and Climb Distance – IAS = 124 KIAS – ISA

NOTE

- Conditions: - ISA,
 - Maximum climb power,
 - Landing gear and flaps UP,
 - IAS = 124 KIAS,
 - BLEED switch on AUTO.

Table valid only if **INERT SEP ON** CAS message is OFF, and **P2.5 HI** and **P3** messages are OFF.

Table 5.10.5 - MXCL – Time, Consumption and Climb Distance – IAS = 124 KIAS
– ISA

Pressure	5,794	Weight Ibs (2,62	8 kg)	6,579	Weight Ibs (2,98	4 kg)	7,394	Weight Ibs (3,35	4 kg)	7,615	Weight Ibs (3,45	4 kg)
(ft)	Time (min:s)	Cons. (USG)	Dist. (NM)									
SL	00:00	0	0	00:00	0	0	00:00	0	0	00:00	0	0
2,000	00:45	1.0	1	00:45	1.2	2	01:00	1.5	2	01:00	1.5	2
4,000	01:30	2.1	3	01:45	2.4	4	02:00	2.9	4	02:00	2.9	4
6,000	02:15	3.1	5	02:30	3.6	5	03:00	4.3	6	03:15	4.3	7
8,000	03:00	4.1	6	03:30	4.8	7	04:00	5.7	9	04:15	5.7	9
10,000	03:45	5.0	8	04:15	5.9	10	05:15	7.0	11	05:15	7.1	12
12,000	04:30	6.0	10	05:15	7.1	12	06:15	8.4	14	06:15	8.4	14
14,000	05:15	6.9	12	06:15	8.2	14	07:15	9.7	17	07:30	9.8	17
16,000	06:00	7.9	14	07:00	9.3	16	08:15	11.0	19	08:30	11.1	20
18,000	06:45	8.8	16	08:00	10.4	19	09:30	12.4	22	09:45	12.5	23
20,000	07:30	9.7	18	09:00	11.5	21	10:45	13.7	26	11:00	13.8	26
22,000	08:15	10.6	20	10:00	12.7	24	11:45	15.1	29	12:15	15.2	30
24,000	09:15	11.6	23	11:00	13.8	27	13:00	16.5	32	13:30	16.6	34
26,000	10:00	12.5	25	12:00	14.9	30	14:15	17.9	37	14:45	18.0	38
28,000	11:00	13.5	28	13:15	16.2	34	16:00	19.4	41	16:30	19.6	43
30,000	12:15	14.6	32	14:30	17.5	39	17:45	21.1	47	18:15	21.3	49
31,000	12:45	15.1	34	15:30	18.2	41	18:45	21.9	51	19:15	22.2	52

PIM TBM 960 - Edition 0 Rev. 01 Page 5.10.6

MXCL – Time, Consumption and Climb Distance – IAS = 124 KIAS – ISA + 20 $^{\circ}\mathrm{C}$

NOTE Conditions:

- ISA + 20 °C,
- Maximum climb power,
- Landing gear and flaps UP,
- IAS = 124 KIAS,
- BLEED switch on AUTO.

Table valid only if **INERT SEP ON** CAS message is OFF, and **P2.5 HI** and **P3** messages are OFF.

Table 5.10.6 - MXCL – Time, Consumption and Climb Distance – IAS = 124 KIAS – ISA + 20 $^\circ\text{C}$

Pressure altitude	5,794	Weight Ibs (2,62	8 kg)	6,579	Weight Ibs (2,98	4 kg)	7,394	Weight Ibs (3,35	4 kg)	7,615	Weight Ibs (3,45	4 kg)
(ft)	Time (min:s)	Cons. (USG)	Dist. (NM)									
SL	00:00	0	0	00:00	0	0	00:00	0	0	00:00	0	0
2,000	00:45	1.1	2	00:45	1.3	2	01:00	1.5	2	01:00	1.5	2
4,000	01:30	2.1	3	01:45	2.5	4	02:00	3.0	4	02:00	3.0	5
6,000	02:15	3.2	5	02:30	3.8	6	03:00	4.5	7	03:15	4.5	7
8,000	03:00	4.2	7	03:30	5.0	8	04:15	5.9	9	04:15	5.9	10
10,000	03:45	5.2	8	04:30	6.2	10	05:15	7.3	12	05:30	7.3	12
12,000	04:30	6.2	10	05:15	7.3	12	06:15	8.7	15	06:30	8.8	15
14,000	05:15	7.2	12	06:15	8.5	15	07:30	10.1	18	07:45	10.2	18
16,000	06:00	8.1	14	07:15	9.7	17	08:30	11.5	21	08:45	11.6	21
18,000	06:45	9.1	17	08:15	10.8	20	09:45	12.9	24	10:00	13.0	25
20,000	07:45	10.1	19	09:15	12	23	11:00	14.4	27	11:15	14.5	28
22,000	08:30	11.1	22	10:15	13.2	26	12:15	15.9	31	12:45	16.0	33
24,000	09:45	12.1	25	11:30	14.5	30	14:00	17.5	36	14:15	17.6	37
26,000	10:45	13.2	28	13:00	15.9	34	15:45	19.2	42	16:15	19.4	43
28,000	12:00	14.4	33	14:30	17.3	40	17:45	21.0	49	18:30	21.3	51
30,000	13:30	15.6	38	16:30	18.9	46	20:15	23.2	58	21:15	23.5	60
31,000	14:15	16.3	41	17:30	19.8	50	21:45	24.4	63	22:45	24.8	66

PIM TBM 960 - Edition 0 Rev. 01 Page 5.10.7

MXCL – Time, Consumption and Climb Distance – IAS = 170 KIAS / M 0.40 – ISA - 20 $^\circ\text{C}$

NOTE Conditions:

- ISA 20 °C,
- Maximum climb power,
- Landing gear and flaps UP,
- IAS = 170 KIAS / M 0.40,
- BLEED switch on AUTO.

Table valid only if **INERT SEP ON** CAS message is OFF, and **P2.5 HI** and **P3** messages are OFF.

Table 5.10.7 - MXCL – Time, Consumption and Climb Distance – IAS = 170 KIAS / M 0.40 – ISA - 20 $^\circ\text{C}$

Pressure	5,794	Weight Ibs (2,62	8 kg)	6,579	Weight Ibs (2,98	4 kg)	7,394	Weight Ibs (3,35	4 kg)	7,615	Weight Ibs (3,45	4 kg)
(ft)	Time (min:s)	Cons. (USG)	Dist. (NM)									
SL	00:00	0	0	00:00	0	0	00:00	0	0	00:00	0	0
2,000	00:45	1.2	2	01:00	1.4	3	01:00	1.6	3	01:15	1.6	3
4,000	01:45	2.3	5	02:00	2.7	5	02:15	3.1	6	02:15	3.1	6
6,000	02:30	3.5	7	03:00	4.0	8	03:30	4.7	10	03:30	4.7	10
8,000	03:30	4.6	10	04:00	5.4	11	04:30	6.2	13	04:45	6.2	13
10,000	04:15	5.7	12	05:00	6.7	15	05:45	7.7	17	06:00	7.7	17
12,000	05:15	6.8	15	06:00	7.9	18	07:00	9.2	21	07:15	9.2	21
14,000	06:00	7.9	18	07:00	9.3	22	08:15	10.8	25	08:30	10.7	25
16,000	07:00	9.1	22	08:15	10.6	25	09:30	12.3	29	09:45	12.2	30
18,000	08:00	10.2	25	09:15	11.9	29	11:00	13.8	34	11:00	13.8	35
20,000	09:00	11.3	29	10:30	13.2	33	12:15	15.4	39	12:30	15.3	40
22,000	10:00	12.4	32	11:45	14.6	38	13:45	17.0	44	14:00	16.9	45
24,000	11:00	13.6	36	13:00	15.9	43	15:00	18.6	50	15:30	18.5	51
26,000	12:00	14.6	40	14:00	17.0	47	16:30	20.0	55	16:45	19.9	56
28,000	12:45	15.5	43	15:00	18.2	51	17:30	21.3	59	18:00	21.2	61
30,000	13:45	16.5	46	16:00	19.3	55	19:00	22.7	64	19:15	22.6	66
31,000	14:15	16.9	48	16:45	19.9	57	19:45	23.4	67	20:00	23.4	69

PIM TBM 960 - Edition 0 Rev. 01 Page 5.10.8

$\rm MXCL$ – Time, Consumption and Climb Distance – IAS = 170 KIAS / M 0.40 – ISA

NOTE Conditions:

- ISA,
- Maximum climb power,
- Landing gear and flaps UP,
- IAS = 170 KIAS / M 0.40,
- BLEED switch on AUTO.

Table valid only if **INERT SEP ON** CAS message is OFF, and **P2.5 HI** and **P3** messages are OFF.

Table 5.10.8 - MXCL – Time, Consumption and Climb Distance – IAS = 170 KIAS / M 0.40 – ISA

Pressure altitude	5,794	Weight Ibs (2,62	8 kg)	6,579	Weight Ibs (2,98	4 kg)	7,394	Weight Ibs (3,35	4 kg)	7,615	Weight Ibs (3,45	4 kg)
(ft)	Time (min:s)	Cons. (USG)	Dist. (NM)									
SL	00:00	0	0	00:00	0	0	00:00	0	0	00:00	0	0
2,000	00:45	1.2	2	01:00	1.4	3	01:15	1.7	3	01:15	1.7	3
4,000	01:45	2.4	5	02:00	2.8	6	02:15	3.3	7	02:15	3.3	7
6,000	02:30	3.6	8	03:00	4.2	9	03:30	4.9	10	03:30	4.9	11
8,000	03:30	4.8	10	04:00	5.6	12	04:45	6.5	14	04:45	6.5	14
10,000	04:30	6.0	13	05:15	7.0	16	06:00	8.1	18	06:00	8.1	19
12,000	05:15	7.2	16	06:15	8.4	19	07:15	9.7	22	07:30	9.7	23
14,000	06:15	8.4	20	07:15	9.8	23	08:30	11.4	27	08:45	11.3	27
16,000	07:15	9.5	23	08:30	11.2	27	10:00	13.0	32	10:00	13.0	32
18,000	08:15	10.7	27	09:45	12.6	32	11:15	14.7	37	11:30	14.6	38
20,000	09:15	11.9	31	11:00	14.0	36	12:45	16.4	42	13:00	16.3	43
22,000	10:30	13.2	35	12:15	15.4	41	14:15	18.1	48	14:30	18.0	49
24,000	11:30	14.4	39	13:30	16.9	46	15:45	19.8	54	16:15	19.7	55
26,000	12:30	15.5	43	14:45	18.2	51	17:15	21.3	60	17:30	21.3	61
28,000	13:30	16.5	48	16:00	19.5	56	18:45	22.9	66	19:15	22.9	68
30,000	14:45	17.6	52	17:15	20.8	62	20:30	24.6	73	21:00	24.6	75
31,000	15:15	18.2	55	18:15	21.5	65	21:30	25.5	77	22:00	25.5	79

PIM TBM 960 - Edition 0 Rev. 01 Page 5.10.9

MXCL – Time, Consumption and Climb Distance – IAS = 170 KIAS / M 0.40 – ISA + 20 $^\circ\text{C}$

NOTE Conditions:

- ISA + 20 °C,
- Maximum climb power,
- Landing gear and flaps UP,
- IAS = 170 KIAS / M 0.40,
- BLEED switch on AUTO.

Table valid only if **INERT SEP ON** CAS message is OFF, and **P2.5 HI** and **P3** messages are OFF.

Table 5.10.9 - MXCL – Time, Consumption and Climb Distance – IAS = 170 KIAS / M 0.40 – ISA + 20 $^\circ\text{C}$

Pressure	5,794	Weight Ibs (2,62	8 kg)	6,579	Weight Ibs (2,98	4 kg)	7,394	Weight Ibs (3,35	4 kg)	7,615	Weight Ibs (3,45	4 kg)
(ft)	Time (min:s)	Cons. (USG)	Dist. (NM)									
SL	00:00	0	0	00:00	0	0	00:00	0	0	00:00	0	0
2,000	00:45	1.3	3	01:00	1.5	3	01:15	1.7	3	01:15	1.7	4
4,000	01:45	2.6	5	02:00	3.0	6	02:30	3.5	7	02:30	3.5	7
6,000	02:45	3.8	8	03:00	4.5	9	03:30	5.2	11	03:45	5.2	11
8,000	03:30	5.1	11	04:15	5.9	13	05:00	6.9	15	05:00	6.9	15
10,000	04:30	6.3	14	05:15	7.4	17	06:15	8.6	19	06:15	8.6	20
12,000	05:30	7.5	18	06:30	8.8	21	07:30	10.3	24	07:45	10.3	25
14,000	06:30	8.8	21	07:30	10.3	25	09:00	12.0	29	09:00	12.0	30
16,000	07:30	10.1	25	08:45	11.8	29	10:15	13.8	34	10:30	13.8	35
18,000	08:30	11.3	29	10:00	13.3	34	11:45	15.6	40	12:00	15.5	41
20,000	09:45	12.7	33	11:30	14.8	39	13:15	17.4	46	13:45	17.4	47
22,000	11:00	14.1	38	13:00	16.5	45	15:15	19.5	53	15:30	19.4	55
24,000	12:30	15.6	45	14:45	18.4	53	17:15	21.7	62	17:45	21.7	64
26,000	13:45	17.0	51	16:30	20.1	60	19:30	23.8	72	20:00	23.8	73
28,000	15:30	18.4	57	18:15	21.9	68	22:00	26.1	82	22:30	26.1	84
30,000	17:15	19.8	64	20:30	23.7	77	25:00	28.5	94	25:30	28.6	96
31,000	18:00	20.6	68	21:45	24.7	82	26:30	29.8	101	27:15	30.0	104

PIM TBM 960 - Edition 0 Rev. 01 Page 5.10.10

Climb Performance after Go-Around

NOTE

Conditions:

_

Landing gear DN and flaps LDG.

Airplane	Pressure			Rate	of climb (ft	/min)		
weight / IAS	altitude (ft)	ISA - 35 °C	ISA - 20 °C	ISA - 10 °C	ISA	ISA + 10 °C	ISA + 20 °C	ISA + 30 °C
	SL	1,635	1,610	1,590	1,565	1,545	1,525	1,505
6,594 lbs	2,000	1,615	1,580	1,555	1,535	1,510	1,490	1,470
(2,991 kg)	4,000	1,585	1,545	1,525	1,500	1,480	1,455	1,435
90 KIAS	6,000	1,555	1,515	1,490	1,465	1,440	1,420	1,395
	8,000	1,520	1,480	1,455	1,430	1,400	1,375	1,345
	SL	1,350	1,320	1,295	1,275	1,255	1,235	1,215
7,394 lbs	2,000	1,325	1,290	1,265	1,245	1,225	1,205	1,180
(3,354 kg)	4,000	1,295	1,255	1,235	1,210	1,190	1,165	1,140
95 KIAS	6,000	1,265	1,225	1,200	1,175	1,150	1,120	1,095
	8,000	1,230	1,190	1,160	1,135	1,105	1,075	1,050
	SL	1,280	1,250	1,225	1,205	1,185	1,165	1,145
7,615 lbs	2,000	1,255	1,215	1,195	1,170	1,150	1,130	1,110
(3,454 kg)	4,000	1,220	1,185	1,160	1,140	1,115	1,090	1,065
95 KIAS	6,000	1,190	1,150	1,130	1,100	1,075	1,045	1,020
	8,000	1,160	1,120	1,090	1,060	1,030	1,000	975

Table 5.10.10 - Climb Performance After Go-Around

PIM TBM 960 - Edition 0 Rev. 01

Climb Performance – Flaps TO

NOTE

Conditions:

-

Landing gear UP and flaps TO.

Airplane	Pressure			Rate	of climb (ft	/min)		
weight / IAS	altitude (ft)	ISA - 35 °C	ISA - 20 °C	ISA - 10 °C	ISA	ISA + 10 °C	ISA + 20 °C	ISA + 30 °C
	SL	2,295	2,275	2,260	2,250	2,240	2,225	2,215
6,594 lbs	2,000	2,280	2,260	2,245	2,230	2,220	2,210	2,190
(2,991 kg)	4,000	2,265	2,245	2,230	2,215	2,200	2,180	2,165
110 KIAS	6,000	2,250	2,225	2,210	2,190	2,175	2,155	2,135
	8,000	2,235	2,205	2,185	2,165	2,145	2,130	2,110
	SL	1,985	1,965	1,955	1,940	1,930	1,915	1,900
7,394 lbs	2,000	1,970	1,950	1,940	1,925	1,910	1,890	1,875
(3,354 kg)	4,000	1,955	1,935	1,920	1,900	1,885	1,865	1,850
115 KIAS	6,000	1,940	1,910	1,895	1,875	1,860	1,840	1,825
	8,000	1,915	1,890	1,870	1,850	1,835	1,815	1,795
	SL	1,910	1,890	1,875	1,865	1,855	1,840	1,825
7,615 lbs	2,000	1,895	1,875	1,860	1,845	1,830	1,815	1,795
(3,454 kg)	4,000	1,880	1,860	1,840	1,825	1,805	1,790	1,775
115 KIAS	6,000	1,865	1,835	1,815	1,800	1,780	1,765	1,745
	8,000	1,840	1,810	1,795	1,775	1,755	1,735	1,715

Table 5.10.11 - Climb Performance - Flaps TO

PIM TBM 960 - Edition 0 Rev. 01

5.11 - Cruise Performance

Maximum Cruise

The following table provides references to performance tables that should be used depending on INERT SEP ON/OFF status and bleed status.

NOTE In the table below:

- Bleed status "P2.5" = P2.5 HI and P3 messages are OFF,
- Bleed status "P2.5 HI or P3" = P2.5 HI or P3 message is ON.

INERT SEP	Bleed status	ISA - 20 °C	ISA - 10 °C	ISA - 5 °C	ISA
	P2.5	<u>Table 5.11.2</u>	<u>Table 5.11.3</u>	<u>Table 5.11.4</u>	Table 5.11.5
OFF	P2.5 HI or P3	<u>Table 5.11.9</u>	<u>Table 5.11.10</u>	<u>Table 5.11.11</u>	Table 5.11.12
	P2.5	Table 5.11.16	Table 5.11.17	Table 5.11.18	Table 5.11.19
ON	P2.5 HI or P3	<u>Table 5.11.23</u>	<u>Table 5.11.24</u>	<u>Table 5.11.25</u>	Table 5.11.26
INERT SEP	Bleed status	ISA + 5 °C	ISA + 10 °C	ISA + 20 °C	
	P2.5	<u>Table 5.11.6</u>	<u>Table 5.11.7</u>	<u>Table 5.11.8</u>	
OFF	P2.5 HI or P3	Table 5.11.13	<u>Table 5.11.14</u>	<u>Table 5.11.15</u>	
	P2.5	Table 5.11.20	Table 5.11.21	Table 5.11.22	
ON	P2.5 HI or P3	Table 5.11.27	Table 5.11.28	Table 5.11.29	

Table 5.11.1 - References to MXCR Performance Tables

PIM TBM 960 - Edition 0 Rev. 03 Page 5.11.1

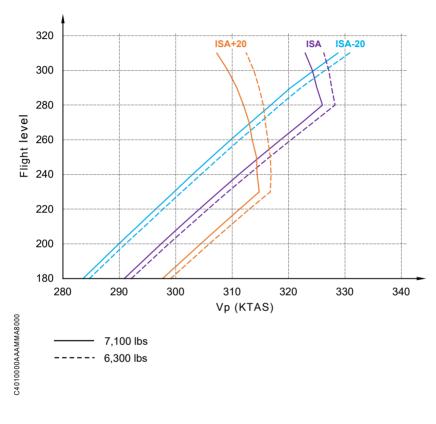


Figure 5.11.1 - Cruise Performance (Maximum Cruise)

NOTE -

The curves above are plotted for the condition INERT SEP OFF, and **P2.5 HI** and **P3** messages OFF.

PIM TBM 960 - Edition 0 Rev. 03 Page 5.11.2

MXCR - ISA - 20 °C

NOTE

- Conditions: - ISA - 20 °C,
- Landing gear and flaps UP,
 INERT SEP ON CAS message OFF,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Use of Recommended Cruise power is preferred.

	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	Airspeeds (kt)								
				5,500 lbs (2,495 kg)		6,300 lbs (2,858 kg)		7,100 lbs (3,220 kg)		7,300 lbs (3,311 kg)		
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS	
SL	-4	100	86.5	240	236	239	236	239	235	239	235	
5,000	-14	100	79.8	235	248	235	248	234	247	234	247	
10,000	-24	100	74.0	230	262	230	261	229	260	229	260	
15,000	-34	100	71.0	226	276	225	275	224	275	224	274	
18,000	-40	100	68.8	223	285	222	285	221	284	221	283	
20,000	-44	100	67.5	221	292	220	291	219	290	219	290	
21,000	-46	100	67.0	220	295	219	294	218	293	218	293	
22,000	-48	100	66.5	219	299	218	298	217	296	217	296	
23,000	-50	100	66.1	218	302	217	301	216	300	216	299	
24,000	-52	100	65.8	217	306	216	304	215	303	215	303	
25,000	-54	100	65.5	216	309	215	308	214	306	214	306	
26,000	-56	100	65.3	215	313	214	311	213	310	212	309	
27,000	-57	100	65.1	214	316	213	315	212	313	211	313	
28,000	-59	100	65.1	213	320	212	318	211	317	210	316	
29,000	-61	100	65.1	212	324	211	322	209	320	209	320	
30,000	-63	100	65.3	211	328	210	326	209	324	208	324	
31,000	-65	96	65.1	210	332	209	331	208	329	207	328	

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.3

MXCR - ISA - 10 °C

NOTE

- Conditions: - ISA - 10 °C,
- Landing gear and flaps UP,
 INERT SEP ON CAS message OFF,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Use of Recommended Cruise power is preferred.

	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	Airspeeds (kt)								
				5,500 lbs (2,495 kg)		6,300 lbs (2,858 kg)		7,100 lbs (3,220 kg)		7,300 lbs (3,311 kg)		
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS	
SL	6	100	87.5	238	239	238	239	237	238	237	238	
5,000	-4	100	80.6	234	252	233	251	233	250	233	250	
10,000	-14	100	74.8	229	265	228	265	228	264	227	264	
15,000	-24	100	71.7	224	280	223	279	222	278	222	278	
18,000	-30	100	69.5	221	289	220	288	219	287	219	287	
20,000	-34	100	68.2	219	296	218	295	217	294	217	293	
21,000	-36	100	67.7	218	299	217	298	216	297	216	297	
22,000	-38	100	67.2	217	303	216	302	215	300	215	300	
23,000	-40	100	66.7	216	306	215	305	214	304	214	303	
24,000	-42	100	66.4	215	310	214	309	213	307	213	307	
25,000	-44	100	66.1	214	314	213	312	212	311	212	310	
26,000	-46	100	65.9	213	317	212	316	211	314	211	314	
27,000	-47	100	65.8	212	321	211	320	210	318	209	317	
28,000	-49	100	65.7	211	325	210	323	209	322	208	321	
29,000	-51	99	64.8	210	329	209	328	208	326	207	325	
30,000	-53	95	62.3	209	333	208	332	207	329	206	328	
31,000	-55	91	60.1	205	333	204	331	202	328	201	327	

MXCR - ISA - 5 °C

NOTE

Conditions: - ISA - 5 °C,

- Landing gear and flaps UP,
 INERT SEP ON CAS message OFF,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Use of Recommended Cruise power is preferred.

Table 5.11.4 - MXCR Performance -	ISA - 5	°C

	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	Airspeeds (kt)								
Pressure altitude (ft)				5,500 lbs (2,495 kg)		6,300 lbs (2,858 kg)		7,100 lbs (3,220 kg)		7,300 lbs (3,311 kg)		
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS	
SL	11	100	88.0	238	240	237	240	237	240	237	240	
5,000	1	100	81.0	233	253	232	253	232	252	232	252	
10,000	-9	100	75.2	228	267	227	266	227	265	227	265	
15,000	-19	100	72.1	223	282	222	281	222	280	221	280	
18,000	-25	100	69.9	220	291	219	290	218	289	218	289	
20,000	-29	100	68.5	218	298	217	297	216	296	216	295	
21,000	-31	100	68.0	217	301	216	300	215	299	215	298	
22,000	-33	100	67.6	216	305	215	304	214	302	214	302	
23,000	-35	100	67.1	215	308	214	307	213	306	213	305	
24,000	-37	100	66.8	214	312	213	311	212	309	212	309	
25,000	-39	100	66.5	213	316	212	315	211	313	211	312	
26,000	-41	100	66.3	212	320	211	318	210	316	210	316	
27,000	-42	100	66.1	211	323	210	322	209	320	208	319	
28,000	-44	100	66.0	210	328	209	326	208	324	208	323	
29,000	-46	97	63.9	210	332	209	330	207	328	207	327	
30,000	-48	93	61.5	206	332	205	330	203	327	202	326	
31,000	-50	89	59.2	202	332	200	329	199	326	198	325	

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.5

MXCR – ISA

NOTE

- Conditions: - ISA,
- Landing gear and flaps UP,
 INERT SEP ON CAS message OFF,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Use of Recommended Cruise power is preferred.

			TRQ (%) (USG/h)				Airspee	eds (kt)			
Pressure altitude (ft)	OAT (°C)			- ,	5,500 lbs (2,495 kg)		6,300 lbs (2,858 kg)		0 lbs :0 kg)	7,300 lbs (3,311 kg)	
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	16	100	88.5	237	242	237	242	236	241	236	241
5,000	6	100	81.4	232	255	232	254	231	253	231	253
10,000	-4	100	75.6	227	268	227	268	226	267	226	267
15,000	-14	100	72.5	222	283	222	283	221	282	221	281
18,000	-20	100	70.2	219	293	219	292	218	291	217	291
20,000	-24	100	68.9	217	300	216	299	215	297	215	297
21,000	-26	100	68.3	216	303	215	302	214	301	214	300
22,000	-28	100	67.9	215	307	214	306	213	304	213	304
23,000	-30	100	67.4	214	310	213	309	212	308	212	307
24,000	-32	100	67.1	213	314	212	313	211	311	211	311
25,000	-34	100	66.8	212	318	211	317	210	315	210	314
26,000	-36	100	66.6	211	322	210	320	209	319	209	318
27,000	-37	100	66.5	210	326	209	324	208	322	208	322
28,000	-39	98	64.9	210	330	208	328	207	326	206	325
29,000	-41	94	62.8	206	330	204	328	203	325	202	324
30,000	-43	91	60.7	202	329	200	327	199	324	198	323
31,000	-45	87	58.3	198	329	196	326	194	323	194	322

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.6

MXCR - ISA + 5 °C

NOTE

Conditions: - ISA + 5 °C,

- Landing gear and flaps UP,
 INERT SEP ON CAS message OFF,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Use of Recommended Cruise power is preferred.

Table 5.11.6 - MXCR Performance -	- ISA + 5 °C
-----------------------------------	--------------

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 95 kg)	6,300 lbs (2,858 kg)		7,100 lbs (3,220 kg)		7,300 lbs (3,311 kg)	
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	21	100	88.9	236	243	236	243	235	242	235	242
5,000	11	100	81.9	231	256	231	256	230	255	230	255
10,000	1	100	76.0	226	270	226	269	225	269	225	268
15,000	-9	100	72.9	221	285	221	284	220	283	220	283
18,000	-15	100	70.6	218	295	218	294	217	293	216	292
20,000	-19	100	69.3	216	302	216	301	215	299	214	299
21,000	-21	100	68.7	215	305	215	304	213	303	213	302
22,000	-23	100	68.2	214	309	214	308	212	306	212	305
23,000	-25	100	67.8	213	312	213	311	211	309	211	309
24,000	-27	100	67.4	212	316	212	315	210	313	210	312
25,000	-29	100	67.2	211	320	210	319	209	317	209	316
26,000	-31	100	66.9	210	324	209	322	208	320	208	320
27,000	-32	97	65.1	210	328	209	326	207	324	206	323
28,000	-34	94	62.8	206	328	204	326	203	323	202	322
29,000	-36	90	60.8	202	327	200	325	199	322	198	321
30,000	-38	87	58.8	198	327	196	324	194	321	194	320
31,000	-40	84	56.5	194	326	192	323	190	320	189	318

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.7

MXCR - ISA + 10 °C

NOTE

- Conditions: - ISA + 10 °C,
- Landing gear and flaps UP,
 INERT SEP ON CAS message OFF,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Use of Recommended Cruise power is preferred.

			Fuel flow (USG/h)				Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)		- ,	0 lbs 95 kg)	6,300 lbs (2,858 kg)		7,100 lbs (3,220 kg)		7,300 lbs (3,311 kg)	
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	26	100	89.4	236	245	235	244	235	244	235	244
5,000	16	100	82.3	231	258	230	257	230	256	230	256
10,000	6	100	76.4	226	272	225	271	224	270	224	270
15,000	-4	100	73.2	221	287	220	286	219	285	219	285
18,000	-10	100	71.0	218	297	217	296	216	294	216	294
20,000	-14	100	69.6	216	303	215	302	214	301	213	300
21,000	-16	100	69.1	215	307	214	306	213	304	212	304
22,000	-18	100	68.6	214	311	213	309	211	308	211	307
23,000	-20	100	68.1	212	314	212	313	210	311	210	311
24,000	-22	100	67.7	212	318	211	317	209	315	209	314
25,000	-24	100	67.4	211	322	210	320	208	319	208	318
26,000	-26	96	65.2	210	326	209	325	207	323	206	321
27,000	-27	93	63.0	206	325	204	324	203	321	202	320
28,000	-29	90	60.8	202	325	200	323	198	320	198	319
29,000	-31	87	58.8	198	325	196	322	194	319	193	318
30,000	-33	83	56.7	194	324	192	321	190	317	189	316
31,000	-35	80	54.5	190	323	188	320	186	316	185	315

MXCR - ISA + 20 °C

NOTE

- Conditions: - ISA + 20 °C,
- Landing gear and flaps UP,
 INERT SEP ON CAS message OFF,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Use of Recommended Cruise power is preferred.

			TRQ Fuel (%) (USG/h)				Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)			- ,	0 lbs 95 kg)	6,300 lbs (2,858 kg)		7,100 lbs (3,220 kg)		7,300 lbs (3,311 kg)	
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	36	100	90.4	234	247	234	247	233	246	233	246
5,000	26	100	83.2	229	261	229	260	228	259	228	259
10,000	16	100	77.2	224	275	224	274	223	273	223	273
15,000	6	100	74.0	219	290	218	289	217	288	217	288
18,000	0	100	71.7	216	300	215	299	214	298	214	297
20,000	-4	100	70.4	214	307	213	306	212	304	212	304
21,000	-6	100	69.8	213	311	212	309	211	308	210	307
22,000	-8	100	69.3	212	314	211	313	210	311	209	311
23,000	-10	98	67.5	211	318	210	317	209	315	208	314
24,000	-12	94	65.2	208	319	206	317	205	314	204	314
25,000	-14	92	63.2	204	319	203	317	201	314	200	313
26,000	-16	89	61.1	200	318	199	316	197	314	196	313
27,000	-17	85	58.8	197	318	195	316	193	313	193	312
28,000	-19	82	56.9	193	318	192	316	189	312	189	311
29,000	-21	79	54.8	190	318	188	315	185	311	185	310
30,000	-23	76	52.8	186	317	184	314	181	309	180	308
31,000	-25	73	50.8	182	316	180	313	177	307	176	306

MXCR - ISA - 20 °C - P2.5 HI or P3

NOTE

- Conditions: - ISA - 20 °C,
- Landing gear and flaps UP,
 INERT SEP ON CAS message OFF,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Use of Recommended Cruise power is preferred.

Table 5.11.9 - MXCR Performance - ISA - 20 °C [P2.5 HI or P3]

			Fuel flow (USG/h)				Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)		- ,	5,500 lbs (2,495 kg)		6,300 lbs (2,858 kg)		0 lbs :0 kg)	7,300 lbs (3,311 kg)	
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	-4	100	87.6	240	236	239	236	239	235	239	235
5,000	-14	100	80.8	235	248	235	248	234	247	234	247
10,000	-24	100	75.0	230	262	230	261	229	260	229	260
15,000	-34	100	72.1	226	276	225	275	224	275	224	274
18,000	-40	100	69.8	223	285	222	285	221	284	221	283
20,000	-44	100	68.5	221	292	220	291	219	290	219	290
21,000	-46	100	68.0	220	295	219	294	218	293	218	293
22,000	-48	100	67.5	219	299	218	298	217	296	217	296
23,000	-50	100	67.0	218	302	217	301	216	300	216	299
24,000	-52	100	66.7	217	306	216	304	215	303	215	303
25,000	-54	100	66.4	216	309	215	308	214	306	214	306
26,000	-56	100	66.2	215	313	214	311	213	310	212	309
27,000	-57	100	66.1	214	316	213	315	212	313	211	313
28,000	-59	100	66.0	213	320	212	318	211	317	210	316
29,000	-61	100	66.0	212	324	211	322	209	320	209	320
30,000	-63	99	65.5	211	328	210	326	209	324	208	324
31,000	-65	95	63.0	208	329	207	327	205	324	204	323

MXCR - ISA - 10 °C - P2.5 HI or P3

NOTE

- Conditions: - ISA - 10 °C,
- Landing gear and flaps UP,
 INERT SEP ON CAS message OFF,
 BLEED switch on AUTO, and P2.5 Hi or P3 message ON.
 Use of Recommended Cruise power is preferred.

Table 5.11.10 - MXCR Performance - ISA - 10 °C [P2.5 HI or P3]

			Fuel flow (USG/h)				Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)		- ,	0 lbs 95 kg)	6,300 lbs (2,858 kg)		7,100 lbs (3,220 kg)		7,300 lbs (3,311 kg)	
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	6	100	88.6	238	239	238	239	237	238	237	238
5,000	-4	100	81.7	234	252	233	251	233	250	233	250
10,000	-14	100	75.9	229	265	228	265	228	264	227	264
15,000	-24	100	72.8	224	280	223	279	222	278	222	278
18,000	-30	100	70.6	221	289	220	288	219	287	219	287
20,000	-34	100	69.2	219	296	218	295	217	294	217	293
21,000	-36	100	68.7	218	299	217	298	216	297	216	297
22,000	-38	100	68.2	217	303	216	302	215	300	215	300
23,000	-40	100	67.7	216	306	215	305	214	304	214	303
24,000	-42	100	67.4	215	310	214	309	213	307	213	307
25,000	-44	100	67.1	214	314	213	312	212	311	212	310
26,000	-46	100	67.0	213	317	212	316	211	314	211	314
27,000	-47	100	66.8	212	321	211	320	210	318	209	317
28,000	-49	98	65.6	211	325	210	323	209	322	208	321
29,000	-51	95	63.3	208	326	207	324	205	322	205	321
30,000	-53	91	60.8	204	325	202	323	200	320	200	319
31,000	-55	87	58.6	200	324	198	322	196	319	196	318

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.11

MXCR - ISA - 5 °C - P2.5 HI or P3

NOTE

- Conditions: - ISA - 5 °C.
- Landing gear and flaps UP,
 INERT SEP ON CAS message OFF,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Use of Recommended Cruise power is preferred.

Table 5.11.11 - MXCR Performance - ISA - 5 °C [P2.5 HI or P3]

			Fuel flow (USG/h)				Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)		- ,	0 lbs 95 kg)	6,300 lbs (2,858 kg)		7,100 lbs (3,220 kg)		7,300 lbs (3,311 kg)	
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	11	100	89.2	238	240	237	240	237	240	237	240
5,000	1	100	82.1	233	253	232	253	232	252	232	252
10,000	-9	100	76.3	228	267	227	266	227	265	227	265
15,000	-19	100	73.2	223	282	222	281	222	280	221	280
18,000	-25	100	70.9	220	291	219	290	218	289	218	289
20,000	-29	100	69.6	218	298	217	297	216	296	216	295
21,000	-31	100	69.0	217	301	216	300	215	299	215	298
22,000	-33	100	68.6	216	305	215	304	214	302	214	302
23,000	-35	100	68.1	215	308	214	307	213	306	213	305
24,000	-37	100	67.7	214	312	213	311	212	309	212	309
25,000	-39	100	67.5	213	316	212	315	211	313	211	312
26,000	-41	100	67.3	212	320	211	318	210	316	210	316
27,000	-42	99	66.7	211	323	210	322	209	320	208	319
28,000	-44	95	64.2	209	325	207	323	206	321	205	320
29,000	-46	92	61.9	205	325	203	323	202	320	201	319
30,000	-48	88	59.6	201	324	199	322	197	319	197	318
31,000	-50	84	57.2	196	323	195	320	193	317	192	316

MXCR - ISA - P2.5 HI or P3

NOTE

Conditions: ISA. -

- Landing gear and flaps UP,
 INERT SEP ON CAS message OFF,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Use of Recommended Cruise power is preferred.

Table 5.11.12 - MXCR Performance - ISA [P2.5 HI or P3]

			Fuel flow (USG/h)				Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)		- ,	5,500 lbs (2,495 kg)		6,300 lbs (2,858 kg)		0 lbs 0 kg)	7,300 lbs (3,311 kg)	
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	16	100	89.7	237	242	237	242	236	241	236	241
5,000	6	100	82.6	232	255	232	254	231	253	231	253
10,000	-4	100	76.7	227	268	227	268	226	267	226	267
15,000	-14	100	73.6	222	283	222	283	221	282	221	281
18,000	-20	100	71.3	219	293	219	292	218	291	217	291
20,000	-24	100	70.0	217	300	216	299	215	297	215	297
21,000	-26	100	69.4	216	303	215	302	214	301	214	300
22,000	-28	100	69.0	215	307	214	306	213	304	213	304
23,000	-30	100	68.5	214	310	213	309	212	308	212	307
24,000	-32	100	68.1	213	314	212	313	211	311	211	311
25,000	-34	100	67.8	212	318	211	317	210	315	210	314
26,000	-36	100	67.5	211	322	210	320	209	319	209	318
27,000	-37	96	65.2	209	324	208	322	207	320	206	319
28,000	-39	93	62.9	205	324	204	322	202	319	202	319
29,000	-41	89	60.7	201	323	200	321	198	318	198	317
30,000	-43	86	58.5	198	323	196	320	194	317	193	316
31,000	-45	82	56.0	193	321	192	319	189	315	189	314

MXCR – ISA + 5 °C – P2.5 HI or P3

NOTE

- Conditions: - ISA + 5 °C.
- Landing gear and flaps UP,
 INERT SEP ON CAS message OFF,
 BLEED switch on AUTO, and P2.5 Hi or P3 message ON.
 Use of Recommended Cruise power is preferred.

Table 5.11.13 - MXCR Performance – ISA + 5 °C [P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 95 kg)		0 lbs 8 kg)	, -	0 lbs :0 kg)	,	0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	21	100	90.2	236	243	236	243	235	242	235	242
5,000	11	100	83.0	231	256	231	256	230	255	230	255
10,000	1	100	77.2	226	270	226	269	225	269	225	268
15,000	-9	100	74.0	221	285	221	284	220	283	220	283
18,000	-15	100	71.7	218	295	218	294	217	293	216	292
20,000	-19	100	70.4	216	302	216	301	215	299	214	299
21,000	-21	100	69.8	215	305	215	304	213	303	213	302
22,000	-23	100	69.3	214	309	214	308	212	306	212	305
23,000	-25	100	68.9	213	312	213	311	211	309	211	309
24,000	-27	100	68.5	212	316	212	315	210	313	210	312
25,000	-29	99	67.6	211	320	210	319	209	317	209	316
26,000	-31	96	65.4	209	321	208	320	206	317	206	317
27,000	-32	92	63.2	205	321	204	319	202	317	202	316
28,000	-34	89	60.9	201	321	200	319	198	316	197	315
29,000	-36	85	58.8	197	320	196	318	194	315	193	314
30,000	-38	82	56.5	193	319	192	317	189	313	189	312
31,000	-40	78	54.1	189	318	187	315	185	311	184	309

MXCR - ISA + 10 °C - P2.5 HI or P3

NOTE

- Conditions: - ISA + 10 °C,
- Landing gear and flaps UP,
 INERT SEP ON CAS message OFF,
 BLEED switch on AUTO, and P2.5 Hi or P3 message ON.
 Use of Recommended Cruise power is preferred.

Table 5.11.14 - MXCR Performance - ISA + 10 °C [P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 95 kg)		0 lbs 8 kg)	, -	0 lbs :0 kg)		0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	26	100	90.7	236	245	235	244	235	244	235	244
5,000	16	100	83.5	231	258	230	257	230	256	230	256
10,000	6	100	77.6	226	272	225	271	224	270	224	270
15,000	-4	100	74.4	221	287	220	286	219	285	219	285
18,000	-10	100	72.1	218	297	217	296	216	294	216	294
20,000	-14	100	70.8	216	303	215	302	214	301	213	300
21,000	-16	100	70.2	215	307	214	306	213	304	212	304
22,000	-18	100	69.7	214	311	213	309	211	308	211	307
23,000	-20	100	69.3	212	314	212	313	210	311	210	311
24,000	-22	98	67.6	212	318	211	317	209	315	209	314
25,000	-24	95	65.4	208	318	207	317	205	315	205	314
26,000	-26	91	63.2	204	318	203	316	201	314	201	313
27,000	-27	88	61.0	201	318	199	316	197	313	197	312
28,000	-29	85	58.8	197	317	195	315	193	312	193	311
29,000	-31	81	56.7	193	317	191	314	189	311	188	309
30,000	-33	78	54.5	189	316	187	313	185	309	184	307
31,000	-35	74	52.2	185	314	183	311	180	306	179	305

MXCR - ISA + 20 °C - P2.5 HI or P3

NOTE

- Conditions: - ISA + 20 °C.
- Landing gear and flaps UP,
 INERT SEP ON CAS message OFF,
 BLEED switch on AUTO, and P2.5 Hi or P3 message ON.
 Use of Recommended Cruise power is preferred.

Table 5.11.15 - MXCR Performance - ISA + 20 °C [P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 95 kg)		0 lbs 8 kg)	, -	0 lbs :0 kg)	,	0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	36	100	90.4	234	247	234	247	233	246	233	246
5,000	26	100	83.2	229	261	229	260	228	259	228	259
10,000	16	100	77.2	224	275	224	274	223	273	223	273
15,000	6	100	74.0	219	290	218	289	217	288	217	288
18,000	0	100	71.7	216	300	215	299	214	298	214	297
20,000	-4	100	70.4	214	307	213	306	212	304	212	304
21,000	-6	100	69.8	213	311	212	309	211	308	210	307
22,000	-8	100	69.3	212	314	211	313	210	311	209	311
23,000	-10	98	67.5	211	318	210	317	209	315	208	314
24,000	-12	94	65.2	208	319	206	317	205	314	204	314
25,000	-14	92	63.2	204	319	203	317	201	314	200	313
26,000	-16	89	61.1	200	318	199	316	197	314	196	313
27,000	-17	85	58.8	197	318	195	316	193	313	193	312
28,000	-19	82	56.9	193	318	192	316	189	312	189	311
29,000	-21	79	54.8	190	318	188	315	185	311	185	310
30,000	-23	76	52.8	186	317	184	314	181	309	180	308
31,000	-25	73	50.8	182	316	180	313	177	307	176	306

MXCR - ISA - 20 °C - INERT SEP

NOTE

- Conditions: - ISA - 20 °C,
- ISR 2000,
 Landing gear and flaps UP,
 INERT SEP ON CAS message ON,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Use of Recommended Cruise power is preferred.

Table 5.11.16 - MXCR Performance - ISA - 20 °C [INERT SEP]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs I5 kg)		0 lbs 8 kg)	, -	0 lbs :0 kg)	,	0 lbs 1 kg)
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	-4	100	89.2	240	236	239	236	239	235	239	235
5,000	-14	100	83.1	235	248	235	248	234	247	234	247
10,000	-24	100	77.8	230	262	230	261	229	260	229	260
15,000	-34	100	75.6	226	276	225	275	224	275	224	274
18,000	-40	100	74.1	223	285	222	285	221	284	221	283
20,000	-44	98	72.2	221	292	220	291	219	290	219	290
21,000	-46	95	69.6	218	293	217	292	216	291	216	290
22,000	-48	91	67.0	214	292	213	291	212	290	212	289
23,000	-50	88	64.6	210	291	209	290	208	289	207	288
24,000	-52	84	62.0	206	290	205	289	203	287	203	287
25,000	-54	81	59.8	202	290	201	288	199	286	199	286
26,000	-56	78	57.5	198	289	197	287	195	285	195	285
27,000	-57	75	55.4	194	288	193	286	191	284	190	283
28,000	-59	72	53.3	190	287	189	285	187	282	186	281
29,000	-61	69	51.4	186	287	185	284	183	281	182	280
30,000	-63	66	49.4	183	285	181	283	178	279	178	278
31,000	-65	64	47.5	179	284	177	281	174	277	173	276

MXCR - ISA - 10 °C - INERT SEP

NOTE

Conditions: - ISA - 10 °C.

- Landing gear and flaps UP,
 INERT SEP ON CAS message ON,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Use of Recommended Cruise power is preferred.

Table 5.11.17 - MXCR Performance - ISA - 10 °C [INERT SEP]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 5 kg)	- ,	0 lbs 8 kg)		0 lbs :0 kg)	,	0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	6	100	90.2	238	239	238	239	237	238	237	238
5,000	-4	100	84.0	234	252	233	251	233	250	233	250
10,000	-14	100	78.7	229	265	228	265	228	264	227	264
15,000	-24	100	76.3	224	280	223	279	222	278	222	278
18,000	-30	97	72.7	221	289	220	288	219	287	219	287
20,000	-34	90	68.0	213	289	212	288	211	286	211	286
21,000	-36	88	65.7	210	288	209	287	208	286	207	285
22,000	-38	84	63.3	206	288	205	287	204	285	203	284
23,000	-40	82	61.2	202	288	201	286	200	285	199	284
24,000	-42	78	58.9	198	287	197	285	196	283	195	283
25,000	-44	76	56.8	195	287	194	285	192	283	192	282
26,000	-46	73	54.6	191	286	189	284	188	281	187	280
27,000	-47	70	52.8	188	285	186	283	184	280	184	279
28,000	-49	67	50.8	184	284	182	282	180	279	179	277
29,000	-51	65	48.9	180	284	178	281	176	277	175	276
30,000	-53	62	47.0	176	282	174	279	171	275	170	273
31,000	-55	60	45.1	172	281	170	277	167	272	166	271

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.18

MXCR - ISA - 5 °C - INERT SEP

NOTE

Conditions: - ISA - 5 °C.

- Landing gear and flaps UP,
 INERT SEP ON CAS message ON,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Use of Recommended Cruise power is preferred.

Table 5.11.18 - MXCR Performance – ISA - 5 °C [INERT SEP]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 15 kg)	- ,	0 lbs 8 kg)		0 lbs :0 kg)	,	0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	11	100	90.7	238	240	237	240	237	240	237	240
5,000	1	100	84.4	233	253	232	253	232	252	232	252
10,000	-9	100	79.1	228	267	227	266	227	265	227	265
15,000	-19	100	76.7	223	282	222	281	222	280	221	280
18,000	-25	93	71.1	217	287	216	286	215	285	215	285
20,000	-29	88	66.5	210	287	209	286	208	285	208	284
21,000	-31	85	64.3	206	287	205	286	204	284	204	284
22,000	-33	82	62.0	203	287	202	285	200	283	200	283
23,000	-35	79	60.0	199	286	198	285	197	283	196	282
24,000	-37	76	57.8	195	286	194	284	193	282	192	281
25,000	-39	74	55.8	192	285	191	284	189	281	188	280
26,000	-41	71	53.7	188	285	187	283	185	280	184	279
27,000	-42	68	51.9	185	284	183	282	181	279	181	278
28,000	-44	66	50.1	181	284	180	281	177	278	177	277
29,000	-46	64	48.4	178	283	176	280	173	276	172	275
30,000	-48	61	46.5	174	282	172	279	169	274	168	273
31,000	-50	58	44.5	170	280	167	276	164	271	163	269

MXCR - ISA - INERT SEP

NOTE

Conditions: ISA. -

- Landing gear and flaps UP,
 INERT SEP ON CAS message ON,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Use of Recommended Cruise power is preferred.

Table 5.11.19 - MXCR Performance - ISA [INERT SEP]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 95 kg)		0 lbs 8 kg)		0 lbs 0 kg)		0 lbs 1 kg)
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	16	100	91.2	237	242	237	242	236	241	236	241
5,000	6	100	84.9	232	255	232	254	231	253	231	253
10,000	-4	100	79.5	227	268	227	268	226	267	226	267
15,000	-14	99	76.6	222	283	222	283	221	282	221	281
18,000	-20	91	69.6	214	286	213	285	212	284	212	283
20,000	-24	85	65.1	207	286	206	285	204	283	204	283
21,000	-26	82	63.0	203	286	202	284	201	283	200	282
22,000	-28	79	60.9	200	285	198	284	197	282	197	281
23,000	-30	77	58.8	196	285	195	284	193	281	193	281
24,000	-32	74	56.9	193	285	191	283	190	281	189	280
25,000	-34	72	54.8	189	284	188	282	186	280	185	279
26,000	-36	69	52.9	186	284	184	282	182	278	181	278
27,000	-37	67	51.1	182	283	180	281	178	277	178	276
28,000	-39	64	49.3	179	283	177	280	174	276	174	275
29,000	-41	62	47.6	175	282	173	279	170	275	169	273
30,000	-43	60	45.8	171	281	169	277	166	273	165	271
31,000	-45	57	44.0	167	280	165	275	161	270	160	268

MXCR - ISA + 5 °C - INERT SEP

NOTE

Conditions: - ISA + 5 °C.

- Landing gear and flaps UP,
 INERT SEP ON CAS message ON,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Use of Recommended Cruise power is preferred.

Table 5.11.20 - MXCR Performance – ISA + 5 °C [INERT SEP]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 95 kg)	- ,	0 lbs 8 kg)		0 lbs :0 kg)	,	0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	21	100	91.7	236	243	236	243	235	242	235	242
5,000	11	100	85.3	231	256	231	256	230	255	230	255
10,000	1	100	79.9	226	270	226	269	225	269	225	268
15,000	-9	96	74.9	220	284	220	283	219	282	219	282
18,000	-15	87	68.0	210	284	209	283	208	282	208	281
20,000	-19	82	63.7	203	284	202	283	201	281	200	281
21,000	-21	79	61.6	200	284	199	282	197	281	197	280
22,000	-23	77	59.5	196	284	195	282	194	280	193	279
23,000	-25	74	57.4	193	283	191	281	190	279	189	278
24,000	-27	72	55.5	189	283	188	281	186	278	186	277
25,000	-29	69	53.5	186	282	184	280	182	277	182	276
26,000	-31	66	51.6	182	282	181	279	178	276	178	275
27,000	-32	64	49.8	179	281	177	278	175	275	174	274
28,000	-34	62	48.2	175	281	173	277	170	273	170	272
29,000	-36	60	46.4	172	280	169	276	166	271	165	270
30,000	-38	57	44.6	168	279	165	274	162	269	161	267
31,000	-40	55	42.8	164	277	161	272	157	266	155	264

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.21

MXCR - ISA + 10 °C - INERT SEP

NOTE

Conditions: - ISA + 10 °C.

- Landing gear and flaps UP,
 INERT SEP ON CAS message ON,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Use of Recommended Cruise power is preferred.

Table 5.11.21 - MXCR Performance - ISA + 10 °C [INERT SEP]

							Airspee	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 95 kg)		0 lbs 8 kg)		0 lbs :0 kg)		0 lbs 1 kg)
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	26	100	92.2	236	245	235	244	235	244	235	244
5,000	16	100	85.8	231	258	230	257	230	256	230	256
10,000	6	100	80.3	226	272	225	271	224	270	224	270
15,000	-4	92	73.1	216	282	216	281	215	280	215	279
18,000	-10	84	66.4	206	282	205	281	204	279	204	279
20,000	-14	79	62.2	199	282	198	280	197	279	197	278
21,000	-16	76	60.1	196	282	195	280	194	278	193	278
22,000	-18	74	58.1	193	282	192	280	190	278	190	277
23,000	-20	71	56.1	189	281	188	279	186	277	186	276
24,000	-22	69	54.1	186	281	184	279	182	276	182	275
25,000	-24	66	52.2	182	280	181	278	179	274	178	273
26,000	-26	64	50.2	179	279	177	276	174	273	174	272
27,000	-27	62	48.5	175	279	173	275	170	271	170	270
28,000	-29	59	46.8	172	278	169	274	166	270	165	268
29,000	-31	57	45.1	168	277	165	273	162	267	161	266
30,000	-33	55	43.4	164	275	161	271	157	265	156	263
31,000	-35	53	41.6	160	274	157	268	152	261	151	259

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.22

MXCR - ISA + 20 °C - INERT SEP

NOTE

- Conditions: - ISA + 20 °C.
- Landing gear and flaps UP,
 INERT SEP ON CAS message ON,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Use of Recommended Cruise power is preferred.

Table 5.11.22 - MXCR Performance – ISA + 20 °C [INERT SEP]

							Airspee	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 95 kg)		0 lbs 8 kg)	, -	0 lbs :0 kg)	,	0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	36	100	93.2	234	247	234	247	233	246	233	246
5,000	26	100	86.7	229	261	229	260	228	259	228	259
10,000	16	95	78.5	223	273	222	273	222	272	221	271
15,000	6	84	69.1	208	276	207	275	206	273	205	273
18,000	0	76	62.6	198	276	197	274	195	272	195	272
20,000	-4	72	58.6	191	276	190	274	188	272	188	271
21,000	-6	69	56.6	188	276	187	274	185	271	184	270
22,000	-8	67	54.7	185	275	183	273	181	270	181	269
23,000	-10	65	52.8	181	275	180	272	177	269	177	268
24,000	-12	63	51.0	178	274	176	272	174	268	173	267
25,000	-14	60	49.1	174	274	172	270	170	266	169	265
26,000	-16	58	47.4	171	273	169	269	166	265	165	263
27,000	-17	56	45.7	167	272	165	268	161	263	160	261
28,000	-19	54	44.1	164	271	161	266	157	260	155	258
29,000	-21	52	42.5	160	270	157	265	152	257	149	253
30,000	-23	50	40.8	156	268	152	262	146	252	144	248
31,000	-25	48	39.3	152	266	148	260	140	246	135	237

MXCR - ISA - 20 °C - INERT SEP - P2.5 HI or P3

NOTE

- Conditions: - ISA - 20 °C,
- ISR 20 G,
 Landing gear and flaps UP,
 INERT SEP ON CAS message ON,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Use of Recommended Cruise power is preferred.

Table 5.11.23 - MXCR Performance - ISA - 20 °C [INERT SEP - P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs I5 kg)		0 lbs 8 kg)	, -	0 lbs :0 kg)	,	0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	-4	100	90.3	240	236	239	236	239	235	239	235
5,000	-14	100	84.2	235	248	235	248	234	247	234	247
10,000	-24	100	78.9	230	262	230	261	229	260	229	260
15,000	-34	100	76.7	226	276	225	275	224	275	224	274
18,000	-40	100	75.2	223	285	222	285	221	284	221	283
20,000	-44	95	70.9	219	289	218	288	217	287	217	287
21,000	-46	91	68.5	215	289	214	288	213	286	213	286
22,000	-48	88	66.0	211	288	210	287	209	286	208	285
23,000	-50	85	63.5	207	287	206	286	205	285	204	284
24,000	-52	81	61.0	203	286	201	285	200	283	200	283
25,000	-54	78	58.8	199	286	198	284	196	282	196	282
26,000	-56	75	56.6	195	285	194	283	192	281	192	280
27,000	-57	72	54.5	191	284	190	282	188	279	187	279
28,000	-59	69	52.4	187	283	186	281	184	278	183	277
29,000	-61	66	50.4	183	282	182	279	179	276	179	275
30,000	-63	64	48.5	179	281	178	278	175	274	174	273
31,000	-65	61	46.6	176	279	173	276	170	272	170	270

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.24

MXCR - ISA - 10 °C - INERT SEP - P2.5 HI or P3

NOTE

- Conditions: - ISA - 10 °C,
- ISA 10 C,
 Landing gear and flaps UP,
 INERT SEP ON CAS message ON,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Use of Recommended Cruise power is preferred.

Table 5.11.24 - MXCR Performance - ISA - 10 °C [INERT SEP - P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 15 kg)		0 lbs 8 kg)	, -	0 lbs :0 kg)	,	0 lbs 1 kg)
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	6	100	91.4	238	239	238	239	237	238	237	238
5,000	-4	100	85.1	234	252	233	251	233	250	233	250
10,000	-14	100	79.8	229	265	228	265	228	264	227	264
15,000	-24	100	77.4	224	280	223	279	222	278	222	278
18,000	-30	92	71.2	217	284	216	283	215	282	215	282
20,000	-34	86	66.4	209	284	209	282	207	281	207	281
21,000	-36	83	64.1	206	283	205	282	203	280	203	280
22,000	-38	80	61.8	202	283	201	281	199	279	199	279
23,000	-40	77	59.7	198	282	197	281	196	279	195	278
24,000	-42	74	57.4	194	281	193	280	191	277	191	277
25,000	-44	72	55.3	191	281	189	279	188	276	187	275
26,000	-46	69	53.2	187	280	185	277	183	274	183	274
27,000	-47	66	51.3	183	279	182	276	179	273	179	272
28,000	-49	63	49.2	179	277	177	274	175	271	174	270
29,000	-51	61	47.5	176	277	173	273	171	269	170	268
30,000	-53	58	45.5	171	275	169	271	166	266	165	265
31,000	-55	56	43.7	167	273	165	269	161	264	160	262

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.25

MXCR – ISA - 5 °C – INERT SEP – P2.5 HI or P3

NOTE

- Conditions: - ISA - 5 °C,
- Landing gear and flaps UP,
 INERT SEP ON CAS message ON,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Use of Recommended Cruise power is preferred.

Table 5.11.25 - MXCR Performance - ISA - 5 °C [INERT SEP - P2.5 HI or P3]

							Airspe	eds (kt)			
altitude (ft) (SL - 5,000 - 10,000 - 15,000 - 20,000 - 21,000 - 23,000 - 24,000 -	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs I5 kg)	6,300 lbs (2,858 kg)		, -	0 lbs :0 kg)	7,300 lbs (3,311 kg)	
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	11	100	91.9	238	240	237	240	237	240	237	240
5,000	1	100	85.6	233	253	232	253	232	252	232	252
10,000	-9	100	80.2	228	267	227	266	227	265	227	265
15,000	-19	98	76.7	223	282	222	281	222	280	221	280
18,000	-25	89	69.5	213	282	212	281	211	280	211	280
20,000	-29	83	65.0	206	282	205	281	204	279	203	279
21,000	-31	80	62.7	202	282	201	280	200	279	199	278
22,000	-33	77	60.5	198	281	197	280	196	278	196	277
23,000	-35	75	58.4	195	281	194	279	192	277	192	276
24,000	-37	72	56.2	191	280	190	278	188	275	188	275
25,000	-39	69	54.2	188	279	186	277	184	274	184	273
26,000	-41	67	52.2	184	278	182	276	180	273	180	272
27,000	-42	64	50.3	180	277	178	275	176	271	175	270
28,000	-44	61	48.5	176	276	174	273	172	269	171	268
29,000	-46	59	46.6	173	275	170	272	167	267	166	266
30,000	-48	57	44.8	169	274	166	270	163	265	162	263
31,000	-50	54	42.8	164	271	161	267	157	261	156	259

MXCR - ISA - INERT SEP - P2.5 HI or P3

NOTE

Conditions: ISA. -

- Landing gear and flaps UP,
 INERT SEP ON CAS message ON,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Use of Recommended Cruise power is preferred.

Table 5.11.26 - MXCR Performance - ISA [INERT SEP - P2.5 HI or P3]

							Airspee	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 95 kg)	- ,	0 lbs 8 kg)		0 lbs :0 kg)	,	0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	16	100	92.4	237	242	237	242	236	241	236	241
5,000	6	100	86.1	232	255	232	254	231	253	231	253
10,000	-4	100	80.7	227	268	227	268	226	267	226	267
15,000	-14	94	74.9	220	280	219	280	218	279	218	278
18,000	-20	86	67.9	209	280	209	279	207	278	207	278
20,000	-24	80	63.6	202	280	201	279	200	277	200	277
21,000	-26	78	61.5	199	280	198	279	197	277	196	276
22,000	-28	75	59.3	195	280	194	278	193	276	192	275
23,000	-30	72	57.2	192	279	190	277	189	275	188	274
24,000	-32	70	55.2	188	278	187	276	185	274	184	273
25,000	-34	67	53.2	185	278	183	275	181	272	180	271
26,000	-36	65	51.3	181	277	179	274	177	271	176	270
27,000	-37	62	49.4	177	276	175	273	173	269	172	268
28,000	-39	60	47.6	174	275	171	272	168	267	168	266
29,000	-41	57	45.8	170	274	167	270	164	265	163	264
30,000	-43	55	44.2	166	273	163	268	160	263	158	261
31,000	-45	52	42.2	161	270	158	265	154	258	152	256

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.27

MXCR - ISA + 5 °C - INERT SEP - P2.5 HI or P3

NOTE

- Conditions: - ISA + 5 °C,
- Landing gear and flaps UP,
 INERT SEP ON CAS message ON,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Use of Recommended Cruise power is preferred.

Table 5.11.27 - MXCR Performance – ISA + 5 °C [INERT SEP – P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs I5 kg)	,	0 lbs 8 kg)	, -	0 lbs :0 kg)		0 lbs 1 kg)
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	21	100	92.9	236	243	236	243	235	242	235	242
5,000	11	100	86.6	231	256	231	256	230	255	230	255
10,000	-1	100	81.1	226	270	226	269	225	269	225	268
15,000	-9	90	72.9	216	278	215	277	214	276	214	276
18,000	-15	82	66.1	205	278	204	277	203	275	203	275
20,000	-19	77	61.8	198	278	197	276	196	274	195	274
21,000	-21	74	59.8	195	277	194	276	192	274	192	273
22,000	-23	72	57.8	192	277	190	275	189	273	188	272
23,000	-25	69	55.7	188	277	187	275	185	272	184	271
24,000	-27	67	53.7	184	276	183	273	181	271	180	270
25,000	-29	64	51.8	181	275	179	273	177	269	176	268
26,000	-31	62	50.0	177	274	176	272	173	268	172	267
27,000	-32	60	48.2	174	273	171	270	169	266	168	265
28,000	-34	57	46.4	170	272	167	269	164	264	163	262
29,000	-36	55	44.7	166	271	163	267	160	261	158	259
30,000	-38	53	43.0	162	269	159	265	155	258	153	256
31,000	-40	50	41.1	157	267	154	261	149	254	148	251

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.28

MXCR - ISA + 10 °C - INERT SEP - P2.5 HI or P3

NOTE

- Conditions: - ISA + 10 °C,
- Landing gear and flaps UP,
 INERT SEP ON CAS message ON,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Use of Recommended Cruise power is preferred.

Table 5.11.28 - MXCR Performance – ISA + 10 °C [INERT SEP – P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 15 kg)	6,300 lbs (2,858 kg)		, -	0 lbs :0 kg)	7,300 lbs (3,311 kg)	
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	26	100	93.5	236	245	235	244	235	244	235	244
5,000	16	100	87.1	231	258	230	257	230	256	230	256
10,000	6	98	80.6	226	272	225	271	224	270	224	270
15,000	-4	86	70.8	211	275	210	274	209	272	209	272
18,000	-10	78	64.2	201	275	200	274	199	272	198	271
20,000	-14	73	60.1	194	275	193	273	192	271	191	270
21,000	-16	71	58.1	191	274	190	273	188	270	187	269
22,000	-18	68	56.1	187	274	186	272	184	269	184	268
23,000	-20	66	54.2	184	273	182	271	181	268	180	267
24,000	-22	64	52.2	180	272	179	270	176	267	176	266
25,000	-24	61	50.3	177	272	175	269	172	265	172	264
26,000	-26	59	48.5	173	271	171	268	168	263	167	262
27,000	-27	57	46.7	169	270	167	266	164	261	163	260
28,000	-29	54	45.0	165	268	163	264	159	259	158	257
29,000	-31	52	43.3	161	267	158	262	154	256	153	254
30,000	-33	50	41.6	158	265	154	260	149	252	147	248
31,000	-35	48	39.8	153	263	149	256	142	244	138	238

MXCR - ISA + 20 °C - INERT SEP - P2.5 HI or P3

NOTE

- Conditions: - ISA + 20 °C,
- ISA + 20 G,
 Landing gear and flaps UP,
 INERT SEP ON CAS message ON,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Use of Recommended Cruise power is preferred.

Table 5.11.29 - MXCR Performance – ISA + 20 °C [INERT SEP – P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 95 kg)	,	0 lbs 8 kg)		0 lbs :0 kg)		0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	36	100	94.5	234	247	234	247	233	246	233	246
5,000	26	98	86.9	229	261	229	260	228	259	228	259
10,000	16	87	75.6	216	265	215	264	215	263	214	263
15,000	6	77	66.4	201	267	200	266	199	264	198	264
18,000	0	69	59.9	191	266	190	265	188	262	188	262
20,000	-4	65	55.8	184	265	183	263	180	260	180	259
21,000	-6	62	53.9	181	265	179	262	176	258	175	257
22,000	-8	60	51.8	177	264	175	261	172	256	170	254
23,000	-10	57	49.8	173	263	171	259	167	253	165	251
24,000	-22	55	47.9	170	262	166	257	162	250	160	247
25,000	-14	52	46.1	166	261	162	255	156	246	154	243
26,000	-16	50	44.3	162	259	158	253	150	241	148	237
27,000	-17	48	42.5	158	257	153	249	144	236	142	232
28,000	-19	45	40.6	153	255	148	245	138	229	135	224
29,000	-21	42	38.7	149	252	142	240	130	221	126	214
30,000	-23	40	36.9	144	249	135	234				
31,000	-25	38	35.4	140	246	130	228				

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.30

Recommended Cruise

The following table provides references to performance tables that should be used depending on the bleed status.

NOTE

In the table below:

- -
- Bleed status "P2.5" = **P2.5 HI** and **P3** messages are OFF, Bleed status "P2.5 HI or P3" = **P2.5 HI** or **P3** message is ON. -

Bleed status	ISA - 20 °C	ISA - 10 °C	ISA - 5 °C	ISA
P2.5	Table 5.11.31	Table 5.11.32	Table 5.11.33	<u>Table 5.11.34</u>
P2.5 HI or P3	Table 5.11.38	Table 5.11.39	Table 5.11.40	Table 5.11.41
Bleed status	ISA + 5 °C	ISA + 10 °C	ISA + 20 °C	
P2.5	Table 5.11.35	Table 5.11.36	Table 5.11.37	
P2.5 HI or P3	Table 5.11.42	Table 5.11.43	Table 5.11.44	

Table 5.11.30 - References to RCR Performance Tables

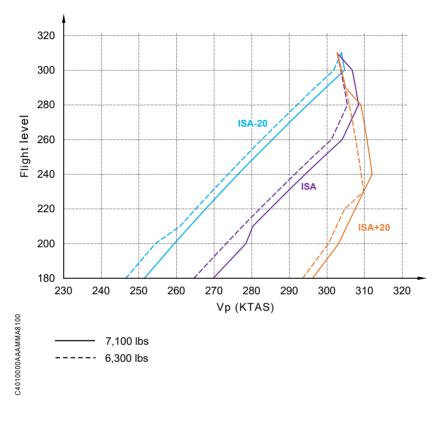


Figure 5.11.2 - Cruise Performance (Recommended Cruise)

NOTE -

The curves above are plotted for the condition INERT SEP OFF, and **P2.5 HI** and **P3** messages OFF.

PIM TBM 960 - Edition 0 Rev. 03 Page 5.11.32

RCR - ISA - 20 °C

NOTE

Conditions:

- ISA 20 °C, -
- Landing gear and flaps UP, _

- BLEED switch on AUTO, and **P2.5 HI** and **P3** messages OFF. Table valid only if **INERT SEP ON** CAS message is OFF. Power recommended by Daher for better fuel efficiency.

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs I5 kg)		0 lbs 8 kg)		0 lbs 0 kg)		0 lbs 1 kg)
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	-4	80	76.4	215	212	221	218	223	220	227	224
5,000	-14	73	66.7	203	215	209	222	211	224	215	228
10,000	-24	67	58.2	191	218	197	225	199	227	205	234
15,000	-34	66	54.2	182	224	189	233	193	238	195	240
18,000	-40	70	53.9	186	239	191	247	195	251	195	251
20,000	-44	72	53.4	187	249	191	254	195	259	195	259
21,000	-46	73	53.2	189	256	193	261	195	264	197	266
22,000	-48	74	53.0	191	263	193	265	195	268	197	270
23,000	-50	75	52.9	193	269	193	269	195	272	197	275
24,000	-52	76	52.8	193	274	193	274	195	276	197	279
25,000	-54	77	52.8	193	278	193	278	195	281	195	281
26,000	-56	78	53.0	193	283	193	283	195	285	195	285
27,000	-57	79	53.1	193	287	193	287	195	290	195	290
28,000	-59	80	53.5	193	292	193	292	195	295	195	295
29,000	-61	81	53.8	193	297	193	297	195	300	195	300
30,000	-63	82	54.3	193	302	193	302	195	305	195	305
31,000	-65	80	52.5	191	304	191	304	191	304	191	304

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.33

RCR - ISA - 10 °C

NOTE

Conditions:

- ISA 10 °C,
 - Landing gear and flaps UP,

- BLEED switch on AUTO, and **P2.5 HI** and **P3** messages OFF. Table valid only if **INERT SEP ON** CAS message is OFF. Power recommended by Daher for better fuel efficiency.

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs I5 kg)		0 lbs 8 kg)		0 lbs 0 kg)		0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	6	91	83.0	223	224	227	228	233	234	235	236
5,000	-4	82	71.8	211	228	215	232	219	236	221	238
10,000	-14	77	63.7	197	229	203	236	209	243	211	245
15,000	-24	71	57.2	191	240	193	243	197	248	199	250
18,000	-30	74	56.1	193	254	195	257	197	259	199	262
20,000	-34	76	55.7	193	262	195	265	197	268	199	270
21,000	-36	77	55.5	193	267	195	269	197	272	199	275
22,000	-38	78	55.5	193	271	195	274	197	276	197	276
23,000	-40	79	55.4	193	275	195	278	197	281	197	281
24,000	-42	80	55.4	193	280	195	283	197	285	197	285
25,000	-44	81	55.4	195	287	195	287	197	290	197	290
26,000	-46	82	55.7	195	292	195	292	197	295	197	295
27,000	-47	83	55.9	195	297	195	297	197	300	197	300
28,000	-49	82	55.2	195	302	195	302	195	302	197	305
29,000	-51	81	54.4	193	304	193	304	193	304	195	307
30,000	-53	78	52.6	189	303	189	303	189	303	189	303
31,000	-55	76	50.8	186	302	186	302	186	302	186	302

Table 5.11.32 - RCR Performance - ISA - 10 °C

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.34

RCR - ISA - 5 °C

NOTE

Conditions:

- ISA 5 °C.
- Landing gear and flaps UP,

- BLEED switch on AUTO, and **P2.5 HI** and **P3** messages OFF. Table valid only if **INERT SEP ON** CAS message is OFF. Power recommended by Daher for better fuel efficiency.

							Airspee	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 15 kg)		0 lbs 8 kg)		0 lbs 0 kg)		0 lbs 1 kg)
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	11	94	84.9	225	228	231	234	235	238	235	238
5,000	1	87	74.5	215	234	219	238	223	243	225	245
10,000	-9	80	65.4	199	234	205	241	211	248	213	250
15,000	-19	73	58.8	193	245	197	250	199	252	201	255
18,000	-25	76	57.8	193	257	195	259	199	265	201	267
20,000	-29	79	57.4	193	265	195	268	199	273	199	273
21,000	-31	80	57.3	193	269	195	272	199	277	199	277
22,000	-33	81	57.2	195	277	197	279	199	282	199	282
23,000	-35	82	57.2	195	281	197	284	199	286	199	286
24,000	-37	81	56.1	195	286	197	288	197	288	199	291
25,000	-39	82	56.3	195	290	197	293	197	293	199	296
26,000	-41	83	56.5	195	295	195	295	197	298	197	298
27,000	-42	84	56.8	195	300	195	300	197	303	197	303
28,000	-44	83	56.1	195	305	195	305	195	305	195	305
29,000	-46	80	54.2	191	304	191	304	191	304	193	307
30,000	-48	78	52.3	187	303	187	303	187	303	187	303
31,000	-50	75	50.6	184	302	184	302	184	302	184	302

Table 5.11.33 - RCR Performance – ISA - 5 °C

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.35

RCR – ISA

NOTE

- Conditions: ISA, -
 - Landing gear and flaps UP,

- BLEED switch on AUTO, and **P2.5 HI** and **P3** messages OFF. Table valid only if **INERT SEP ON** CAS message is OFF. Power recommended by Daher for better fuel efficiency.

							Airspee	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 5 kg)	- ,	0 lbs 8 kg)	7,10 (3,22	0 lbs 0 kg)	7,30 (3,31	0 lbs 1 kg)
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	16	95	85.7	225	230	231	236	235	240	235	240
5,000	6	88	75.3	215	236	219	241	223	245	225	247
10,000	-4	83	67.1	199	236	207	245	213	252	215	254
15,000	-14	76	60.4	193	248	197	252	201	257	203	260
18,000	-20	79	59.5	193	259	197	265	201	270	201	270
20,000	-24	81	59.2	193	268	197	273	201	278	201	278
21,000	-26	81	58.0	195	275	197	278	199	280	201	283
22,000	-28	82	58.0	195	279	197	282	199	285	201	288
23,000	-30	83	58.0	195	284	197	287	199	289	199	289
24,000	-32	84	58.1	195	289	197	291	199	294	199	294
25,000	-34	85	58.3	195	293	197	296	199	299	199	299
26,000	-36	86	58.5	195	298	197	301	199	304	199	304
27,000	-37	85	57.8	195	303	195	303	197	306	197	306
28,000	-39	84	57.0	193	305	193	305	195	308	195	308
29,000	-41	81	55.1	189	305	189	305	191	308	191	308
30,000	-43	79	53.2	186	304	186	304	187	307	187	307
31,000	-45	74	50.3	182	303	182	303	182	303	182	303

Table 5.11.34 - RCR Performance – ISA

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.36

RCR – ISA + 5 °C

NOTE

Conditions:

- ISA + 5 °C.
- Landing gear and flaps UP,

- BLEED switch on AUTO, and **P2.5 HI** and **P3** messages OFF. Table valid only if **INERT SEP ON** CAS message is OFF. Power recommended by Daher for better fuel efficiency.

							Airspee	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 95 kg)		0 lbs 8 kg)	, -	0 lbs 0 kg)		0 lbs 1 kg)
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	21	100	88.9	236	243	236	243	235	242	235	242
5,000	11	93	78.2	219	243	223	247	227	251	229	254
10,000	1	90	71.0	205	245	213	255	219	261	221	264
15,000	-9	81	63.1	197	255	201	260	205	265	207	267
18,000	-15	82	61.3	197	267	201	272	203	275	205	278
20,000	-19	84	61.0	197	276	199	279	203	284	203	284
21,000	-21	86	61.0	197	280	199	283	203	288	203	288
22,000	-23	85	59.9	197	285	199	288	201	290	203	293
23,000	-25	86	59.9	197	290	199	292	201	295	203	298
24,000	-27	87	60.1	197	294	199	297	201	300	201	300
25,000	-29	88	60.4	197	299	199	302	201	305	201	305
26,000	-31	87	59.5	197	304	197	304	199	307	201	310
27,000	-32	86	58.7	195	307	195	307	197	309	197	309
28,000	-34	81	55.5	191	306	191	306	191	306	193	309
29,000	-36	79	53.6	187	305	187	305	187	305	189	308
30,000	-38	78	52.9	184	304	184	304	186	307	186	307
31,000	-40	73	50.1	180	303	180	303	180	303	180	303

Table 5.11.35 - RCR Performance - ISA + 5 °C

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.37

RCR - ISA + 10 °C

NOTE

- Conditions:
 - ISA + 10 °C,
 - Landing gear and flaps UP, -
 - BLEED switch on AUTO, and P2.5 HI and P3 messages OFF. -

Table valid only if **INERT SEP ON** CAS message is OFF. Power recommended by Daher for better fuel efficiency.

	OAT (°C)	TRQ (%)		Airspeeds (kt)										
Pressure altitude (ft)			Fuel flow (USG/h)	5,500 lbs (2,495 kg)		6,300 lbs (2,858 kg)		7,100 lbs (3,220 kg)		7,300 lbs (3,311 kg)				
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS			
SL	26	100	89.4	236	245	235	244	235	244	235	244			
5,000	16	89	76.9	215	241	219	245	223	249	225	251			
10,000	6	84	68.6	203	245	209	252	213	257	217	262			
15,000	-4	86	65.9	201	262	205	267	209	272	211	275			
18,000	-10	87	64.2	199	272	205	280	207	283	209	285			
20,000	-14	88	63.0	199	281	203	287	205	289	205	289			
21,000	-16	89	63.0	199	286	203	291	205	294	205	294			
22,000	-18	90	63.0	199	291	203	296	205	299	205	299			
23,000	-20	91	63.2	199	295	201	298	205	304	205	304			
24,000	-22	90	62.2	199	300	201	303	203	306	203	306			
25,000	-24	92	62.5	199	305	201	308	203	311	203	311			
26,000	-26	89	60.4	197	307	197	307	199	310	199	310			
27,000	-27	85	58.3	193	307	193	307	195	310	195	310			
28,000	-29	82	56.4	189	306	189	306	191	309	191	309			
29,000	-31	80	54.5	186	305	186	305	187	308	187	308			
30,000	-33	77	52.7	182	304	182	304	184	307	184	307			
31,000	-35	72	49.9	178	303	178	303	178	303	178	303			

Table 5.11.36 - RCR Performance - ISA + 10 °C

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.38

RCR - ISA + 20 °C

NOTE

- Conditions: - ISA + 20 °C,
 - Landing gear and flaps UP,

- BLEED switch on AUTO, and **P2.5 HI** and **P3** messages OFF. Table valid only if **INERT SEP ON** CAS message is OFF. Power recommended by Daher for better fuel efficiency.

	OAT (°C)			Airspeeds (kt)									
			Fuel flow (USG/h)	5,500 lbs (2,495 kg)			0 lbs 8 kg)	7,100 lbs (3,220 kg)		7,300 lbs (3,311 kg)			
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS		
SL	36	92	85.9	215	228	221	234	229	242	231	244		
5,000	26	93	79.6	211	240	217	247	225	256	227	258		
10,000	16	95	74.6	211	259	217	266	221	271	223	273		
15,000	6	97	72.3	209	277	213	282	217	288	217	288		
18,000	0	96	69.5	205	286	211	294	213	296	215	299		
20,000	-4	96	68.4	205	295	209	300	211	303	211	303		
21,000	-6	95	67.2	205	300	207	303	209	305	211	308		
22,000	-8	94	66.1	205	305	205	305	207	308	209	310		
23,000	-10	93	65.1	203	307	205	310	205	310	207	313		
24,000	-12	92	64.1	199	306	201	309	203	312	203	312		
25,000	-14	89	61.8	197	308	197	308	199	311	199	311		
26,000	-16	86	59.7	193	308	193	308	195	311	195	311		
27,000	-17	83	57.7	189	307	189	307	191	310	191	310		
28,000	-19	80	55.7	186	306	186	306	187	309	187	309		
29,000	-21	76	52.8	182	305	182	305	182	305	184	308		
30,000	-23	73	51.0	178	304	178	304	178	304	178	304		
31,000	-25	71	49.3	174	303	174	303	174	303	174	303		

Table 5.11.37 - RCR Performance - ISA + 20 °C

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.39

RCR – ISA - 20 °C – P2.5 HI or P3

NOTE

- Conditions: - ISA - 20 °C,
 - Landing gear and flaps UP,
 - BLEED switch on AUTO, and P2.5 HI or P3 message ON.

Table valid only if **INERT SEP ON** CAS message is OFF. Power recommended by Daher for better fuel efficiency.

Table 5.11.38 - RCR Performance – ISA - 20 °C [P2.5 HI or P3]

Pressure altitude (ft)	OAT (°C)		Fuel flow (USG/h)	Airspeeds (kt)									
				5,500 lbs (2,495 kg)			0 lbs 8 kg)	7,100 lbs (3,220 kg)		7,300 lbs (3,311 kg)			
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS		
SL	-4	82	78.5	215	212	221	218	225	222	227	224		
5,000	-14	75	68.7	203	215	209	222	213	226	215	228		
10,000	-24	70	60.9	191	218	195	223	203	232	205	234		
15,000	-34	61	52.8	180	221	184	226	187	231	189	233		
18,000	-40	67	53.2	184	237	187	242	191	247	191	247		
20,000	-44	69	52.6	187	249	187	249	191	254	191	254		
21,000	-46	70	52.4	187	253	189	256	191	258	191	258		
22,000	-48	71	52.2	187	257	189	260	191	263	191	263		
23,000	-50	72	52.0	189	264	189	264	191	267	191	267		
24,000	-52	73	52.0	189	268	191	271	191	271	193	274		
25,000	-54	75	52.8	189	273	191	275	193	278	193	278		
26,000	-56	76	52.9	191	280	191	280	193	283	193	283		
27,000	-57	77	53.1	191	284	191	284	193	287	193	287		
28,000	-59	78	53.3	191	289	191	289	193	292	193	292		
29,000	-61	79	53.7	191	294	191	294	193	297	193	297		
30,000	-63	80	54.1	191	299	191	299	193	302	193	302		
31,000	-65	78	52.4	189	301	189	301	189	301	189	301		

PIM TBM 960 - Edition 0 Rev. 03 Page 5.11.40

RCR – ISA - 10 °C – P2.5 HI or P3

NOTE

- Conditions: - ISA - 10 °C,
 - Landing gear and flaps UP,
 - BLEED switch on AUTO, and P2.5 HI or P3 message ON.

Table valid only if **INERT SEP ON** CAS message is OFF. Power recommended by Daher for better fuel efficiency.

Table 5.11.39 - RCR Performance – ISA - 10 °C [P2.5 HI or P3]

Pressure altitude (ft)	OAT (°C)			Airspeeds (kt)									
		TRQ (%)	Fuel flow (USG/h)	5,500 lbs (2,495 kg)			0 lbs 8 kg)	7,100 lbs (3,220 kg)		7,300 lbs (3,311 kg)			
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS		
SL	6	91	84.1	223	224	229	230	233	234	235	236		
5,000	-4	82	72.9	211	228	215	232	219	236	221	238		
10,000	-14	77	64.8	197	229	201	234	209	243	211	245		
15,000	-24	69	57.4	187	235	191	240	195	245	197	248		
18,000	-30	72	56.3	189	249	193	254	195	257	197	259		
20,000	-34	74	55.8	191	260	193	262	195	265	197	268		
21,000	-36	75	55.6	191	264	193	267	195	269	197	272		
22,000	-38	76	55.5	191	268	193	271	195	274	197	276		
23,000	-40	77	55.5	191	273	193	275	195	278	195	278		
24,000	-42	78	55.4	191	277	193	280	195	283	197	285		
25,000	-44	79	55.4	193	284	193	284	195	287	195	287		
26,000	-46	80	55.6	193	289	193	289	195	292	195	292		
27,000	-47	81	55.9	193	294	193	294	195	297	195	297		
28,000	-49	82	56.2	193	299	193	299	195	302	195	302		
29,000	-51	81	55.5	191	301	191	301	193	304	193	304		
30,000	-53	75	51.4	187	300	187	300	186	297	189	303		
31,000	-55	74	50.8	184	299	184	299	184	299	184	299		

RCR – ISA - 5 °C – P2.5 HI or P3

NOTE

- Conditions: - ISA - 5 °C,
 - Landing gear and flaps UP,
 - BLEED switch on AUTO, and P2.5 HI or P3 message ON.

Table valid only if **INERT SEP ON** CAS message is OFF. Power recommended by Daher for better fuel efficiency.

Table 5.11.40 - RCR Performance – ISA - 5 °C [P2.5 HI or P3]

							Airspee	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 5 kg)		0 lbs 8 kg)		0 lbs 0 kg)		0 lbs 1 kg)
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	11	94	86.1	225	228	231	234	235	238	235	238
5,000	1	87	75.6	215	234	219	238	223	243	225	245
10,000	-9	80	66.5	199	234	203	238	211	248	213	250
15,000	-19	72	59.0	193	245	195	248	197	250	199	252
18,000	-25	75	57.9	191	254	193	257	197	262	199	265
20,000	-29	77	57.5	191	263	193	265	197	270	197	270
21,000	-31	78	57.3	191	267	193	269	197	275	197	275
22,000	-33	79	57.3	193	274	195	277	197	279	197	279
23,000	-35	80	57.3	193	278	193	278	197	284	197	284
24,000	-37	81	57.2	193	283	193	283	197	288	197	288
25,000	-39	82	57.3	193	288	195	290	197	293	197	293
26,000	-41	81	56.5	193	292	193	292	195	295	195	295
27,000	-42	82	56.8	193	297	193	297	195	300	195	300
28,000	-44	83	57.2	193	302	193	302	195	305	195	305
29,000	-46	80	55.3	189	301	189	301	191	304	191	304
30,000	-48	78	53.4	186	300	186	300	187	303	187	303
31,000	-50	73	50.6	182	299	182	299	182	299	182	299

RCR - ISA - P2.5 HI or P3

NOTE

- Conditions: ISA, -
 - Landing gear and flaps UP,

- BLEED switch on AUTO, and **P2.5 HI** or **P3** message ON. Table valid only if **INERT SEP ON** CAS message is OFF. Power recommended by Daher for better fuel efficiency.

							Airspee	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 5 kg)	6,30 (2,85	0 lbs 8 kg)	7,10 (3,22			0 lbs 1 kg)
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	16	95	87.0	225	230	231	236	235	240	235	240
5,000	6	88	76.5	215	236	219	241	223	245	225	247
10,000	-4	85	69.3	199	236	207	245	215	254	217	257
15,000	-14	72	59.7	191	245	195	250	197	252	199	255
18,000	-20	77	59.6	191	257	195	262	199	267	199	267
20,000	-24	77	58.2	191	265	195	271	197	273	199	276
21,000	-26	79	58.1	193	272	195	275	197	278	199	280
22,000	-28	80	58.1	193	277	195	279	197	282	199	285
23,000	-30	81	58.1	193	281	195	284	197	287	197	287
24,000	-32	82	58.1	193	286	195	289	197	291	197	291
25,000	-34	83	58.2	193	291	195	293	197	296	197	296
26,000	-36	82	57.4	193	295	195	298	195	298	197	301
27,000	-37	83	57.7	193	300	195	303	195	303	195	303
28,000	-39	82	56.9	191	302	191	302	193	305	193	305
29,000	-41	80	55.0	187	302	187	302	189	305	189	305
30,000	-43	77	53.2	184	301	186	304	186	304	186	304
31,000	-45	72	50.4	180	300	180	300	180	300	180	300

RCR – ISA + 5 °C – P2.5 HI or P3

NOTE

- Conditions: - ISA + 5 °C,
 - Landing gear and flaps UP,
 - BLEED switch on AUTO, and P2.5 HI or P3 message ON.

Table valid only if **INERT SEP ON** CAS message is OFF. Power recommended by Daher for better fuel efficiency.

Table 5.11.42 - RCR Performance – ISA + 5 °C [P2.5 HI or P3]

							Airspee	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 5 kg)		0 lbs 8 kg)		0 lbs 0 kg)		0 lbs 1 kg)
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	21	100	90.2	236	243	236	243	235	242	235	242
5,000	11	93	79.4	219	243	223	247	227	251	229	254
10,000	1	92	73.3	205	245	213	255	221	264	223	266
15,000	-9	77	62.3	195	252	199	257	201	260	203	262
18,000	-15	80	61.4	195	265	199	270	201	272	203	275
20,000	-19	82	61.1	195	273	195	273	201	281	201	281
21,000	-21	84	61.0	195	278	197	280	201	286	201	286
22,000	-23	83	60.0	195	282	197	285	199	288	201	290
23,000	-25	84	60.0	195	287	197	290	199	292	201	295
24,000	-27	85	60.1	195	292	197	294	199	297	199	297
25,000	-29	86	60.3	195	296	197	299	199	302	199	302
26,000	-31	85	59.5	195	301	197	304	197	304	199	307
27,000	-32	84	58.6	193	304	193	304	195	307	195	307
28,000	-34	81	56.6	189	303	189	303	191	306	191	306
29,000	-36	79	54.7	186	302	186	302	187	305	187	305
30,000	-38	76	53.0	182	301	182	301	184	304	184	304
31,000	-40	71	50.2	178	300	178	300	178	300	178	300

RCR - ISA + 10 °C - P2.5 HI or P3

NOTE

- Conditions: - ISA + 10 °C,
 - Landing gear and flaps UP,
 - BLEED switch on AUTO, and P2.5 HI or P3 message ON.

Table valid only if **INERT SEP ON** CAS message is OFF. Power recommended by Daher for better fuel efficiency.

Table 5.11.43 - RCR Performance – ISA + 10 °C [P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 5 kg)	,	0 lbs 8 kg)	, -	0 lbs 0 kg)	,	0 lbs 1 kg)
				IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	26	100	90.7	236	245	235	244	235	244	235	244
5,000	16	89	78.2	215	241	219	245	223	249	225	251
10,000	6	86	70.8	203	245	209	252	215	259	217	262
15,000	-4	84	66.1	199	260	203	265	207	270	209	272
18,000	-10	85	64.3	199	272	203	278	205	280	207	283
20,000	-14	88	64.2	199	281	201	284	205	289	205	289
21,000	-16	87	63.0	199	286	201	289	203	291	205	294
22,000	-18	88	63.1	199	291	201	293	203	296	203	296
23,000	-20	89	63.2	199	295	199	295	203	301	203	301
24,000	-22	88	62.2	197	297	199	300	201	303	203	306
25,000	-24	90	62.5	197	302	199	305	201	308	201	308
26,000	-26	86	60.4	195	305	195	305	197	307	197	307
27,000	-27	83	58.3	191	304	191	304	193	307	193	307
28,000	-29	80	56.4	187	303	187	303	189	306	189	306
29,000	-31	78	54.5	184	302	184	302	186	305	186	305
30,000	-33	75	52.7	180	301	180	301	182	304	182	304
31,000	-35	71	50.0	176	300	176	300	176	300	176	300

PIM TBM 960 - Edition 0 Rev. 03 Page 5.11.45

RCR – ISA + 20 °C – P2.5 HI or P3

NOTE

- Conditions: - ISA + 20 °C,
 - Landing gear and flaps UP,
 - BLEED switch on AUTO, and P2.5 HI or P3 message ON.

Table valid only if **INERT SEP ON** CAS message is OFF. Power recommended by Daher for better fuel efficiency.

Table 5.11.44 - RCR Performance – ISA + 20 °C [P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 5 kg)	- ,	0 lbs 8 kg)	, -	0 lbs 0 kg)	,	0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	36	89	86.2	211	223	219	232	227	240	229	242
5,000	26	89	78.8	207	236	215	245	221	251	223	254
10,000	16	92	74.7	209	257	215	264	219	269	221	271
15,000	6	94	72.3	207	275	211	280	215	285	215	285
18,000	0	94	69.5	205	286	209	291	211	294	213	296
20,000	-4	94	68.4	205	295	207	298	209	300	211	303
21,000	-6	95	68.5	203	297	207	303	209	305	209	305
22,000	-8	93	66.6	203	302	205	305	206	306	205	305
23,000	-10	90	64.6	201	304	203	307	202	306	202	305
24,000	-12	87	62.3	197	303	199	306	198	305	198	305
25,000	-14	85	60.3	195	305	195	305	195	305	194	304
26,000	-16	81	58.2	191	305	191	305	191	304	190	303
27,000	-17	78	56.1	187	304	187	304	187	302	186	301
28,000	-19	75	54.1	184	303	185	305	183	301	182	300
29,000	-21	72	52.1	180	302	180	302	178	299	177	298
30,000	-23	69	50.0	176	301	176	301	174	297	173	295
31,000	-25	66	47.9	172	299	172	299	168	294	167	292

Long Range Cruise

The following table provides references to performance tables that should be used depending on the bleed status.

NOTE

In the table below:

- -
- Bleed status "P2.5" = **P2.5 HI** and **P3** messages are OFF, Bleed status "P2.5 HI or P3" = **P2.5 HI** or **P3** message is ON. _

Bleed status	ISA - 20 °C	ISA - 10 °C	ISA - 5 °C	ISA
P2.5	Table 5.11.46	Table 5.11.47	Table 5.11.48	<u>Table 5.11.49</u>
P2.5 HI or P3	Table 5.11.53	Table 5.11.54	Table 5.11.55	Table 5.11.56
Bleed status	ISA + 5 °C	ISA + 10 °C	ISA + 20 °C	
P2.5	Table 5.11.50	Table 5.11.51	Table 5.11.52	
P2.5 HI or P3	Table 5.11.57	Table 5.11.58	Table 5.11.59	

Table 5.11.45 - References to LRCR Performance Tables

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.47



Figure 5.11.3 - Cruise Performance (Long Range Cruise)

NOTE -

The curves above are plotted for the condition INERT SEP OFF, and **P2.5 HI** and **P3** messages OFF.

PIM TBM 960 - Edition 0 Rev. 03 Page 5.11.48

LRCR - ISA - 20 °C

NOTE

- Conditions: - ISA - 20 °C,
- Landing gear and flaps UP,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Table valid only if INERT SEP ON CAS message is OFF.

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 15 kg)	- ,	0 lbs 8 kg)		0 lbs 0 kg)	7,30 (3,31	0 lbs 1 kg)
()			()	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	-4	46	58.3	176	174	180	178	186	183	187	185
5,000	-14	41	50.4	164	174	168	178	182	193	184	195
10,000	-24	42	46.1	162	185	166	190	172	196	174	198
15,000	-34	40	41.8	154	190	158	195	166	205	168	207
18,000	-40	39	39.1	150	194	154	199	162	209	164	212
20,000	-44	40	38.1	150	201	154	206	160	214	162	216
21,000	-46	41	37.6	150	204	154	209	158	214	160	217
22,000	-48	40	36.6	148	205	152	210	158	218	160	221
23,000	-50	41	36.2	146	205	152	213	156	219	158	221
24,000	-52	40	35.4	146	209	150	214	154	220	156	222
25,000	-54	41	35.1	148	215	150	218	154	223	156	226
26,000	-56	42	35.3	152	224	152	224	154	227	156	230
27,000	-57	44	35.6	152	228	154	231	156	234	158	237
28,000	-59	46	36.0	154	235	156	238	156	238	156	238
29,000	-61	47	35.9	154	239	156	242	156	242	156	242
30,000	-63	48	35.8	154	243	156	246	156	246	156	246
31,000	-65	47	35.1	152	244	154	247	156	250	156	250

Table 5.11.46 - LRCR Performance - ISA - 20 °C

LRCR - ISA - 10 °C

NOTE

Conditions:

- ISA 10 °C,
- Landing gear and flaps UP,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Table valid only if INERT SEP ON CAS message is OFF.

							Airspee	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	-,	0 lbs 15 kg)	- ,	0 lbs 8 kg)		0 lbs 0 kg)	7,30 (3,31	0 lbs 1 kg)
~ /			, , , , , , , , , , , , , , , , , , ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	6	47	59.9	178	179	182	183	187	189	189	191
5,000	-4	43	51.8	166	180	170	184	184	198	186	201
10,000	-14	43	47.1	162	189	166	193	172	200	174	202
15,000	-24	41	42.7	154	194	158	199	166	209	168	211
18,000	-30	39	39.5	150	199	152	201	160	211	162	214
20,000	-34	41	39.0	150	205	154	210	160	218	162	221
21,000	-36	40	38.0	148	206	152	211	158	219	160	222
22,000	-38	41	37.5	146	206	152	215	156	220	156	220
23,000	-40	42	37.1	146	210	152	218	154	221	156	224
24,000	-42	41	36.3	146	213	150	219	154	225	156	227
25,000	-44	41	35.4	146	217	148	220	152	226	154	228
26,000	-46	42	35.7	150	226	150	226	152	229	152	229
27,000	-47	44	36.0	152	233	152	233	154	236	154	236
28,000	-49	46	36.4	152	237	154	240	154	240	154	240
29,000	-51	47	36.3	152	241	154	244	154	244	154	244
30,000	-53	48	36.1	152	246	154	249	154	249	154	249
31,000	-55	47	35.5	150	247	152	250	154	253	154	253

Table 5.11.47 - LRCR Performance - ISA - 10 °C

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.50

LRCR - ISA - 5 °C

NOTE

- Conditions:
 - ISA 5 °C,

 - Landing gear and flaps UP,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Table valid only if INERT SEP ON CAS message is OFF.

							Airspee	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 15 kg)		0 lbs 8 kg)		0 lbs :0 kg)		0 lbs 1 kg)
			· · ·	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	11	48	60.4	178	180	182	184	187	190	189	192
5,000	1	44	52.9	168	183	172	188	186	202	187	205
10,000	-9	44	48.1	164	193	168	198	174	204	176	207
15,000	-19	41	43.1	154	196	158	201	166	211	168	213
18,000	-25	39	39.9	150	201	152	203	158	211	160	213
20,000	-29	40	38.9	148	205	152	210	158	218	160	220
21,000	-31	41	38.4	146	205	152	213	156	219	158	221
22,000	-33	40	37.5	146	209	150	214	156	222	158	225
23,000	-35	41	37.0	146	212	150	218	154	223	156	226
24,000	-37	41	36.2	146	216	148	219	152	224	154	227
25,000	-39	41	35.9	146	219	148	222	152	228	154	231
26,000	-41	42	35.6	148	226	148	226	150	229	152	232
27,000	-42	43	35.9	150	233	150	233	152	236	154	239
28,000	-44	45	36.3	152	240	152	240	152	240	152	240
29,000	-46	46	36.1	150	241	152	244	152	244	152	244
30,000	-48	47	36.0	150	245	152	248	152	248	152	248
31,000	-50	47	35.4	148	246	150	250	150	250	150	250

Table 5.11.48 - LRCR Performance - ISA - 5 °C

LRCR – ISA

NOTE

- Conditions: - ISA,
- Landing gear and flaps UP,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Table valid only if INERT SEP ON CAS message is OFF.

							Airspe	eds (kt)				
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 95 kg)		0 lbs 8 kg)		0 lbs :0 kg)		0 lbs 1 kg)	
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS	
SL	16	44	58.7	172	176	176	180	182	186	184	188	
5,000	6	41	51.4	162	179	166	183	180	198	182	200	
10,000	-4	41	46.8	158	188	162	193	168	199	170	202	
15,000	-14	39	42.5	148	191	154	198	162	208	164	211	
18,000	-20	40	40.4	144	195	152	205	160	216	162	218	
20,000	-24	41	39.4	144	201	152	212	158	220	160	223	
21,000	-26	41	38.9	146	207	152	216	156	221	158	224	
22,000	-28	41	37.9	146	211	150	216	156	225	158	227	
23,000	-30	41	37.5	144	212	150	220	154	226	156	228	
24,000	-32	41	36.6	144	215	148	221	152	227	154	229	
25,000	-34	42	36.3	146	222	148	225	152	230	154	233	
26,000	-36	42	36.1	148	228	148	228	150	231	152	234	
27,000	-37	44	36.4	150	235	150	235	152	238	152	238	
28,000	-39	46	36.8	152	243	152	243	152	243	152	243	
29,000	-41	47	36.6	150	244	152	247	152	247	152	247	
30,000	-43	48	36.5	150	248	152	251	152	251	152	251	
31,000	-45	47	35.9	148	249	150	252	150	252	150	252	

Table 5.11.49 - LRCR Performance - ISA

LRCR – ISA + 5 °C

NOTE

- Conditions:
 - ISA + 5 °C,

 - Landing gear and flaps UP,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Table valid only if INERT SEP ON CAS message is OFF.

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 15 kg)	- ,	0 lbs 8 kg)	7,10 (3,22	0 lbs 0 kg)	,	0 lbs 1 kg)
()			· · ·	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	21	47	60.6	178	184	180	186	186	192	187	194
5,000	11	43	53.1	166	184	170	189	184	204	186	206
10,000	1	44	48.4	162	194	166	199	172	206	174	208
15,000	-9	42	44.0	152	198	158	205	166	215	168	218
18,000	-15	40	40.8	148	202	152	207	158	215	160	218
20,000	-19	41	39.8	146	206	152	214	156	220	158	222
21,000	-21	41	38.8	146	209	150	215	156	223	158	226
22,000	-23	41	38.3	144	210	150	219	154	224	156	227
23,000	-25	42	37.9	144	214	150	222	152	225	154	228
24,000	-27	41	37.0	144	217	148	223	152	229	154	232
25,000	-29	41	36.2	144	221	146	224	150	230	152	233
26,000	-31	43	36.5	146	228	148	231	148	231	150	234
27,000	-32	43	36.3	148	235	148	235	150	238	152	241
28,000	-34	47	37.2	150	242	152	245	152	245	152	245
29,000	-36	46	36.5	150	246	150	246	152	249	152	249
30,000	-38	47	36.4	148	248	150	251	150	251	150	251
31,000	-40	46	35.7	148	252	148	252	148	252	148	252

Table 5.11.50 - LRCR Performance - ISA + 5 °C

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.53

LRCR - ISA + 10 °C

NOTE

- Conditions: - ISA + 10 °C,
- Landing gear and flaps UP,
 BLEED switch on AUTO, and P2.5 HI and P3 messages OFF.
 Table valid only if INERT SEP ON CAS message is OFF.

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)	- ,	0 lbs 15 kg)	6,30 (2,85	0 lbs 8 kg)	, -	0 lbs 0 kg)	7,30 (3,31	0 lbs 1 kg)
()			(IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	26	47	61.1	178	185	180	187	186	193	187	195
5,000	16	45	54.3	168	188	172	193	180	201	187	210
10,000	6	44	48.9	162	196	166	201	174	210	176	212
15,000	-4	42	44.5	152	199	158	207	166	217	168	220
18,000	-10	40	41.3	148	204	152	209	158	217	160	220
20,000	-14	40	39.7	146	208	150	214	158	224	160	227
21,000	-16	41	39.2	146	212	150	217	156	225	158	228
22,000	-18	42	38.8	144	212	150	221	154	226	156	229
23,000	-20	41	37.8	142	213	148	222	150	225	152	227
24,000	-22	42	37.5	142	217	148	225	150	228	152	231
25,000	-24	41	36.6	144	223	146	226	150	232	152	235
26,000	-26	43	36.9	146	230	148	233	150	236	152	239
27,000	-27	44	36.7	148	237	148	237	150	240	152	243
28,000	-29	47	37.7	150	245	152	248	150	245	154	251
29,000	-31	47	37.0	148	246	150	249	150	249	152	252
30,000	-33	48	36.9	148	250	150	253	150	253	152	257
31,000	-35	47	36.2	148	255	148	255	148	255	150	258

Table 5.11.51 - LRCR Performance - ISA + 10 °C

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.54

LRCR - ISA + 20 °C

NOTE

- Conditions: ISA + 20 °C, -
 - Landing gear and flaps UP, -
- BLEED switch on AUTO, and **P2.5 HI** and **P3** messages OFF. Table valid only if **INERT SEP ON** CAS message is OFF.

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 15 kg)		0 lbs 8 kg)	, -	0 lbs 0 kg)		0 lbs 1 kg)
()			(IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	36	47	61.3	176	186	178	188	182	192	182	192
5,000	26	44	54.5	166	189	170	194	178	203	180	205
10,000	16	43	49.2	160	197	164	202	172	211	174	214
15,000	6	43	45.4	152	203	158	211	164	219	166	221
18,000	0	41	42.1	146	205	152	213	158	221	160	224
20,000	-4	40	40.1	144	209	148	215	156	226	158	229
21,000	-6	42	40.1	144	213	150	221	154	227	156	230
22,000	-8	41	39.1	142	214	148	222	152	228	152	228
23,000	-10	42	38.7	142	217	148	226	148	226	152	232
24,000	-12	42	37.8	142	221	146	227	150	233	150	233
25,000	-14	41	37.0	142	225	144	228	148	234	150	237
26,000	-16	43	37.3	146	235	146	235	148	238	150	241
27,000	-17	45	37.6	148	242	148	242	148	242	148	242
28,000	-19	47	38.1	148	246	150	250	150	250	150	250
29,000	-21	46	37.4	146	248	148	251	148	251	148	251
30,000	-23	47	37.3	146	252	148	255	148	255	148	255
31,000	-25	47	36.6	146	257	146	257	146	257	146	257

Table 5.11.52 - LRCR Performance - ISA + 20 °C

PIM TBM 960 - Edition 0 Rev. 03

Page 5.11.55

LRCR – ISA - 20 °C – P2.5 HI or P3

NOTE

- Conditions: - ISA - 20 °C,
 - Landing gear and flaps UP,
 - BLEED switch on AUTO, and P2.5 HI or P3 message ON.

Table valid only if **INERT SEP ON** CAS message is OFF.

Table 5.11.53 - LRCR Performance – ISA - 20 °C [P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs I5 kg)		0 lbs 8 kg)	7,10 (3,22	0 lbs 0 kg)		0 lbs 1 kg)
			· · /	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	-4	46	59.3	176	174	180	178	186	183	187	185
5,000	-14	41	51.3	164	174	168	178	182	193	184	195
10,000	-24	42	47.1	162	185	166	190	172	196	174	198
15,000	-34	40	42.8	154	190	158	195	166	205	168	207
18,000	-40	39	40.1	150	194	154	199	162	209	164	212
20,000	-44	40	39.1	150	201	154	206	160	214	162	216
21,000	-46	41	38.6	150	204	154	209	158	214	160	217
22,000	-48	40	37.6	148	205	152	210	158	218	160	221
23,000	-50	41	37.1	146	205	152	213	156	219	158	221
24,000	-52	40	36.3	146	209	150	214	154	220	156	222
25,000	-54	41	36.0	148	215	150	218	154	223	156	226
26,000	-56	43	36.2	152	224	152	224	154	227	156	230
27,000	-57	45	36.5	152	228	154	231	156	234	158	237
28,000	-59	46	36.9	154	235	156	238	156	238	156	238
29,000	-61	47	36.8	154	239	156	242	156	242	156	242
30,000	-63	48	36.7	154	243	156	246	156	246	156	246
31,000	-65	47	36.0	152	244	154	247	156	250	156	250

LRCR - ISA - 10 °C - P2.5 HI or P3

NOTE

- Conditions: - ISA - 10 °C,
- Landing gear and flaps UP,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Table valid only if INERT SEP ON CAS message is OFF.

Table 5.11.54 - LRCR Performance – ISA - 10 °C [P2.5 HI or P3]

							Airspee	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 95 kg)		0 lbs 8 kg)		0 lbs 0 kg)		0 lbs 1 kg)
			· · ·	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	6	47	60.9	178	179	182	183	187	189	189	191
5,000	-4	43	52.9	166	180	170	184	184	198	186	201
10,000	-14	43	48.1	162	189	166	193	172	200	174	202
15,000	-24	41	43.7	154	194	158	199	166	209	168	211
18,000	-30	39	40.5	150	199	152	201	160	211	162	214
20,000	-34	41	40.0	150	205	154	210	160	218	162	221
21,000	-36	41	39.0	148	206	152	211	158	219	160	222
22,000	-38	41	38.5	146	206	152	215	156	220	156	220
23,000	-40	42	38.1	146	210	152	218	154	221	156	224
24,000	-42	41	37.2	146	213	150	219	154	225	156	227
25,000	-44	41	36.4	146	217	148	220	152	226	154	228
26,000	-46	43	36.7	150	226	150	226	152	229	152	229
27,000	-47	44	37.0	152	233	152	233	154	236	154	236
28,000	-49	46	37.4	152	237	154	240	154	240	154	240
29,000	-51	47	37.2	152	241	154	244	154	244	154	244
30,000	-53	48	37.1	152	246	154	249	154	249	154	249
31,000	-55	47	36.4	150	247	152	250	154	253	154	253

LRCR – ISA - 5 °C – P2.5 HI or P3

NOTE

- Conditions: - ISA - 5 °C,
- Landing gear and flaps UP,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Table valid only if INERT SEP ON CAS message is OFF.

Table 5.11.55 - LRCR Performance - ISA - 5 °C [P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 95 kg)		0 lbs 8 kg)		0 lbs 0 kg)		0 lbs 1 kg)
			· · ·	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	11	48	61.5	178	180	182	184	187	190	189	192
5,000	1	44	54	168	183	172	188	186	202	187	205
10,000	-9	44	49.2	164	193	168	198	174	204	176	207
15,000	-19	41	44.2	154	196	158	201	166	211	168	213
18,000	-25	39	41.0	150	201	152	203	158	211	160	213
20,000	-29	41	40.0	148	205	152	210	158	218	160	220
21,000	-31	41	39.5	146	205	152	213	156	219	158	221
22,000	-33	41	38.5	146	209	150	214	156	222	158	225
23,000	-35	41	38.1	146	212	150	218	154	223	156	226
24,000	-37	41	37.2	146	216	148	219	152	224	154	227
25,000	-39	41	36.9	146	219	148	222	152	228	154	231
26,000	-41	42	36.6	148	226	148	226	150	229	152	232
27,000	-42	44	36.9	150	233	150	233	152	236	154	239
28,000	-44	46	37.3	152	240	152	240	152	240	152	240
29,000	-46	46	37.1	150	241	152	244	152	244	152	244
30,000	-48	47	37.1	150	245	152	248	152	248	152	248
31,000	-50	47	36.4	148	246	150	250	150	250	150	250

LRCR - ISA - P2.5 HI or P3

NOTE

- Conditions: - ISA - 5 °C,
- Landing gear and flaps UP,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Table valid only if INERT SEP ON CAS message is OFF.

Table 5.11.56 - LRCR Performance - ISA [P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 95 kg)		0 lbs 8 kg)		0 lbs 0 kg)		0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	16	45	59.8	172	176	176	180	182	186	184	188
5,000	6	41	52.5	162	179	166	183	180	198	182	200
10,000	-4	41	47.9	158	188	162	193	168	199	170	202
15,000	-14	39	43.6	148	191	154	198	162	208	164	211
18,000	-20	40	41.4	144	195	152	205	160	216	162	218
20,000	-24	41	40.4	144	201	152	212	158	220	160	223
21,000	-26	42	39.9	146	207	152	216	156	221	158	224
22,000	-28	41	39.0	146	211	150	216	156	225	158	227
23,000	-30	42	38.5	144	212	150	220	154	226	156	228
24,000	-32	41	37.6	144	215	148	221	152	227	154	229
25,000	-34	42	37.3	146	222	148	225	152	230	154	233
26,000	-36	42	37.1	148	228	148	228	150	231	152	234
27,000	-37	44	37.4	150	235	150	235	152	238	152	238
28,000	-39	46	37.8	152	243	152	243	152	243	152	243
29,000	-41	47	37.7	150	244	152	247	152	247	152	247
30,000	-43	48	37.6	150	248	152	251	152	251	152	251
31,000	-45	47	36.9	148	249	150	252	150	252	150	252

LRCR - ISA +5 °C - P2.5 HI or P3

NOTE

- Conditions: - ISA + 5 °C,
- Landing gear and flaps UP,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Table valid only if INERT SEP ON CAS message is OFF.

Table 5.11.57 - LRCR Performance – ISA + 5 °C [P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 95 kg)		0 lbs 8 kg)		0 lbs 0 kg)		0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	21	47	61.8	178	184	180	186	186	192	187	194
5,000	11	44	54.3	166	184	170	189	184	204	186	206
10,000	1	44	49.6	162	194	166	199	172	206	174	208
15,000	-9	42	45.2	152	198	158	205	166	215	168	218
18,000	-15	40	41.9	148	202	152	207	158	215	160	218
20,000	-19	41	40.9	146	206	152	214	156	220	158	222
21,000	-21	41	39.9	146	209	150	215	156	223	158	226
22,000	-23	41	39.4	144	210	150	219	154	224	156	227
23,000	-25	42	39.0	144	214	150	222	152	225	154	228
24,000	-27	42	38.1	144	217	148	223	152	229	154	232
25,000	-29	41	37.2	144	221	146	224	150	230	152	233
26,000	-31	43	37.5	146	228	148	231	148	231	150	234
27,000	-32	44	37.3	148	235	148	235	150	238	152	241
28,000	-34	47	38.3	150	242	152	245	152	245	152	245
29,000	-36	46	37.6	150	246	150	246	152	249	152	249
30,000	-38	47	37.5	148	248	150	251	150	251	150	251
31,000	-40	47	36.8	148	252	148	252	148	252	148	252

LRCR - ISA + 10 °C - P2.5 HI or P3

NOTE

- Conditions: - ISA + 10 °C,
- Landing gear and flaps UP,
 BLEED switch on AUTO, and P2.5 HI or P3 message ON.
 Table valid only if INERT SEP ON CAS message is OFF.

Table 5.11.58 - LRCR Performance - ISA + 10 °C [P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 95 kg)		0 lbs 8 kg)		0 lbs 0 kg)		0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	26	47	62.3	178	185	180	187	186	193	187	195
5,000	16	45	55.4	168	188	172	193	180	201	187	210
10,000	6	44	50.1	162	196	166	201	174	210	176	212
15,000	-4	42	45.6	152	199	158	207	166	217	168	220
18,000	-10	41	42.4	148	204	152	209	158	217	160	220
20,000	-14	41	40.8	146	208	150	214	158	224	160	227
21,000	-16	41	40.4	146	212	150	217	156	225	158	228
22,000	-18	42	39.9	144	212	150	221	154	226	156	229
23,000	-20	41	38.9	142	213	148	222	150	225	152	227
24,000	-22	42	38.5	142	217	148	225	150	228	152	231
25,000	-24	42	37.7	144	223	146	226	150	232	152	235
26,000	-26	43	38.0	146	230	148	233	150	236	152	239
27,000	-27	44	37.8	148	237	148	237	150	240	152	243
28,000	-29	47	38.8	150	245	152	248	150	245	154	251
29,000	-31	47	38.1	148	246	150	249	150	249	152	252
30,000	-33	48	38.0	148	250	150	253	150	253	152	257
31,000	-35	47	37.3	148	255	148	255	148	255	150	258

LRCR - ISA + 20 °C - P2.5 HI or P3

NOTE

- Conditions: - ISA + 20 °C,
- Landing gear and flaps UP,
 BLEED switch on AUTO, and P2.5 Hi or P3 message ON.
 Table valid only if INERT SEP ON CAS message is OFF.

Table 5.11.59 - LRCR Performance - ISA + 20 °C [P2.5 HI or P3]

							Airspe	eds (kt)			
Pressure altitude (ft)	OAT (°C)	TRQ (%)	Fuel flow (USG/h)		0 lbs 95 kg)		0 lbs 8 kg)	, -	0 lbs 0 kg)		0 lbs 1 kg)
			. ,	IAS	TAS	IAS	TAS	IAS	TAS	IAS	TAS
SL	36	47	62.5	176	186	178	188	182	192	182	192
5,000	26	44	55.7	166	189	170	194	178	203	180	205
10,000	16	43	50.4	160	197	164	202	172	211	174	214
15,000	6	43	46.6	152	203	158	211	164	219	166	221
18,000	0	41	43.3	146	205	152	213	158	221	160	224
20,000	-4	40	41.2	144	209	148	215	156	226	158	229
21,000	-6	42	41.3	144	213	150	221	154	227	156	230
22,000	-8	42	40.3	142	214	148	222	152	228	152	228
23,000	-10	42	39.9	142	217	148	226	148	226	152	232
24,000	-12	42	38.9	142	221	146	227	150	233	150	233
25,000	-14	41	38.1	142	225	144	228	148	234	150	237
26,000	-16	43	38.4	146	235	146	235	148	238	150	241
27,000	-17	45	38.8	148	242	148	242	148	242	148	242
28,000	-19	47	39.2	148	246	150	250	150	250	150	250
29,000	-21	47	38.5	146	248	148	251	148	251	148	251
30,000	-23	47	38.4	146	252	148	255	148	255	148	255
31,000	-25	47	37.8	146	257	146	257	146	257	146	257

5.12 - Time, Consumption and Descent Distance

Conditions:

- Power as required to maintain V_z,
- Landing gear and flaps UP,
- CAS = 230 KCAS,
- BLEED switch on AUTO.

Table J. 12. 1 - Time, Consumption and Descent Distance – $CAS - 250 \text{ NOA}$	Table 5.12.1 - Time,	Consumption and Descent Distant	ce – CAS = 230 KCAS
---	----------------------	---------------------------------	---------------------

Pressure	V _z =	= 1,500 ft/r	nin	V _z =	= 2,000 ft/r	nin	V _z =	= 2,500 ft/r	nin
altitude (ft)	Time (min:s)	Cons. (USG)	Dist. (NM)	Time (min:s)	Cons. (USG)	Dist. (NM)	Time (min:s)	Cons. (USG)	Dist. (NM)
31,000	20:40	18.5	101	15:30	12.4	75	12:25	9.0	60
30,000	20:00	17.9	97	15:00	12.0	72	12:00	8.8	58
28,000	18:40	16.8	89	14:00	11.3	66	11:10	8.3	53
26,000	17:20	15.7	81	13:00	10.6	61	10:25	7.8	48
24,000	16:00	14.5	73	12:00	9.8	55	09:35	7.3	44
22,000	14:40	13.4	66	11:00	9.1	50	08:50	6.8	40
20,000	13:20	12.3	59	10:00	8.4	44	08:00	6.3	35
18,000	12:00	11.1	53	09:00	7.6	39	07:10	5.8	31
16,000	10:40	10.0	46	08:00	6.8	34	06:25	5.2	27
14,000	09:20	8.8	40	07:00	6.1	30	05:35	4.6	24
12,000	08:00	7.6	33	06:00	5.3	25	04:50	4.1	20
10,000	06:40	6.4	27	05:00	4.5	21	04:00	3.4	16
8,000	05:20	5.2	22	04:00	3.7	16	03:10	2.8	13
6,000	04:00	3.9	16	03:00	2.8	12	02:25	2.2	10
4,000	02:40	2.7	10	02:00	1.9	8	01:35	1.5	6
2,000	01:20	1.4	5	01:00	1.0	4	00:50	0.8	3
SL	00:00	0.0	0	00:00	0.0	0	00:00	0.0	0

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00

Page 5.12.2

5.13 - Holding Time

Conditions:

- Landing gear and flaps UP,
- IAS = 120 KIAS,
- BLEED switch on AUTO,
- TRQ ≈ 25%.

Table 5 13 1 -	Fuel Consu	mption During	Holding Time
10010 0.10.1	1 461 001134	mpaon Danng	riolaing rinte

Pressure altitude	Fuel Used During Holding Time						
	Weight 5,500	lbs (2,495 kg)	Weight 6,300 lbs (2,858 kg)				
(ft)	10 min	30 min	10 min	30 min			
	USG	USG	USG	USG			
SL	7.8	23.5	8.0	24.1			
5,000	6.9	20.8	7.1	21.4			
10,000	6.2	18.7	6.5	19.4			
15,000	5.8	17.3	6.0	18.1			
20,000	5.3	15.9	5.6	16.7			

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00

Page 5.13.2

5.14 - Landing Distances

The following tables provide the landing distances for several weight configurations.

General notes and correction factors:

The following information applies to all the tables in this subsection.

Associated conditions:

- Landing gear DN and flaps LDG,
- Maximum breaking without reverse,
- Hard, dry and level runway.

In table headings:

- GR = Ground roll (in feet),
- D₅₀ = Landing distance over a 50-foot (15-meter) obstacle (in feet).

Corrections:

- In case of wind, apply the following corrections:
 - Reduce total distances by 10% every 10 kt of headwind,
 - . Increase total distances by 30% every 10 kt of tail wind.
- Other runway surfaces:

Landing distances given in the tables are for landing on hard, dry and level runway. Other runway surfaces require the following correction factors.

Increase distances by:

- . 7% on hard grass,
- . 10% on short grass,
- . 15% on wet runway,
- . 25% on high grass,
- . 30% on slippery runway.

PIM TBM 960 - Edition 0 Rev. 01 Page 5.14.1

Weight 7,110 lbs (3,225 kg)

- NOTE
- Associated conditions:
 - Approach speed IAS = 85 KIAS,
 - Touchdown speed IAS = 78 KIAS.

Table 5.14.1 - Landing Distances (ft) – 7,110 lbs (3,225 kg)

Pressure	ISA - 35 °C		ISA - 20 °C		ISA - 10 °C		ISA	
altitude (ft)	GR	D ₅₀						
SL	1,575	2,135	1,675	2,265	1,740	2,330	1,840	2,430
2,000	1,675	2,265	1,805	2,395	1,870	2,495	1,970	2,590
4,000	1,805	2,395	1,940	2,560	2,035	2,660	2,135	2,790
6,000	1,940	2,560	2,100	2,725	2,200	2,855	2,300	2,955
8,000	2,100	2,725	2,265	2,920	2,360	3,020	2,495	3,180
Pressure	ISA + 10 °C		ISA + 20 °C		ISA + 30 °C		ISA + 37 °C	
altitude (ft)	GR	D ₅₀						
SL	1,905	2,530	2,000	2,625	2,070	2,690	2,135	2,790
2,000	2,070	2,690	2,135	2,790	2,230	2,890	2,300	2,955
4,000	2,230	2,890	2,330	2,985	2,430	3,085	2,495	3,185
6,000	2,395	3,050	2,530	3,215	2,625	3,315	2,690	3,380
8,000	2,590	3,280	2,725	3,410	2,855	3,570	2,920	3,640

CAUTION

Refer to <u>General notes and correction factors</u> at the beginning of this subsection.

Weight 6,250 lbs (2,835 kg)

- NOTE
- Associated conditions:
 - Approach speed IAS = 80 KIAS,
 - Touchdown speed IAS = 65 KIAS.

Table 5.14.2 - Landing Distances (ft) – 6,250 lbs (2,835 kg)

Pressure	ISA - 35 °C		ISA - 20 °C		ISA - 10 °C		ISA	
altitude (ft)	GR	D ₅₀						
SL	1,050	1,900	1,115	2,000	1,180	2,070	1,215	2,135
2,000	1,115	2,000	1,215	2,100	1,245	2,200	1,310	2,265
4,000	1,180	2,100	1,280	2,230	1,345	2,330	1,410	2,395
6,000	1,280	2,230	1,380	2,360	1,445	2,460	1,510	2,525
8,000	1,380	2,360	1,475	2,490	1,540	2,590	1,610	2,690
Pressure	ISA + 10 °C		ISA + 20 °C		ISA + 30 °C		ISA + 37 °C	
altitude (ft)	GR	D ₅₀						
SL	1,280	2,200	1,310	2,300	1,380	2,360	1,445	2,430
2,000	1,345	2,330	1,410	2,430	1,475	2,495	1,540	2,560
4,000	1,445	2,460	1,510	2,560	1,575	2655	1,640	2,755
6,000	1,575	2,645	1,640	2,720	1,705	2,820	1,770	2,920
8,000	1,705	2,790	1,770	2,885	1,835	2,985	1,900	3,085

CAUTION

Refer to <u>General notes and correction factors</u> at the beginning of this subsection.

Weight 5,071 lbs (2,300 kg)

- NOTE
- Associated conditions:
 - Approach speed IAS = 80 KIAS,
 - Touchdown speed IAS = 60 KIAS.

Table 5.14.3 - Landing Distances (ft) – 5,071 lbs (2,300 kg)

Pressure	ISA - 35 °C		ISA - 20 °C		ISA - 10 °C		ISA	
altitude (ft)	GR	D ₅₀						
SL	885	1,900	950	2,000	1,000	2,070	1,030	2,135
2,000	950	2,000	1,030	2,100	1,065	2,200	1,115	2,265
4,000	1,000	2,100	1,080	2,230	1,150	2,330	1,200	2,395
6,000	1,080	2,230	1,180	2,360	1,230	2,460	1,280	2,525
8,000	1,180	2,360	1,245	2,490	1,310	2,590	1,360	2,690
Pressure	ISA + 10 °C		ISA + 20 °C		ISA + 30 °C		ISA + 37 °C	
altitude (ft)	GR	D ₅₀						
SL	1,080	2,200	1,115	2,300	1,180	2,360	1,230	2,430
2,000	1,150	2,330	1,200	2,430	1,245	2,495	1,310	2,560
4,000	1,230	2,460	1,280	2,560	1,345	2,655	1,395	2,755
6,000	1,345	2,645	1,395	2,720	1,445	2,820	1,510	2,920
8,000	1,445	2,790	1,510	2,885	1,560	2,985	1,610	3,085

CAUTION

Refer to <u>General notes and correction factors</u> at the beginning of this subsection.

Section 6

Weight and Balance

Table of Contents

6.1	- General	6.1.1
6.2	- Airplane Weighing Procedures	6.2.1
6.3	- Baggage Loading	6.3.1
6.4	- Determining Weight and Balance General	6.4.1 6.4.1
	Utilization of Weight and Balance Graphs	6.4.1
	Airplane Loading Form (m, kg)	6.4.3
	Example of Airplane Weight and Balance Report	6.4.4
	Weight and Balance Form and Diagram (m, kg)	6.4.7
	Weight and Balance Form and Diagram (in, lbs)	6.4.9
	Weight and Balance Examples (m, kg)	6.4.11
	Weight and Balance Examples (in, lbs)	6.4.14
	Determining Empty Airplane Characteristics	6.4.16
6.5	- List of Equipment	6.5.1

Intentionally left blank

Page 6.0.2

6.1 - General

This section is intended to provide the pilot with the procedures to determine the airplane's weight and balance.

— WARNING -

It is the pilot's responsibility to ensure that the airplane is properly loaded and that the weight and balance limits are adhered to.

This airplane allows multiple cabin seat configurations between two and six seats, as required by the operator – refer to <u>Paragraph Seats</u>, <u>Belts and Harnesses in</u> <u>Subsection 7.3.</u>

A list of equipment available for this airplane is referenced at the end of this section – refer to <u>Subsection 6.5. List of Equipment</u>.

The list of specific optional equipment installed on the airplane as delivered from the factory can be found in the records carried in the airplane.

Intentionally left blank

6.2 - Airplane Weighing Procedures

Refer to the Airplane Maintenance Manual for the procedures to apply.

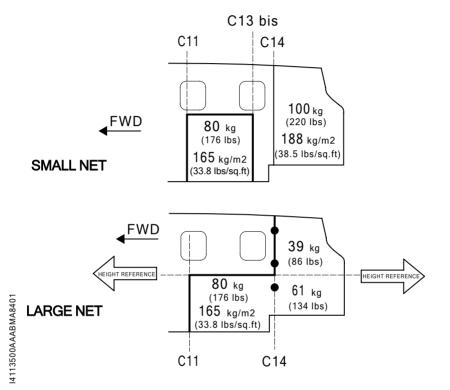
- NOTE —

Weighing carried out at the factory takes into account all equipment installed on the airplane. The list of this equipment and the total weight is noted in the individual inspection record.

PIM TBM 960 - Edition 0 Rev. 00 Page 6.2.1

Intentionally left blank

6.3 - Baggage Loading


There are two baggage compartments:

- one in the non-pressurized forward section of the fuselage, between the firewall and the cockpit, with a maximum baggage capacity of 110 lbs (50 kg),
- one located in the rear of the pressurized cabin, with the following characteristics:
 - >> With 6-seat configuration
 - . in the baggage compartment, behind the rear seats, with a maximum loading capacity of 220 lbs (100 kg).
 - . stowing straps are provided for securing parcels and baggage on compartment floor. A partition net separating the cabin from the baggage compartment is attached to Frame C14.
 - >> With other allowed seat configurations
 - . There are two loading areas:
 - one in place of the two removed rear seats, with a maximum loading capacity of 176 lbs (80 kg),
 - one in the baggage compartment, behind the area of the rear seats, with a maximum loading capacity of 220 lbs (100 kg).
 - Two types of baggage securing nets can be used:
 - the small cargo net, which is attached through nine anchoring points on seat rails, between Frame C11 and Frame C13bis – see <u>Figure 7.2.3</u>. Refer to <u>Paragraph Baggage Limits in</u> <u>Subsection 2.7.</u> for limitations.
 - the large cargo net, which is attached through seven anchoring points on seat rails, between Frame C11 and Frame C13bis and six anchoring points on fuselage sides, at Frame C14 – see <u>Figure 7.2.2</u>. Refer to <u>Paragraph Baggage Limits in Subsection</u> <u>2.7.</u> for limitations.

PIM TBM 960 - Edition 0 Rev. 00 Page 6.3.1

Figure 6.3.1 - Baggage Limits

Authorized anchoring points are identified with green self-adhesive labels affixed to the inside of the rail.

A placard indicates loading limits for each securing net.

The load within the cargo zone should be evenly distributed, and ensure that overall weight is centered.

When using the large net, distribute the weight in each zone, delineated by the step up in the floor, according to the zone limits.

>> A//

WARNING ·

It is the pilot's responsibility to check that all parcels and baggage are properly secured in the cabin.

Transport of dangerous products/materials is normally prohibited, however if transport of such products/materials is necessary, it must be performed in compliance with regulations concerning transport of dangerous products/materials and any other applicable regulation.

Loading of the baggage compartments must be performed in accordance with the airplane's weight and balance limits. Refer to <u>Paragraph Baggage</u> <u>Limits in Subsection 2.7.</u> for limitations.

Generally, if rear seats are not used or are removed, first load the AFT compartment, then, if required, load the FWD compartment. If the rear seats are used, first load the FWD compartment, then, if required, load the AFT compartment.

Compute and check the weight and balance diagram to ensure the airplane is within the allowable limits.

Intentionally left blank

6.4 - Determining Weight and Balance

General

This section is intended to provide the pilot with the procedures to determine the airplane's weight and balance.

- WARNING

It is the pilot's responsibility to ensure that the airplane is properly loaded and that the weight and balance limits are adhered to.

The procedure requires the following data related to the basic characteristics of the empty airplane to be obtained from the most recent airplane weight and balance report:

- the empty weight, expressed in kg or lbs,
- the moment, expressed in m.kg or in.lbs,
- the C.G., expressed in MAC %.

If the airplane empty weight has varied since the most recent weight and balance report (for example, due to the installation of optional equipment), refer to <u>Paragraph Determining Empty Airplane Characteristics</u> to determine the new empty weight and the corresponding moment.

Utilization of Weight and Balance Graphs

This procedure determines the airplane weight and balance characteristics for flight.

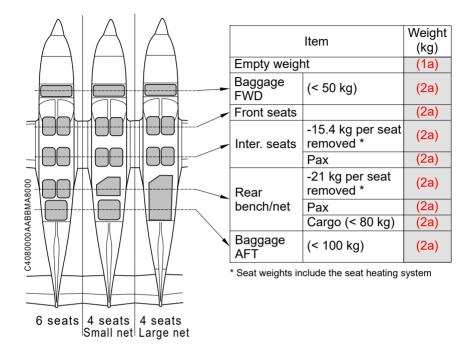
Select the units for the weight and balance determination (either m and kg, or lbs and in) and use the dedicated form – see <u>Table 6.4.1</u> or <u>Table 6.4.2</u>, as appropriate to the chosen units of measurement.

- 1. Record the basic empty weight (1a), moment (1b) and C.G. (MAC %) (1c) from the most recent weight and balance report see example of weight and balance report, Figure 6.4.1 and Figure 6.4.2.
- Record the expected loading (2a) and compute each associated moment (2b).
- 3. Compute the zero fuel weight (3a) and moment (3b) as the sum of all the weights listed above (1a) + (2a) and moments (1b) + (2b).
- 4. Check the value (3a) to ensure it is below the maximum zero fuel weight.
- 5. Compute the zero fuel weight arm (5) and C.G. (MAC %) (5c) using the given formulas.

PIM TBM 960 - Edition 0 Rev. 00 Page 6.4.1

- 6. Record the loaded fuel (6a) and compute the associated moment (6b).
- Compute the ramp weight (7a) and moment (7b) as the sum of zero fuel weight (3a) + loaded fuel (6a) and moments (3b) + (6b).
- 8. Check the value (7a) to ensure it is below the maximum ramp weight.
- 9. Compute the ramp weight arm (9) and C.G. (MAC %) (9c) using the given formulas.
- 10. Record the expected taxi fuel (negative value) (10a) and compute the associated moment (10b).
- 11. Compute the takeoff weight (11a) and moment (11b) as the sum of ramp weight (7a) + taxi fuel (10a) and moments (7b) + (10b).
- 12. Check the value (11a) to ensure it is below the maximum takeoff weight.
- 13. Compute the takeoff weight arm (13) and C.G. (MAC %) (13c) using the given formulas.
- 14. Record the expected trip fuel (negative value) (14a) and compute the associated moment (14b).
- 15. Compute the landing weight (15a) and moment (15b) as the sum of takeoff weight (11a) + trip fuel (14a) and moments (11b) + (14b).
- 16. Check the value (15a) to ensure it is below the maximum landing weight.
- 17. Compute the landing weight arm (17) and C.G. (MAC %) (17c) using the given formulas.
- 18. Plot the zero fuel weight, takeoff weight and landing weight on the weight and balance diagram.
- 19. Check that all points are within the weight and balance limits and check that they are vertically aligned.
- 20. Record these data in your navigation log.

Airplane Loading Form (m, kg)

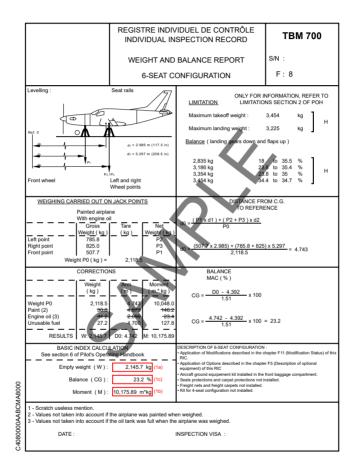

Moment = Weight × Arm

CG (MAC %) = $\frac{\text{Arm (m)} - 4.392}{1.51} \times 100$

Item		Weight (kg)	Arm (m)	Moment (m.kg)	C.G. (MAC %)
Empty weight (kg)		(1a)		(1b)	(1c)
Baggage FWD	(< 50 kg)	(2a)	3.250	(2b)	
Front seats	(kg)	(2a)	4.534	(2b)	
Inter. seats	-15.4 kg per seat removed *	(2a)	5.710	(2b)	
	Pax	(2a)		(2b)	
Rear	-21 kg per seat removed *	(2a)		(2b)	
bench/net	Pax	(2a)	6.785	(2b)	
	Cargo (< 80 kg)	(2a)		(2b)	
Baggage AFT	Baggage AFT (< 100 kg)		7.695	(2b)	
Zero fuel weight	(< 2,836 kg)	(3a)	(5)	(3b)	(5c)
Fuel	(kg)	(6a)	4.820	(6b)	
Ramp weight	(< 3,470 kg)	(7a)	(9)	(7b)	(9c)
Taxi fuel	Taxi fuel (kg)		4.820	(10b)	
Takeoff weight (< 3,454 kg)		(11a)	(13)	(11b)	(13c)
Trip fuel (kg)		(14a)	4.820	(14b)	
Landing weight (< 3,225 kg)		(15a)	(17)	(15b)	(17c)
* Seat weights in	nclude the seat hea	ting system			

PIM TBM 960 - Edition 0 Rev. 00 Page 6.4.3

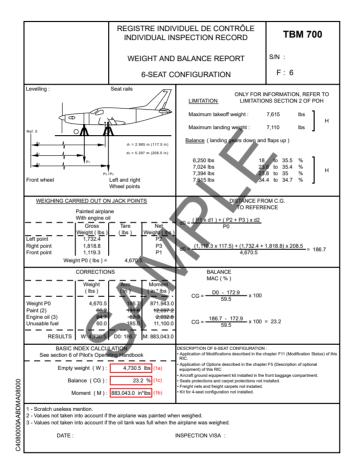
Example of Airplane Weight and Balance Report


NOTE ·

The airplane's original report shall be kept with the airplane's POH.

PIM TBM 960 - Edition 0 Rev. 00 Page 6.4.4

Figure 6.4.1 - Example of Weight and Balance Report and Basic Airplane Characteristics (m, kg)


NOTE -

The airplane's original report shall be kept with the airplane's POH.

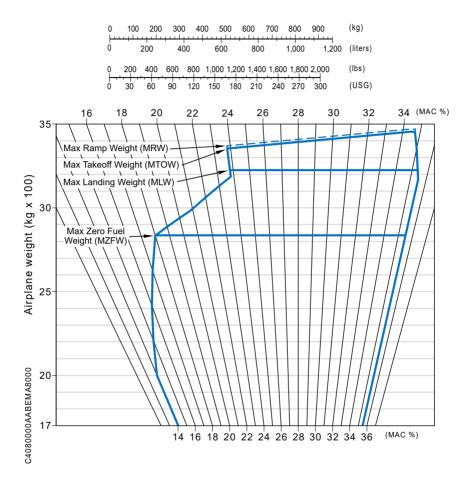
PIM TBM 960 - Edition 0 Rev. 00 Page 6.4.5

Figure 6.4.2 - Example of Weight and Balance Report and Basic Airplane Characteristics (in, lbs)

PIM TBM 960 - Edition 0 Rev. 00 Page 6.4.6

Weight and Balance Form and Diagram (m, kg)

Moment = Weight × Arm

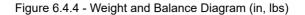

CG (MAC %) = $\frac{\text{Arm (m)} - 4.392}{1.51} \times 100$

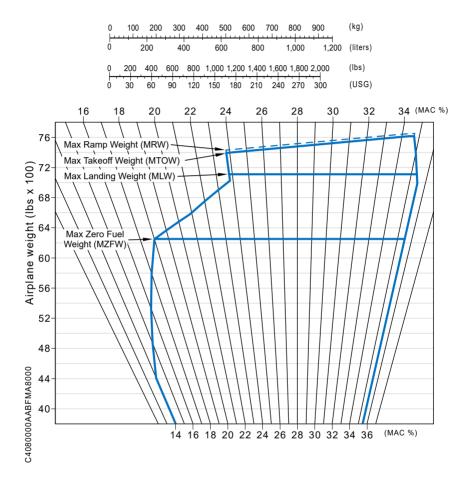
Item		Weight (kg)	Arm (m)	Moment (m.kg)	C.G. (MAC %)
Empty weight	mpty weight (kg)				
Baggage FWD	(< 50 kg)		3.250		
Front seats	(kg)		4.534		
Inter. seats	- 15.4 kg per seat removed *		5.710		
	Pax				
Rear	- 21 kg per seat removed *				
bench/net	Pax		6.785		
	Cargo (< 80 kg)		•		
Baggage AFT	(< 100 kg)		7.695		
Zero fuel weight	(< 2,836 kg)				
Fuel	(kg)		4.820		
Ramp weight	(< 3,470 kg)				
Taxi fuel	(kg)		4.820		
Takeoff weight (< 3,454 kg)					
Trip fuel (kg)			4.820		
Landing weight (< 3,225 kg)					
* Seat weights in	nclude the seat hea	ting system			

Table 6.4.1 - Weight and Balance Form (m, kg)

Page 6.4.8

Weight and Balance Form and Diagram (in, lbs)


Moment = Weight × Arm


CG (MAC %) = $\frac{\text{Arm (in)} - 172.93}{59.45} \times 100$

Item		Weight (Ibs)	Arm (in)	Moment (in.lbs)	C.G. (MAC %)
Empty weight (lbs)					
Baggage FWD	(< 110 lbs)		128.0		
Front seats	(lbs)		178.5		
Inter. seats	- 34 lbs per seat removed *		224.8		
	Pax				
Rear bench/net	- 46.2 lbs per seat removed *				
	Pax		267.1		
	Cargo (< 176 Ibs)		•		
Baggage AFT	(< 220 lbs)		303.0		
Zero fuel weight	(< 6,252 lbs)				
Fuel	(lbs)		189.8		
Ramp weight	(< 7,650 lbs)				
Taxi fuel	(lbs)		189.8		
Takeoff weight (< 7,615 lbs)					
Trip fuel (lbs)			189.8		
Landing weight (< 7,110 lbs)					
* Seat weights in	nclude the seat hea	ting system			

Table 6.4.2 - Weight and Balance Form (in, lbs)

Weight and Balance Examples (m, kg)

- CAUTION -

These loading tables (<u>Table 6.4.3</u>, <u>Table 6.4.4</u> and <u>Figure 6.4.5</u>) are provided only as examples. For calculations concerning your airplane, use the appropriate diagram.

1 - Airplane basic characteristics:	
W = Empty weight	2,170 kg
Moment	10,258 m.kg
Balance arm	4.727 m
C.G. (MAC %)	22.2%
2 - Anticipated loading:	
1 Pilot	90 kg
1 passenger on intermediate seat	90 kg
2 Rear passengers	160 kg
AFT Cargo in baggage compartment	35 kg
Fuel	915 kg
3 - Anticipated fuel:	
Taxi fuel	- 30 kg
Trip fuel	- 600 kg

Table 6.4.3 - Loading Example (m, kg)

Moment = Weight × Arm

CG (MAC %) =
$$\frac{\text{Arm (m)} - 4.392}{1.51} \times 100$$

Table 6.4.4 - Weight and Balance Form E	Example (m, kg)
---	-----------------

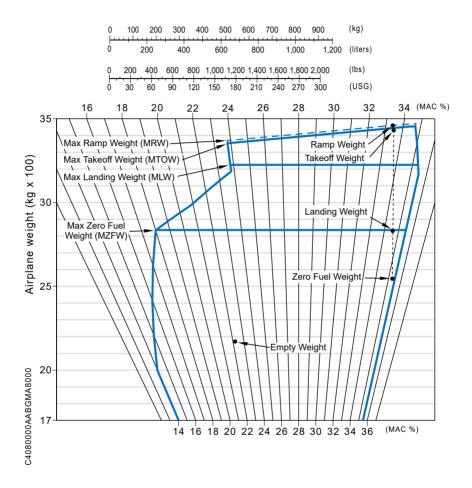
Item	Weight	Arm	Moment	C.G.
	(kg)	(m)	(m.kg)	(MAC %)
Empty weight (kg)	2,170	4.727	10,258	22.2

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 00

PIM - DO NOT USE FOR FLIGHT OPERATIONS

Page 6.4.11



► Continuing

Item		Weight (kg)	Arm (m)	Moment (m.kg)	C.G. (MAC %)
Baggage FWD	(< 50 kg)	0	3.250	0	
Front seats	(kg)	90	4.534	408	
Inter. seats	- 15.4 kg per seat removed *	0	5.710	0	
	Pax	90		514	
Rear	- 21 kg per seat removed *			0	
bench/net	Pax	160	6.785	1,086	
	Cargo (< 80 kg)	0	•	0	
Baggage AFT	Baggage AFT (< 100 kg)		7.695	269	
Zero fuel (< 2,836 kg) weight		2,545	4.925	12,535	35.3
Fuel	(kg)	915	4.820	4,410	
Ramp weight	(< 3,470 kg)	3,460	4.897	16,945	33.4
Taxi fuel	Taxi fuel (kg)		4.820	- 145	
Takeoff weight (< 3,454 kg)		3,430	4.898	16,800	33.5
Trip fuel (kg)		- 600	4.820	- 2,892	
Landing weight (< 3,225 kg)		2,830	4.914	13,908	34.6
* Seat weights in	nclude the seat hea	ting system			

Weight and Balance Examples (in, lbs)

- CAUTION -

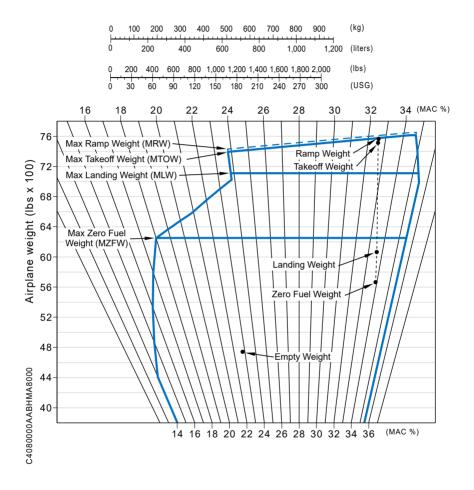
These loading tables (<u>Table 6.4.5</u>, <u>Table 6.4.6</u> and <u>Figure 6.4.6</u>) are provided only as examples. For calculations concerning your airplane, use the appropriate diagram.

1 - Airplane basic characteristics:	
W = Empty weight	4,740 lbs
Moment	883,741 in.lbs
Balance arm	186.4 in
C.G. (MAC %)	22.8%
2 - Anticipated loading:	
FWD compartment	0 lbs
1 Pilot and 1 front passenger	400 lbs
1 Intermediate passenger	220 lbs
2 Rear seats removed	- 92.4 lbs
Rear cargo	176 lbs
AFT cargo in baggage compartment	220 lbs
Fuel	1,900 lbs
3 - Anticipated fuel:	
Taxi fuel	- 50 lbs
Trip fuel	- 1,450 lbs

Table 6.4.5 - Loading Example (in, lbs)

Moment = Weight × Arm CG (MAC %) = $\frac{\text{Arm (in)} - 172.93}{59.45}$ × 100

PIM TBM 960 - Edition 0 Rev. 00 Page 6.4.14


Table 6.4.6 - Weight and Balance Form Exam	ple ((in. lbs)	
	p		

ltem		Weight (lbs)	Arm (in)	Moment (in.lbs)	C.G. (MAC %)
Empty weight (lbs)		4,740	186.4	883,741	22.8
Baggage FWD	(< 110 lbs)	0	128.0	0	
Front seats	(lbs)	400	178.5	71,400	
Inter. seats	- 34 lbs per seat removed *	0	224.8	0	
	Pax	220		49,456	
	- 46.2 lbs per seat removed *	- 92.4		- 24,680	
Rear bench/net	Pax	0	267.1	0	
	Cargo (< 176 lbs)	176		47,010	
Baggage AFT	(< 220 lbs)	220	303.0	66,660	
Zero fuel weight	(< 6,252 lbs)	5,664	193.1	1,093,587	33.9
Fuel	(lbs)	1,900	189.8	360,620	
Ramp weight	(< 7,650 lbs)	7,564	192.3	1,454,207	32.6
Taxi fuel	(lbs)	- 50	189.8	- 9,490	
Takeoff weight (< 7,615 lbs)		7,514	192.3	1,444,717	32.6
Trip fuel (lbs)		- 1,450	189.8	- 275,210	
Landing weight (< 7,110 lbs)		6,064	192.9	1,169,507	33.6
* Seat weights in	nclude the seat hea	ting system			

PIM TBM 960 - Edition 0 Rev. 00

Determining Empty Airplane Characteristics

Empty airplane characteristics (weight and balance) may vary in relation to those indicated on the weighing form based on the installed optional equipment and installed seats.

PIM TBM 960 - Edition 0 Rev. 00 Page 6.4.16

The list of equipment (refer to <u>Subsection 6.5. List of Equipment</u>) contains the standard and optional equipment, as well as their characteristics (weight, arm), except those listed in this chapter.

Use the chart below to compute the new empty weight and corresponding balance if necessary.

Equipment or		Weight modification		Basic empty weight				
Date	modification description	(+) (-)	Weight Ibs	Arm in	Moment in.lbs/ 1000	Weight W	Arm "d ₀ "	Moment
	According to delivery							

Table 6.4.7 - Example Weight and Balance Record

CC(MAC %) =	d ₀ - 172.93	
CG (MAC %) =	59.45	10

Use the above formula to express arm $"d_0"$ in % of mean aerodynamic chord (MAC).

— **NOTE** –

The arm is expressed in inches with relation to the reference datum.

FWD baggage compartment:	128.0 in (3.250 m)
Baggage compartment in pressurized cabin:	303.0 in (7.695 m)
Fuel:	189.8 in (4.820 m)

PIM TBM 960 - Edition 0 Rev. 00 Page 6.4.17

S/ R/ A/ O	Item OPT70 or MOD70	Required (R) or Standard (S) or Optional (A or O) equipment	Weight per unit Ib (kg)	Arm in (m)
		10 - Parking, mooring, storage and return to service		
		Board kit		
s		- Blanking caps bag	8.31 (3.77)	128.00 (3.250)
s		- Towing bar	8.77 (3.98)	128.00 (3.250)
S		- Control lock device	0.90 (0.41)	133.86 (3.400)
		25 - Equipment and furnishings (partial)		
А	0641-25A	Upholstery Version 2019, of which:	Δ Neglig.	/
		- Carpets for 6-place configuration	26.68 (12.100)	/
		- Carpets for 4-place configuration	20.59 (9.340)	/
А	0641-25A	Generation 2008 cabinets:		
		- L.H. low storage	9.48 (4.300)	203.74 (5.175)
		- R.H. low storage	9.48 (4.300)	203.74 (5.175)
		- L.H. low + high storage	17.20 (7.800)	203.74 (5.175)
		- R.H. low + high storage	17.20 (7.800)	203.74 (5.175)
		- L.H. low + top pilot case support	9.70 (4.400)	203.74 (5.175)
		- R.H. low + top pilot case support	9.70 (4.400)	203.74 (5.175)
S	0207-00	Carpet	35.27 (16.000)	211.42 (5.370)

Continue ►

PIM TBM 960 - Edition 0 Rev. 00

Page 6.4.18

► Continuing

S/ R/ A/ O	Item OPT70 or MOD70	Required (R) or Standard (S) or Optional (A or O) equipment	Weight per unit Ib (kg)	Arm in (m)
		- Cabin furnishings	302.45 (137.19)	211.42 (5.370)
		Leather seats		
S	0588-25	- L.H. intermediate seat with seat heaters (back to or in flight direction)	34.06 (15.45)	224.80 (5.710)
S	0588-25	- R.H. intermediate seat with seat heaters (back to or in flight direction)	34.06 (15.45)	224.80 (5.710)
s	0588-25	- Double chair		
		. L.H. seat with seat heaters	46.25 (20.98)	278.62 (7.077)
		. R.H. seat with seat heaters	46.25 (20.98)	278.62 (7.077)
		Nets		
S	0315-25	- Small cargo net GP SOCT704CC-10	15.00 (7.00)	/
S	0315-25	- Large cargo net GP SOCT704CS-10	13.00 (6.00)	/
S	25026B	- Partition net at Frame 14 (between the cabin and the baggage compartment) T700B2590001, of which:	3.64 (1.650)	289.53 (7.354)
S		. Partition net	1.70 (0.77)	289.53 (7.354)

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00

Page 6.4.20

6.5 - List of Equipment

The list of equipment is available on the MyTBM.aero website.

A separate list of equipment items installed at the factory in your specific airplane is provided in the records carried in the airplane.

Intentionally left blank

Section 7

Description

Table of Contents

7.1	-	General	7.1.1
7.2	-	Airframe	7.2.1
		Wings	7.2.5
		Ailerons, Spoilers and Roll Trim Tab	7.2.5
		Wing Flaps	7.2.5
		Empennages	7.2.10
7.3	-	Accomodations	7.3.1
		Instrument Panel	7.3.1
		HomeSafe Interface Panel	7.3.38
		Doors, Windows and Emergency Exit	7.3.38
		Seats, Belts and Harnesses	7.3.48
		Baggage Compartments	7.3.70
		Use of Cargo Nets	7.3.72
7.4	-	Flight Controls	7.4.1
		Roll	7.4.1
		Roll Trim	7.4.1
		Elevator	7.4.10
		Pitch Trim	7.4.10
		Rudder	7.4.20
		Rudder Trim	7.4.20
7.5	-	Landing Gear	7.5.1
		Hydraulic Pressure	7.5.1
		Landing Gear Lever	7.5.1
		Landing Gear Position Indicator	7.5.2
		Safety	7.5.6
		Ground Maneuvers	7.5.9
		Brake System	7.5.12
		Parking Brake	7.5.12
7.6	-	Powerplant	7.6.1

Turboprop Engine Operation	
Full Authority Digital Engine Control (FA	ADEC) 7.6.4
Engine Control Lever	
Engine Monitoring	
Engine Lubrication	
Engine Operations	
Engine Air Inlet	
Exhaust System	
Engine Accessories	
Propeller Operations	
7.7 - Use of Autothrottle	
General	
AT Engine and Airspeed Protections	
AT Engagement and Disengagement	
Engine Start or Engine Air Start	
Taxi	
Takeoff	
Climb	
Cruise	
Descent	
Approach	
Go-Around	
Landing	
FD Vertical Modes and Corresponding	AT Modes Summary 7.7.9
7.8 - Fuel System	
Fuel Tanks	
Fuel Unit	
Tank Manual Selector	
Automatic Tank Selector	
Electric Boost Pump (AUX BP)	
Main Mechanical Boost Pump	
Engine Fuel System	
Fuel Gauging Installation	
Fuel System Monitoring	
Fuel System Draining and Clogging Ind	
7.9 - Electrical System	
PIM TBM 960 - Edition 0	Page 7.0.2

	Starter Generator	7.9.6
	Standby Generator	7.9.6
	Battery	7.9.6
	Ground Power Receptacle	7.9.7
	Distribution	7.9.7
	Emergency Use	7.9.16
	Indicating	7.9.16
	Protection - Safety	7.9.16
	Exterior Lighting	7.9.17
	Interior Lighting	7.9.22
	115 V Plug	7.9.31
	BatteryMINDer Charger	7.9.31
7.10	- Cabin Air Temperature and Pressurization	7.10.1
	Engine Bleed Air System	7.10.5
	Cabin Pressurization Control System	7.10.6
	Dual-Zone Temperature Control System (TCS)	7.10.9
7.11	- Emergency Oxygen System	7.11.1
	Flight Above 15,000 ft with Possible Emergency Descent	7.11.8
	When Required to Remain Above 15,000 ft Due to Minimum	7 44 0
	Enroute Altitude	7.11.9
	Flight Between 15,000 ft and 10,000 ft	7.11.10
7.12	- Air Data System and Instruments	7.12.1
	Static Pressure Systems	7.12.1
	Dynamic Pressure Systems	7.12.2
7.13	- Vacuum System and Instruments	7.13.1
	Standby Attitude Module (MD302)	7.13.4
7.14	- Ice Protection Equipment	7.14.1
	Ice Detection System	7.14.1
	Wing and Empennage Deicing	7.14.3
	Propeller Deicing	7.14.3
	Windshield Deicing	7.14.4
	Heating of Pitots and Stall Warning Sensor	7.14.5
	Turbine Air Inlet Protection	7.14.5
7.15	- Miscellaneous Equipment	7.15.1
	Stall Warning System	7.15.1

Static Dischargers	7.15.1
Cabin Fire Extinguisher	7.15.2
Autopilot	7.15.2
GPS	7.15.2
Weather Radar	7.15.2
Emergency Locator Transmitter	7.15.6
Lightweight Data Recorder (LDR 1000)	7.15.7
ADS-B OUT Function	7.15.7
Flight Deck Information System (GDL 60)	7.15.8
Data Collection and Transmission Unit (DCTU)	7.15.8
Garmin Integrated Flight Deck (GIFD) Approaches	7.15.9
HomeSafe Emergency Function	7.15.14
Optional Equipment	7.15.17

7.1 - General

This section provides description and operation of the airplane and its systems.

Some of the equipment described herein is optional and may not be installed in the airplane.

Complete description and operation of the Garmin Integrated Flight Deck are detailed in the Garmin Pilot's Guide. Reference to this guide is often made all along this section to get more details about some systems.

Details of other optional systems and equipment are presented in Section 9: Supplements of the POH.

Section 7 Description

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00

Page 7.1.2

7.2 - Airframe

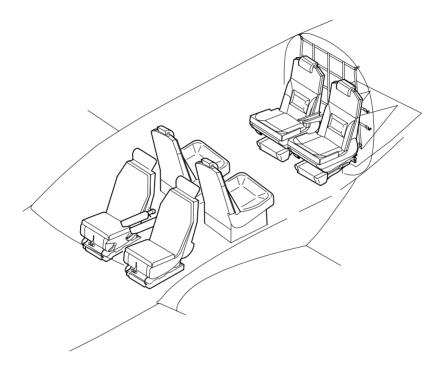
See Figure 7.2.1, Figure 7.2.2 and Figure 7.2.3.

This airplane is a six-place, low wing airplane.

The airplane can be changed into 2, 3, 4 or 5-seat accommodation.

The structure is a semi-monocoque all-metal construction and is equipped with a retractable tricycle landing gear.

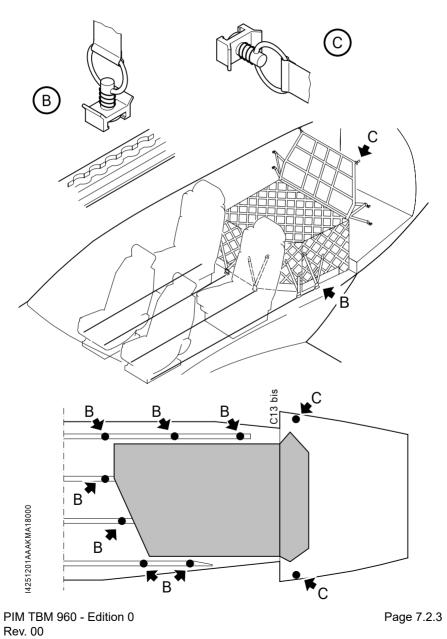
The pressurized cabin is equipped, on the left side of the fuselage, with a onepiece access door and folding stairs comprising a hand rail allowing pilot and passengers boarding. The occupants have access to the cockpit and rear seats through a central aisle.


An optional pilot door located forward of the cabin on the left side allows access to the cockpit by means of folding stairs.

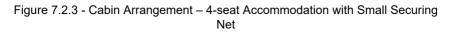
The aft cabin section is a baggage compartment.

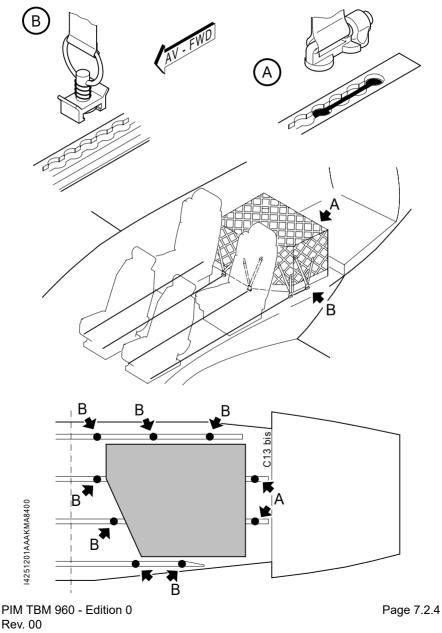
Section 7 Description


Figure 7.2.1 - Cabin Arrangement – 6-seat Accommodation



14251201AAAKMA8000


PIM TBM 960 - Edition 0 Rev. 00 Page 7.2.2



Wings

The wings are monocoque, bi-spar structures. Main spars of each wing are linked to the fuselage by two integral attach fittings. Each wing contains a main landing gear well and sealed casings forming the fuel tank. The wing leading edge is equipped with a deicing system.

Each wing extremity is equipped with a winglet.

Ailerons, Spoilers and Roll Trim Tab

The ailerons located on external trailing edge of each wing are hinged on two attach fittings fixed on the rear spar. They allow airplane lateral control and are controlled mechanically through control wheel rotation.

The spoilers located in front of flaps, on top skin side, are mechanically linked to the ailerons.

Trim tab attached on the trailing edge of left-side aileron is electrically activated by a trim switch, through an actuator.

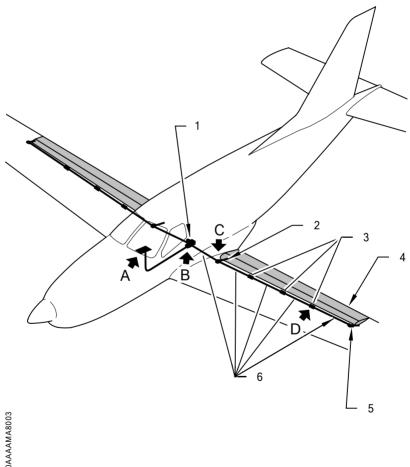
Wing Flaps

See Figure 7.2.4 and Figure 7.2.5.

The wing flaps are large span slotted flaps with a single rotation point. They are activated by actuating rod-controlled screw jacks linked to an electric motor located under the floor, inside the fuselage.

A preselection control located on the right side of pedestal console allows the pilot to select one of the three positions (UP - TO - LDG). For each control position, a deflection angle is defined (0° , 10° , 34°).

A monitoring device interrupts flaps movement as soon as a deflection dissymmetry is detected.



Key to Figure 7.2.4

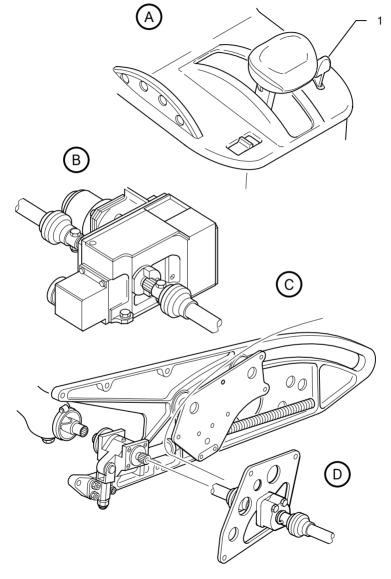
- 1) Geared motor
- 2) Internal actuator
- 3) Intermediate bearings
- 4) Wing flap
- 5) External actuator
- 6) Rods

Figure 7.2.4 - Wing Flaps (1/2)

14275000AAAAMA8003

PIM TBM 960 - Edition 0 Rev. 00

Page 7.2.7


Key to Figure 7.2.5

1) Control selector

PIM TBM 960 - Edition 0 Rev. 00 Page 7.2.8

Figure 7.2.5 - Wing Flaps (2/2)

C4275000AAAAMA8000

PIM TBM 960 - Edition 0 Rev. 00

Page 7.2.9

Empennages

Empennages are composite structures. The horizontal empennage consists of a horizontal stabilizer, control surfaces and elevator trim tabs; the vertical empennage consists of a vertical stabilizer, the rudder and the rudder trim tab. The empennage leading edge is equipped with a deicing system.

7.3 - Accomodations

Instrument Panel

The instrument panel contains instruments and controls necessary for flight monitoring. The typical instrument panel consists of all standard equipment, as well as additional optional equipment.

Upper Panel

See Figure 7.3.2.

The upper panel located at the top part of the windshield, contains LIGHTS control panels, ELECTRICAL POWER control panel, ENGINE / FUEL control panel, AP/ TRIMS switch and ELT remote control switch.

Rearwards of upper panel, the central part of cockpit overhead panel provides loudspeakers and cockpit floodlights.

The TEST pushbutton, at the left of the panel, allows to test:

- the autopilot control panel backlighting,
- the MASTER WARNING and MASTER CAUTION indicators,
- the DE ICE SYSTEM panel leds,
- the ENGINE / FUEL panel leds,
- the ECS panel leds,
- the DUMP switch,
- the MICRO/MASK switch,
- the GND FEATHER switch,
- the HomeSafe activation button,
- the stick shaker system,
- the fire detection system, if installed,
- the stall aural warning alert,
- the DISPLAY BACKUP pushbuttons backlighting,
- the LVL pushbutton.

>> postMod: MOD70-800-00

- the SEATS HTRS MASTER panel led,
- the CB LIGHT panel led.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.1

>> A//

Instrument Panel

See Figure 7.3.1.

The instrument panel consists of the integrated flight deck composed of three screens [two primary flight displays (PFD) and one multi-function display (MFD)] – refer to the Garmin Pilot's Guide for detailed description. Apart from the Garmin flight deck system, equipment listed below complete the instrument panel.

>> preMod: MOD70-0800-00

- Left area instrument panel includes see Figure 7.3.3:
 - . on top: MD302, MASTER CAUTION and MASTER WARNING,
 - . on the left: DISPLAY BACKUP pushbutton and SEATS HTRS MASTER panel,
 - . at bottom: deicing controls and indicators, MICRO/MASK switch, hourmeter, LANDING GEAR control panel, parking brake control and left station control wheel.
- Central area instrument panel includes see Figure 7.3.4:
 - . on top: AFCS control unit, BARO knob (pilot) and the LVL pushbutton
 - . at bottom: touchscreen controllers, ECS and PRESSURIZATION panels.
- Right area instrument panel includes see Figure 7.3.5:
 - . on top: locations for optional equipment,
 - . on the right: DISPLAY BACKUP pushbutton and BARO knob (right station),
 - . at bottom: alternate static source selector and the right station control wheel.
- Emergency air control is located under the right area instrument panel.

>> All

- >> postMod: MOD70-0800-00
 - Left area instrument panel includes see Figure 7.3.6:
 - . on top: MD302, MASTER CAUTION and MASTER WARNING,
 - . on the left: DISPLAY BACKUP pushbutton, BARO knob (pilot) and SEATS HTRS MASTER panel,
 - . at bottom: deicing controls and indicators, MICRO/MASK switch, hourmeter, LANDING GEAR control panel, parking brake control and left station control wheel.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.2

- Central area instrument panel includes see Figure 7.3.7:
 - on top: AFCS control unit and the LVL pushbutton
 - . at bottom: touchscreen controllers, ECS and PRESSURIZATION panels.
- Right area instrument panel includes see Figure 7.3.8:
 - . on top: locations for optional equipment,
 - . on the right: DISPLAY BACKUP pushbutton and BARO knob (right station),
 - . at bottom: alternate static source selector and the right station control wheel.
- Emergency air control is located under the right area instrument panel.

>> A//

An adjustable air outlet is located on both sides of instrument panel lower part.

Reception-micro jacks are located inside the recess under the armrest on both lateral sides of the cockpit, on right side of right-side intermediate passenger's seat and on the armrest of right-side rear passenger's seat.

Pedestal Console

See Figure 7.3.9.

The pedestal console, under the touchscreen controllers, comprises flaps controls, pitch trim tab control wheel, aileron trim switch, engine controls, propeller feathering pushbutton and fuel tank selector.

Circuit Breakers Panel

See Figure 7.3.10 and Figure 7.9.3.

Circuit breakers for all electrical equipment supplied by bus bars are located on a separate panel installed on the right side of the cockpit.

General Alarms Warning Lights and CAS Messages

WARNING, **CAUTION** and **ADVISORY** messages appear in the CAS window to alert crew about monitored systems discrepancies. As a message appears, a chime is heard. Refer to the Garmin Pilot's Guide to know all possible CAS messages.

A **MASTER WARNING** red flashing indicator and a **MASTER CAUTION** amber indicator located on instrument panel – see Figure 7.3.11, in front of the pilot, illuminate as soon as one or several messages of same color light on.

To cancel and reset a general alarm, press on the red or amber indicator. A pressure on the red indicator also stops red message associated chimes.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.3

Aural Warnings

See Figure 7.3.2.

The aural warnings are intended to alert the pilot during some configurations. The aural signals are heard through the loudspeakers installed in the cockpit overhead panel and through the pilot's and right-side station headsets.

The aural warnings consist of:

- the Garmin flight deck system (GIA and GMA),
- the loudspeaker.

The system uses:

- the stall warning system,
- the airspeed indicator,
- the landing gear control unit,
- the flap geared motor,
- the idle position sensor.

Aural Warning Alerts

According to the airplane configuration, different aural warning alerts sound:

Condition	Alert
gear up and idle above 800 ft AGL	"Landing gear / Landing gear" *
gear up and extended flaps above 800 ft AGL	
gear up and idle below 800 ft AGL	"Check gear / Check gear"
gear up and extended flaps below 800 ft AGL	
stall	"Stall / Stall"
gear up, idle and stall	"Stall / Landing gear" *
gear up, extended flaps and stall	
IAS > 269 ± 3 KIAS	"Overspeed / Overspeed"
AP disconnected	AP chime
AT disconnected	"Autothrottle"

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.4

► Continuing

Condition	Alert
* Pressing the MASTER CAUTION indicator mutes this aural alert.	

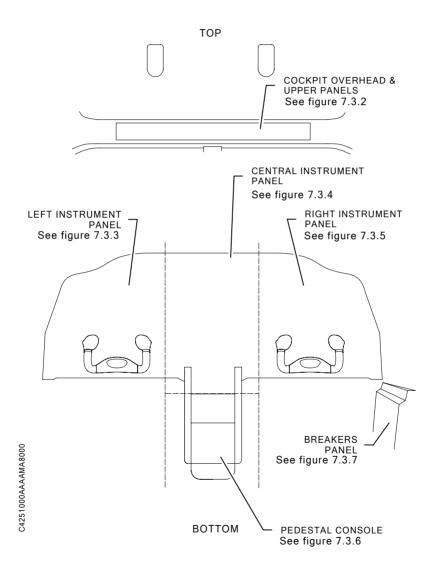
Refer to the Garmin Pilot's Guide for description of the other aural warning alerts.

Master warning alerts are announced by repetitive chimes while Master caution alerts are announced by single chimes.

Cockpit Overhead Panel

See Figure 7.3.2.


This panel includes following elements:

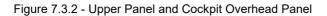

- the loudspeaker of GMA,
- the emergency lighting rheostat.

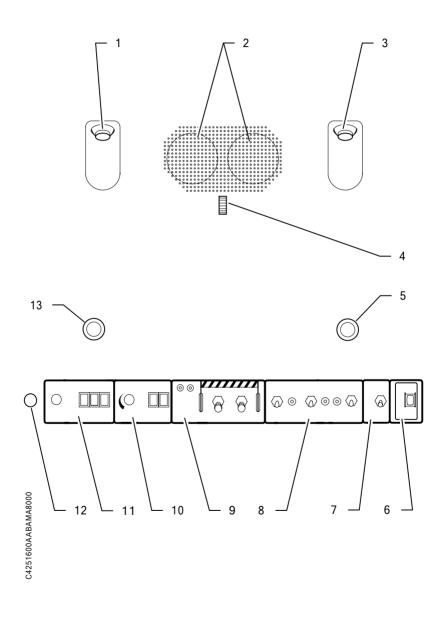
It is integrated in the ceiling upholstery panel.

The emergency lighting rheostat is electrically supplied by BATT BUS bar and protected by PANEL EMER circuit breaker.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.6

Intentionally left blank


PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.7



Key to Figure 7.3.2

- 1) Left-side instrument panel emergency lighting
- 2) Loudspeaker of GMA
- 3) Right-side instrument panel emergency lighting
- 4) Instrument panel emergency lighting switch (rheostat)
- 5) Right-side cockpit floodlight
- 6) ELT remote control switch
- 7) AP/TRIMS switch
- 8) ENGINE and FUEL switches see Figure 7.6.8 and Figure 7.8.2.
- 9) ELECTRIC POWER switches see Figure 7.9.2
- 10) INT LIGHTS internal lighting switches see Figure 7.9.8
- 11) EXT LIGHTS external lighting switches see Figure 7.9.7
- 12) TEST pushbutton
- 13) Left-side cockpit floodlight

PIM TBM 960 - Edition 0 Rev. 04

Page 7.3.9

>> preMod: MOD70-0800-00

Key to Figure 7.3.3

- 1) DISPLAY BACKUP and SEATS HTRS MASTER panel see Figure 7.3.17
- 2) General alarm red and amber indicators
- 3) MD302
- 4) PFD 1
- 5) Landing gear configuration and control panel see Figure 7.5.1
- 6) Parking brake control see Figure 7.5.6
- 7) USB servicing plug
- 8) Alternate left station reception-micro jack
- 9) Left station rudder pedals adjusting handle
- 10) Left station reception-micro jacks
- 11) Adjustable air outlet
- 12) Flight conditions and instruction placard
- 13) AP/TRIM DISC pushbutton
- 14) CWS
- 15) Push To Talk button (PTT)
- 16) Circuit breaker panel lighting switch
- 17) Pitch & Yaw trim setting management
- 18) Deicing control and check panel see Figure 7.14.1
- 19) Paper clip
- 20) Hourmeter
- 21) MICRO/MASK switch see Figure 7.11.1
- 22) COM 2 (Standby / Active)
- 23) Stormscope clear
- 24) Transponder Ident sequence
- 25) Chronometer management
- 26) Left station rudder pedals

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.11

>> A//

Page 7.3.12

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.13

>> preMod: MOD70-0800-00

Key to Figure 7.3.4

- 1) BARO knob
- 2) Micro LDR
- 3) AFCS control unit
- 4) LVL pushbutton
- 5) HomeSafe activation button
- 6) Registration
- 7) MFD
- 8) Touchscreen controllers
- 9) ECS and PRESSURIZATION panels see Figure 7.10.4

Figure 7.3.4 - Central Instrument Panel (Typical arrangement)

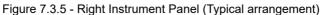
PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.15

>> A//

Page 7.3.16

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.17


>> preMod: MOD70-0800-00

Key to Figure 7.3.5

- 1) PFD 2
- 2) DISPLAY BACKUP pushbutton
- 3) BARO knob
- 4) Pitch & Yaw trim setting management
- 5) Push To Talk button (PTT)
- 6) CWS
- 7) AP/TRIM DISC pushbutton
- 8) Adjustable air outlet
- 9) Circuit breakers panel postlight
- 10) Right station rudder pedals adjusting handle
- 11) Right station reception-micro jacks
- 12) USB servicing plugs
- 13) Crew music
- 14) Paper clip
- 15) Cabin emergency air control (EMERGENCY RAM AIR control knob)
- 16) Static source selector
- 17) Chronometer management
- 18) Transponder Ident sequence
- 19) Stormscope clear
- 20) COM 2 (Standby / active)

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.19

>> A//

Page 7.3.20

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04

Page 7.3.21

>> postMod: MOD70-0800-00

Key to Figure 7.3.6

- 1) SEATS HTRS MASTER panel see Figure 7.3.18
- 2) BARO knob
- 3) DISPLAY BACKUP pushbutton
- 4) General alarm red and amber indicators
- 5) MD302
- 6) PFD 1
- 7) Landing gear configuration and control panel see Figure 7.5.1
- 8) Parking brake control see Figure 7.5.6
- 9) USB servicing plug
- 10) Alternate left station reception-micro jack
- 11) Left station rudder pedals
- 12) Left station rudder pedals adjusting handle
- 13) Left station reception-micro jacks
- 14) Adjustable air outlet
- 15) Flight conditions and instruction placard
- 16) AP/TRIM DISC pushbutton
- 17) Pitch & Yaw trim setting management
- 18) Push To Talk button (PTT)
- 19) CWS
- 20) Deicing control and check panel see Figure 7.14.1
- 21) Paper clip
- 22) MICRO/MASK switch see Figure 7.11.1
- 23) Hourmeter
- 24) Circuit breaker panel lighting pushbutton
- 25) COM 2 (Standby / Active)
- 26) Electronic checklist management (items acknowlegment function only)
- 27) Transponder Ident sequence
- 28) Chronometer management

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.23

>> A//

Page 7.3.24

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04

Page 7.3.25

>> postMod: MOD70-0800-00

Key to Figure 7.3.7

- 1) LVL pushbutton
- 2) Micro LDR
- 3) AFCS control unit
- 4) Registration
- 5) HomeSafe activation button
- 6) MFD
- 7) Touchscreen controllers
- 8) ECS and PRESSURIZATION panels see Figure 7.10.4

Figure 7.3.7 - Central Instrument Panel (Typical arrangement)

PIM TBM 960 - Edition 0 Rev. 04

>> A//

Page 7.3.28

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04

Page 7.3.29

>> postMod: MOD70-0800-00

Key to Figure 7.3.8

- 1) PFD 2
- 2) DISPLAY BACKUP pushbutton
- 3) BARO knob
- 4) Pitch & Yaw trim setting management
- 5) Push To Talk button (PTT)
- 6) CWS
- 7) AP/TRIM DISC pushbutton
- 8) Adjustable air outlet
- 9) Right station reception-micro jacks
- 10) Right station rudder pedals adjusting handle
- 11) Circuit breakers panel postlight
- 12) USB servicing plugs
- 13) Paper clip
- 14) Cabin emergency air control (EMERGENCY RAM AIR control knob)
- 15) Static source selector
- 16) Chronometer management
- 17) Transponder Ident sequence
- 18) Electronic checklist management (items acknowlegment function only)
- 19) COM 2 (Standby / active)

Figure 7.3.8 - Right Instrument Panel (Typical arrangement)

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.31

>> A//

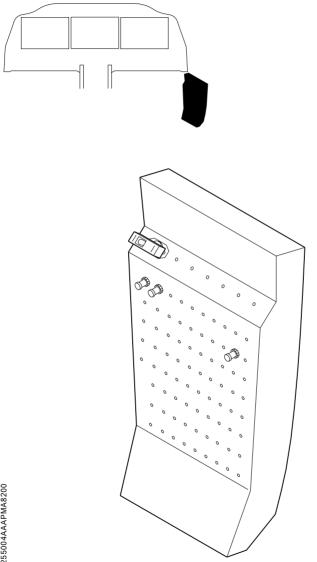
Page 7.3.32

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.33

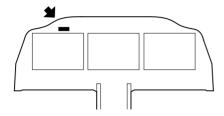
Key to Figure 7.3.9

- 1) THROTTLE
- 2) FLAPS lever
- 3) Lock for access door to landing gear emergency pump see Figure 7.5.2
- 4) Manual FUEL TANK SELECTOR see Figure 7.8.3
- 5) Roll trim tab control
- 6) Pitch trim tab control
- 7) GND FEATHER switch


Figure 7.3.9 - Pedestal Console (Typical arrangement)

PIM TBM 960 - Edition 0 Rev. 04

Page 7.3.35


14255004AAAPMA8200

PIM TBM 960 - Edition 0 Rev. 04

Page 7.3.36

Figure 7.3.11 - General Alarms Warning Lights

C4316000AAAAMA8000

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.37

HomeSafe Interface Panel

The activation button for HomeSafe emergency function is located in central area on top of instrument panel – see Figure 7.3.4.

Doors, Windows and Emergency Exit

Cabin Access Door

See Figure 7.3.12.

The cabin one-piece access door, located on the left side of fuselage aft of the wings, opens outside. The retractable stairs and hand rail make boarding easier.

To open the door from outside the airplane (make sure the door is not locked), press on front end of the handle embedded in door (this pressure disengages the handle from its recess), then turn the handle upwards. Raise the door helping it to open. Two compensation actuators bring and maintain the door at its maximum opening position.

After door opening, tilt stairs downwards. Stairs down movement is damped by means of two gas struts and leads the hand rail to extend.

- CAUTION -

Retract stairs before closing access door and make sure door deflection area is clear.

To retract stairs, press on locking pin located on stairs front string board (see detail 1), raise retractable handle - see detail 2 and pull stairs inside cabin. While stairs are retracted, the hand rail folds up.

To close the door from inside the airplane, press on knob inside cabin forward of the door. The door driven by a geared motor tilts downwards up to a position near the complete closing. Pull the door until it aligns with fuselage and lock it by moving inside handle downwards. Check that all latch pins and hooks are correctly engaged (visible green marks).

DOOR is displayed in the CAS window as long as cabin access door and pilot access door, if installed, are not correctly locked.

- CAUTION -

Before opening access door, make sure door deflection area is clear.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.38

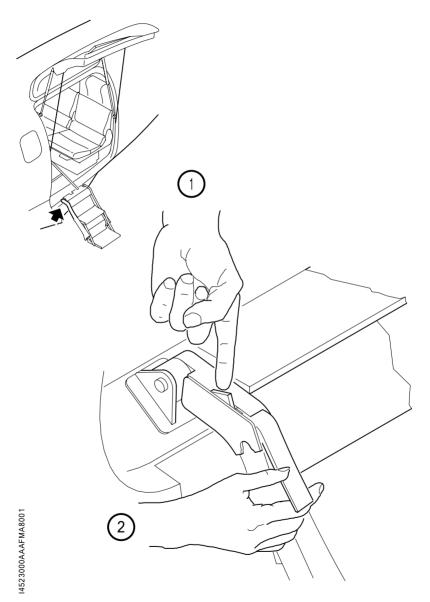
To open the door from inside the cabin, unlock the handle by pressing on knob located on its left side, pull the handle toward inside and move it upwards. Open the door by pushing it upwards.

After door opening, tilt the stairs downwards which leads the hand rail to extend.

- CAUTION

Retract stairs before closing access door and make sure door deflection area is clear.

To retract stairs from outside the airplane, raise stairs by pushing them upwards from the lower part and fold them inside cabin. While stairs are retracted, the hand rail folds up.


To close the door from outside the airplane, press on knob on outside fuselage at the right side of the door. The door driven by a geared motor tilts downwards up to a position near the complete closing. Push the door until it aligns with fuselage and lock it by moving outside handle downwards, then fold handle in its recess.

Check that all latch pins and hooks are correctly engaged, with green marks visible.

In case of geared motor failure, the door can be manually tilted downwards by pulling sufficiently to override action of compensating struts.

Figure 7.3.12 - Cabin Access Door

PIM TBM 960 - Edition 0 Rev. 04

Page 7.3.40

Cockpit Access Door

See Figure 7.3.13.

The cockpit access door, so-called pilot door, if installed located on the left side of fuselage forward of the wings, opens outside. Retractable footstep makes boarding easier.

– WARNING –

As the pilot door is located in a dangerous area, wait for complete engine stop before operating this door.

To open the door from outside the airplane (make sure the door is not locked), press on front end of the handle embedded in door (this pressure disengages the handle from its recess), then turn the handle downwards. Pull the door helping it to open until it reaches its maximum opening position.

After door opening, tilt and unfold footstep.

CAUTION

Retract footstep before closing access door.

Fold and tilt footstep upwards.

To close the door from inside the airplane, pull the door until it aligns with fuselage and lock it by moving inside handle downwards. Check that each latch is correctly engaged in its recess, with green marks visible.

DOOR is displayed in the CAS window as long as cabin access door and pilot access door, if installed, are not correctly locked.

To open door from inside the cockpit, unlock the handle by pressing on knob located on its right side, pull the handle inwards and move it upwards. Open the door helping it to open until it reaches its maximum opening position.

After door opening, tilt and unfold footstep.

CAUTION

Retract footstep before closing access door.

Fold and tilt footstep upwards.

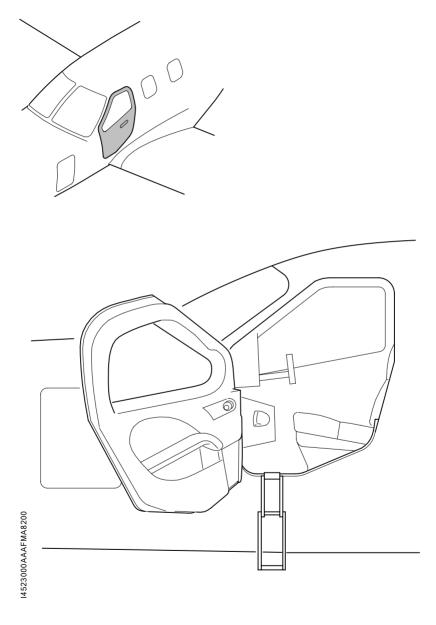
To close the door from outside the airplane, push the door until it aligns with fuselage and lock it by moving outside handle upwards, then fold handle in its recess.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.41

FWD Compartment Door

The FWD compartment door is located on the airplane left side between the firewall and the front pressure bulkhead. It is hinged at the top. It is maintained in the up position by a compensation rod. Two interlocking-type latches ensure its closing and it is equipped with a lock (same key as for the access door and the pilot door, if installed). When the door is closed, latches are flush with the fuselage profile.

CARGO DOOR is displayed in the CAS window as long as FWD compartment door is not locked.


Windows

Windows do not open.

The windshield consists of two parts electrically deiced.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.43

Emergency Exit

See Figure 7.3.14.

The emergency exit is installed on the right side of the fuselage and opens towards the inside. It is equipped with two handles, one inside and the other outside, each located on the upper frame.

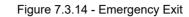
When the airplane is parked, the closing system may be locked by a safety pin provided with a flag marker. The handle is then inoperable.

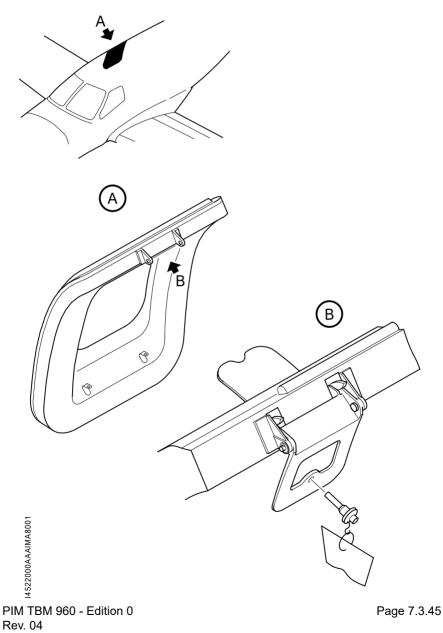
- WARNING

Taxiing and flying with thief-proof safety pin installed is forbidden.

To open the emergency exit, pull one of the two handles and tilt the emergency exit from top to bottom towards inside of airplane.

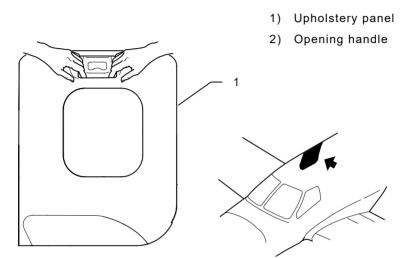
>> preMod: MOD70-0793-25


CAUTION


Before opening the emergency exit from the inside of the airplane, remove the upholstery panel of the emergency exit. Using the two hands, pull firmly the upholstery panel through the access area

to the opening handle – see Figure 7.3.15.

>> All



>> preMod: MOD70-0793-25

Figure 7.3.15 - Removal of the Upholstery Panel of the Emergency Exit

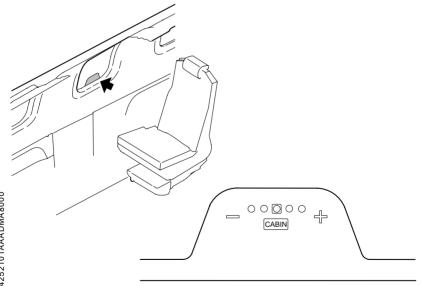
Step 1

Office of the second se

>> All

Dimmable Windows, if installed

See Figure 7.3.16.


The airplane is equipped with dimmable windows. Passengers can individually set the opacity from 0% to 50% for visual comfort purpose through the control panel located at the bottom of each dimmable window.

By touching the CABIN marking of a control panel, a passenger can set all the dimmable windows simultaneously. After few seconds, the control panel turns off and the control mode of all dimmable windows returns to individual control.

The dimmable windows are electrically supplied by the BUS 4 bar and protected by the DIM WINDOWS breaker located on Frame C13bis.

When not powered, the dimmable windows are 50% shaded.

Figure 7.3.16 - Dimmable Windows Control

C4252101AAADMA8000

Page 7.3.47

Seats, Belts and Harnesses

Heated Seats

See Figure 7.3.17 and Figure 7.3.18.

Cockpit and cabin seats are equipped with a heating system for the comfort of pilot and passengers.

The system consists of:

- One heating element in the cushion and one heating element in the backrest of each seat,
- >> preMod: MOD70-0800-00
 - The SEATS HTRS MASTER switch located on the instrument panel,

>> A//

- >> postMod: MOD70-0800-00
- The SEATS HTRS MASTER pushbutton located on the instrument panel,

>> All

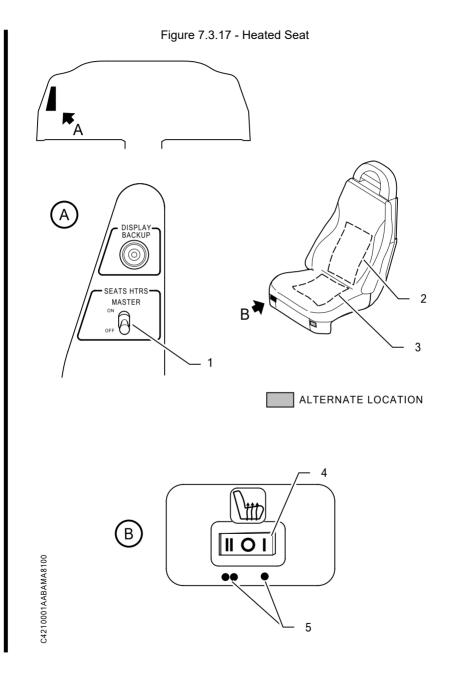
- HI/OFF/LOW three-position switch located on each cockpit and cabin seat,
- The seats heaters control box and relays located under the floor panel.

Each seat is equipped with a power supply wire with a connector. A clip attaches the connector to the seat to prevent damage during seat operation or seat storage.

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04

Page 7.3.49



>> preMod: MOD70-0800-00

Key to Figure 7.3.17

- 1) SEATS HTRS MASTER switch
- 2) Backrest surface heating
- 3) Seat surface heating
- 4) HI/OFF/LOW three-position switch
- 5) Tactile marks

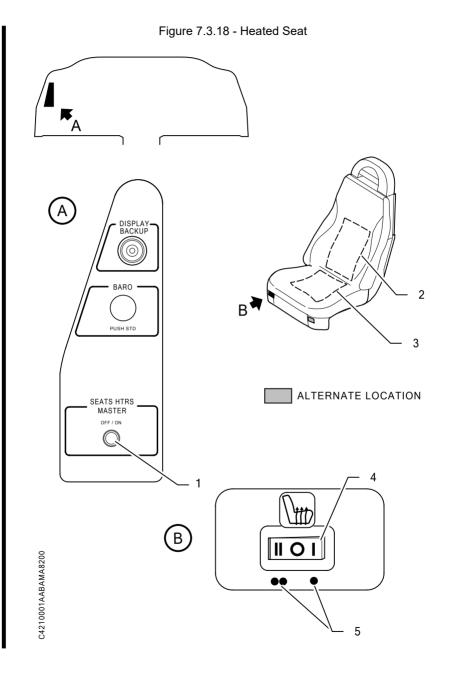
PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.51

>> A//

Page 7.3.52

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.53



>> postMod: MOD70-0800-00

Key to Figure 7.3.18

- 1) SEATS HTRS MASTER pushbutton
- 2) Backrest surface heating
- 3) Seat surface heating
- 4) HI/OFF/LOW three-position switch
- 5) Tactile marks

Page 7.3.55

>> A//

Page 7.3.56

The seats heating is only available when the airplane is connected to a GPU or when the main generator is supplying power.

The system does not operate if GENERATOR selector is set to ST-BY.

>> preMod: MOD70-0800-00

The SEATS HTRS MASTER switch allows the pilot to enable or not the electrical supply of all seats heaters.

>> All

>> postMod: MOD70-0800-00

The SEATS HTRS MASTER pushbutton allows the pilot to enable or not the electrical supply of all seats heaters.

The table hereafter gives the status light colors corresponding to the state of the system.

System state	Status light		
OFF position	Ø		
ON position	0		

>> All

Each seat is then individually controlled by the HI/OFF/LOW switch:

NOTE -

Two tactile marks located under the HI/OFF/LOW switch enables to determine which position is selected.

- OFF position is obtained when the switch is in the central position. In this position the seat does not heat.
- HI position is obtained by positioning the switch to the right. In this position the seat heats at its maximum capacity.
- LOW position is obtained by positioning the switch to the left. In this position the seat heats less than HI position.

NOTE

In HI position, the heating sensation comes up after approximately three minutes.

To avoid overheating, each seat is equipped with thermal sensors which remove power supply in case of overtemperature detection.

Precaution of use of the seats heaters system:

- Do not place any sharp or heavy objects on the seat, as the seat heater could otherwise be damaged.
- Persons with an impaired sensitivity to heat should only operate the seat heater at low level.
- Do not place any heat insulating objects, such as blankets or coats, on the seat when the seat heater is switched on.
- The seat heater can be damaged by fluids spilt on the seat.
- Never switch the seat heater on when it is wet.

Cockpit Seats

See Figure 7.3.19.

Left-side and right-side front seats are mounted on rails attached to the structure. Longitudinal position, height and backrest tilting of each seat can be adjusted and the armrest is hinged.

Pull up the handle located forward for longitudinal setting.

The seat height is adjusted by pulling up side forward handle while relieving the seat from the body weight.

The seat back angle is adjusted by pulling up side rearward handle.

Passenger Seats

>> With 6-seat accommodation

See Figure 7.3.19.

The accommodation consists of:

- two individual seats, installed back to the flight direction, mounted on the same rails as the front seats. The seat back angle is adjusted by pulling up side handle.
- two rear seats arranged as a bench, mounted on the same rails as the front seats. The seat backrests tilt forward by pulling up the handle located forward on left side of each seat which may tilt forwards by pulling up a rear

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.58

handle to ease baggage loading in baggage compartment. For longitudinal setting pull up the handle located forward, on right side.

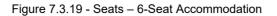
>> With 4-seat accommodation

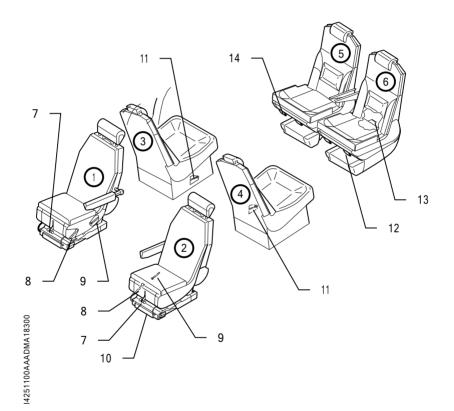
See <u>Figure 7.3.20</u>.

The accommodation consists of:

- two individual seats, installed facing flight direction, mounted on the same rails as the front seats. The seat back angle is adjusted by pulling up side handle.

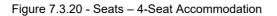
>> A//

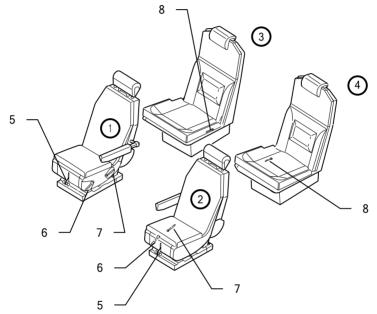

Key to Figure 7.3.19


- 1) Front passenger seat
- 2) Pilot seat
- 3) Right-side intermediate passenger seat, back to flight direction
- 4) Left-side intermediate passenger seat, back to flight direction
- 5) Right-side rear passenger seat Rear bench
- 6) Left-side rear passenger seat Rear bench
- 7) Front seat(s) longitudinal shift control
- 8) Front seat(s) height control
- 9) Front seat(s) backrest tilt control
- 10) Drawer for pilot's piddle pak, if installed (front side: new bags, rear side: used bags)
- 11) Intermediate seat(s) backrest tilt control
- 12) Rear bench seat(s) backrest tilt control
- 13) Rear bench Left-side seat tilt control
- 14) Rear bench seat(s) adjustment control handle

NOTE -

To have access to the baggage compartment, pull forwards the backrest of rear bench left-side seat, then pull forwards control (Item 13) to tilt left-side seat assembly forwards. If necessary, pull forwards the backrest of rear bench rightside seat.


Page 7.3.61



Key to Figure 7.3.20

- 1) Front passenger seat
- 2) Pilot seat
- 3) Right-side intermediate passenger seat, facing flight direction
- 4) Left-side intermediate passenger seat, facing flight direction
- 5) Front seat(s) longitudinal shift control
- 6) Front seat(s) height control
- 7) Front seat(s) backrest tilt control
- 8) Intermediate seat(s) backrest tilt control

14251100AAADMA18200

Page 7.3.63

Many accommodations are possible. They are described hereafter

ONLY zone $\langle B \rangle$ and zone $\langle C \rangle$ can be modified for seat configurations For all configurations, verify that your Location luggage are stowed and attached in number FWD the appropriate areas Facing Fwd baggage zone Pilot zone: No modification allowed MID Seat Zone = Possibility of seat B configuration Rear Seat Zone = Possibility of seat configuration if no net installations C4080000AAADMA8000 Cargo zone If installed, cabinets can be removed or added by Service Center For the REAR Seat zone $\langle \mathbf{C} \rangle$ For the MID Seat zone $\langle \mathbf{B} \rangle$ ONLY the Middle Seats can be installed ONLY the Rear Seat can be installed in Rear Seat Zone. in MID Seat Zone. This Zone accepts Fwd and Aft Facing MID Seat when rear seats are installed. The zone $\langle \mathbf{R} \rangle$ accepts zero or 1 or 2 The zone $\langle \overline{C} \rangle$ accepts zero or 1 or 2 seats. seats. Number of (The zone $\langle \mathbf{B} \rangle$ is not a luggage area). FWD Location seat can be number Facing installed Number of 3 YES Location FWD AFT 1 or 0 seat can be Facing Facing 4 YES number 1 or 0 installed 5 *(1) YES *(1) 1 or 0 *(1) YES YES 1 or 0 1 YES YES 2 1 or 0 *(1) Centered on the fuselage axis

Here are all the configurations possibilities (see figure above)

Configuration name	Location number					
	1	2	3	4	5	
C1	Х	Х	Х	Х		
C2 ⁽²⁾	х	х			х	
C3	х	Х		Х		
C4 ⁽¹⁾	х	х				
C5	х	Х	Х			
C6	Х		Х	Х		
C7	Х		Х			
C8	Х			Х		
C9 ⁽²⁾	х				х	
C10 ⁽¹⁾	х					
C11		Х	Х	Х		
C12 ⁽²⁾		Х			Х	
C13		Х	Х			
C14		Х		Х		
C15 ⁽¹⁾		х				
C16			Х	Х		
C17			Х			
C18				Х		
C19 ⁽²⁾					х	
C20 ⁽¹⁾						
	Zone 🖲		Zone ©			

(1) This configuration accepts small net or large net

(2) In this position, the seats heaters system cannot be connected to the rear seat.

Each cross indicates that a seat is installed at the corresponding location number.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.65

Belts and Harnesses

See Figure 7.3.21, Figure 7.3.22 and Figure 7.3.23.

WARNING

Incorrect closure of the safety belt may introduce a risk. Make sure it is tightened when buckled. To be most efficient, the belt must not be twisted. Check that there is no constraint when operated. After an accident, replace all belts.

Each cockpit seat is equipped with a four-point restraint system consisting of an adjustable lap belt and a dual-strap inertia reel-type shoulder harness with airbags, if installed.

Airbags, if installed, are inflated by two inflators located under the backrest fairing, which are activated by an accelerometer fixed under the floor panel in front of the seat.

The two cockpit seats are equipped with a buckle positioner that enables the central buckle to be positioned correctly. The length of the buckle positioner is adjustable using the self-gripping area of the strap. Each occupier of cockpit seats must check that the buckle positioner is properly adjusted.

WARNING

The central buckle must be positioned so that the belt straps remain at hip level (just below the center of gravity) to prevent the body from slipping under the belts.

Page 7.3.66

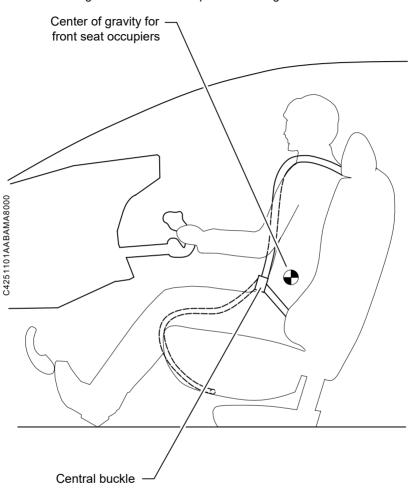
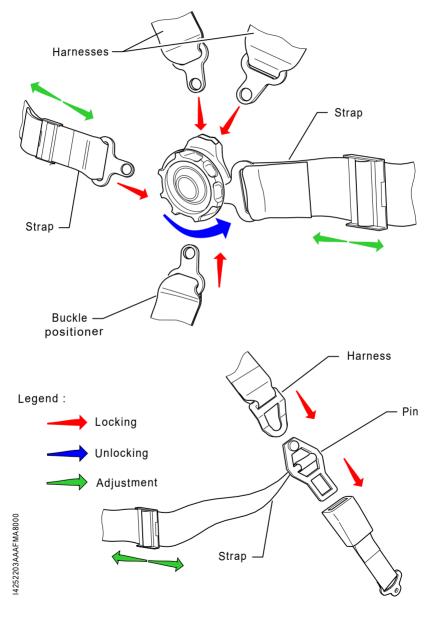
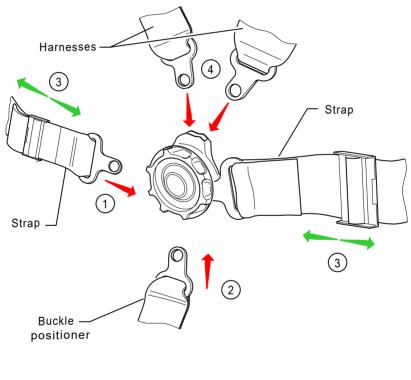



Figure 7.3.21 - Correct pre-Positioning of the Buckle

Each passenger seat is equipped with a three-point restraint system consisting of an adjustable lap belt and an inertia reel-type shoulder harness.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.67

Figure 7.3.22 - Front and Rear Seat Belts with Movable Straps and Harnesses


PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.68

Fastening the Seat Belts on Front Seats

- 1. Fasten the belt straps,
- 2. Fasten the buckle positioner in the buckle and adjust its length so that the belt straps remain at hip level,
- 3. Adjust the belt straps,
- 4. Fasten and adjust the harnesses.

Figure 7.3.23 - Fastening the Seat Belts on Front Seats

Baggage Compartments

>> With 6-seat accommodation

There are two baggage compartments:

- An AFT compartment located in the pressurized cabin between rear passenger seats and rear pressure bulkhead.
- A FWD compartment (non-pressurized) located between firewall and fwd pressure bulkhead.

The AFT compartment is accessible through the cabin by tilting forward the leftside rear seat and/or left-side or right-side rear seat back-rests. Rings fitted with lashing straps are provided for securing parcels and baggage on compartment floor.

The FWD compartment is accessible by opening the external door located on the left side of the airplane.

These locations are designed for the carrying of low density loads; loading and unloading must be carried out with caution to avoid any damage to airplane.

The cabin is separated from the baggage compartment by a partition net intended to protect the passengers from injuries that could be caused by improper tie-down of a content.

The partition net is mounted at Frame C14 – see <u>Figure 7.2.1</u>, it is secured at the bottom to 4 points of the floor and on the sides to 6 points of the structure.

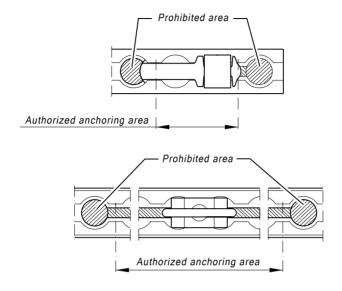
Maximum loads allowable in the baggage compartments depend on airplane equipment – refer to <u>Subsection 6.3. Baggage Loading</u>.

- WARNING -

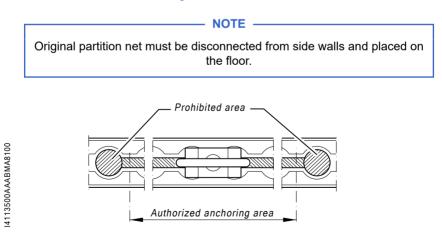
Any parcel or baggage must be stowed by straps. It is the pilot's responsibility to check that all parcels and baggage are properly secured in the cabin.

Transport of dangerous products/materials is normally prohibited, however if transport of such products/materials is necessary, it must be performed in compliance with regulations concerning transport of dangerous products/materials and any other applicable regulation.

>> With 4-seat accommodation


Two cargo nets are available for the pilot to safely secure and transport baggage:

- the small cargo net is attached through nine anchoring points on seat rails, between Frame C11 and Frame C13bis – see Figure 7.2.3.


PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.70

14113500AAABMA8000

 the large cargo net is attached through seven anchoring points on seat rails, between Frame C11 and Frame C13bis and six anchoring points on fuselage sides, at Frame C14 – see Figure 7.2.2.

Authorized anchoring points are identified with green self-adhesive labels affixed to the inside of the seat rail.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.71

A placard indicates loading limits for each cargo net:

- for the small cargo net, it is affixed on Frame C13bis,
- for the large cargo net, it is affixed on right side upholstery panel, in the rear baggage compartment.

Maximum loads allowable in the baggage compartments depend on airplane equipment – refer to <u>Subsection 6.3. Baggage Loading</u>.

- WARNING -

Any parcel or baggage must be stowed by cargo net and straps. It is the pilot's responsibility to check that all parcels and baggage are properly secured in the cabin.

Transport of dangerous products/materials is normally prohibited, however if transport of such products/materials is necessary, it must be performed in compliance with regulations concerning transport of dangerous products/materials and any other applicable regulation.

Use of Cargo Nets

Net Inspection

Before each use, visually inspect net for:

- webbing condition,
- seam condition of tensioning strap,
- metallic part condition.

Installation Instructions

Tensioning straps must be installed so that they make a V with a minimum angle of 40° between both strands attached on the net. The net must be properly tight.

Damage Acceptance Criteria

If any damage is detected, such as:

- damage or absence of hook, buckle or stud on tensioning strap: strap must **mandatorily** be discarded and replaced,
- webbing frayed or cut on less than 30% of its surface: reduce maximum load by 50%,
- seam of vertical net tensioning straps damaged on less than 30% of its length: reduce maximum load by 50%,
- seam of tensioning straps attached on the rails damaged on less than 30% of its length: reduce maximum load by 50%,

PIM TBM 960 - Edition 0 Rev. 04 Page 7.3.72

- beyond 30% damage for above-mentioned cases, defective element must mandatorily be discarded and replaced,
- netting cut or torn on less than 3.9 in (100 mm): still serviceable, no impact,
- netting cut or torn on more than 3.9 in (100 mm): do not carry small objects which dimensions are smaller than 4.9 x 4.9 x 4.9 in (125 x 125 x 125 mm).

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04

Page 7.3.74

7.4 - Flight Controls

Flight controls consist of roll, pitch and rudder controls, as well as roll trim tab, pitch trim tab and rudder trim tab controls.

– NOTE –

During airplane parking, it is recommended to lock flight controls – see $\frac{\text{Figure}}{8.6.2}$.

Roll

See Figure 7.4.1 and Figure 7.4.2.

The roll control is activated by an assembly of rods and cables which links control wheels with the ailerons and the spoilers.

Aileron displacement is combined with that of spoilers, located at upper surface of each wing forward of flaps.

The spoiler rises from wing upper surface profile, when the aileron is deflected upwards and remains in wing profile, when the aileron is deflected downwards.

Control wheel movement is transmitted through rods to fuselage roll lever located under the floor. The movement is then transmitted through cables to the spoiler mechanism and from the spoiler mechanism to wing roll lever which activates the aileron through a rod.

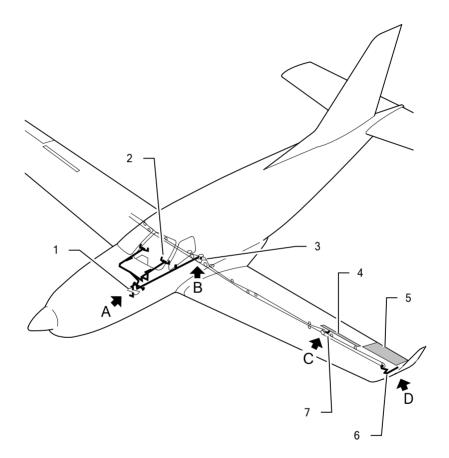
A rudder / roll combination spring-type system induces roll deflection at the time of pedals movement and vice versa.

Roll Trim

See Figure 7.4.3 and Figure 7.4.4.

The roll trim is controlled by a trim tab attached at the trailing edge of left-side aileron. The trim tab is connected through two links to an electric actuator located in the aileron. A trim switch located on pedestal controls the roll trim tab maneuver.

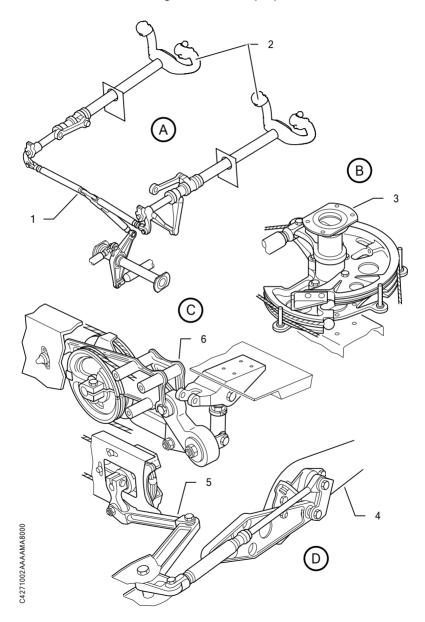
Roll trim tab electrical circuit is protected by the AIL TRIM breaker.


PIM TBM 960 - Edition 0 Rev. 00 Page 7.4.1

- 1) Pedestal assembly
- 2) Control wheels
- 3) Fuselage roll lever
- 4) Spoiler
- 5) Aileron
- 6) Aileron control in wing
- 7) Spoiler control

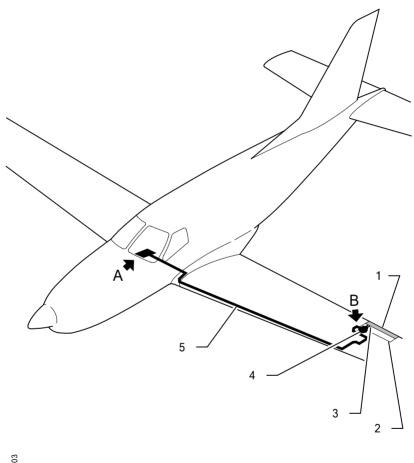
Figure 7.4.1 - Roll (1/2)

14271000AAAAMA8101


PIM TBM 960 - Edition 0 Rev. 00 Page 7.4.3

- 1) Pedestal assembly
- 2) Control wheels
- 3) Fuselage roll lever
- 4) Aileron
- 5) Aileron control in wing
- 6) Spoiler control

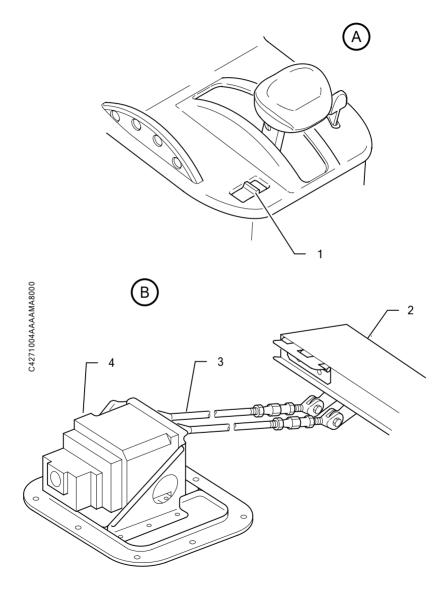
Figure 7.4.2 - Roll (2/2)


Page 7.4.5

- 1) Roll trim tab
- 2) Aileron
- 3) Adjustable rods
- 4) Actuator
- 5) Trim tab control wiring

Figure 7.4.3 - Roll Trim (1/2)

14271000AAAYMA8003


PIM TBM 960 - Edition 0 Rev. 00 Page 7.4.7

- 1) Trim switch on pedestal console
- 2) Roll trim tab
- 3) Adjustable rods
- 4) Actuator

PIM TBM 960 - Edition 0 Rev. 00 Page 7.4.9

Elevator

See Figure 7.4.5 and Figure 7.4.6.

Both elevators are activated simultaneously by the same control. Each control surface is hinged at three points to the rear part of horizontal stabilizer.

The control wheel controls the two elevators through rods, bearings and bellcranks.

A stick shaker is fixed on the pitch lever linked to the pilot control column lever. This is a mechanical device to vibrate the control wheel to warn the pilot in case of an imminent stall. When the data received from the AoA (angle of attack) sensor indicates an imminent stall, the AoA computer actuates both the stick shaker and the stall warning.

A spring actuator creates a nose-down artificial force which allows a better static stability.

Each control surface is provided with an automatic anti-tab (automaticity about 0.3), which is also used as trim tab.

Pitch Trim

See Figure 7.4.7 and Figure 7.4.8.

The pitch trim is accomplished through the two anti-tabs located on left and right elevators.

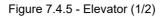
The trim tab can be controlled electrically or manually. It is activated through cables and a chain on two screw actuators attached to the horizontal empennage.

The electrical control consists of a switch (NOSE UP - NOSE DOWN) located on the pilot control wheel and a servo-motor attached under the pedestal.

The electrical circuit for pitch trims is protected by the AP SERVOS breaker.

Manual control wheel is installed vertically on left side of pedestal console.

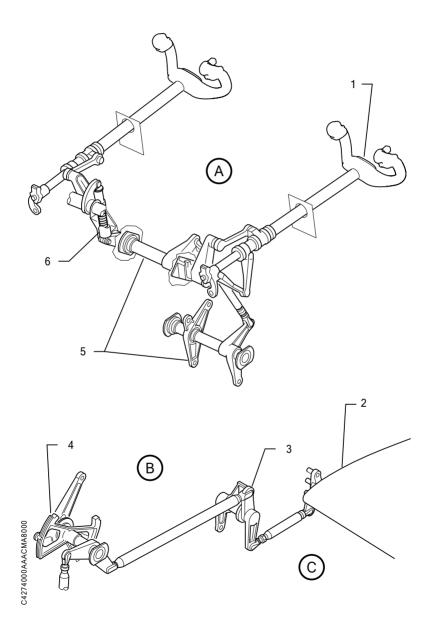
Intentionally left blank


PIM TBM 960 - Edition 0 Rev. 00

Page 7.4.11

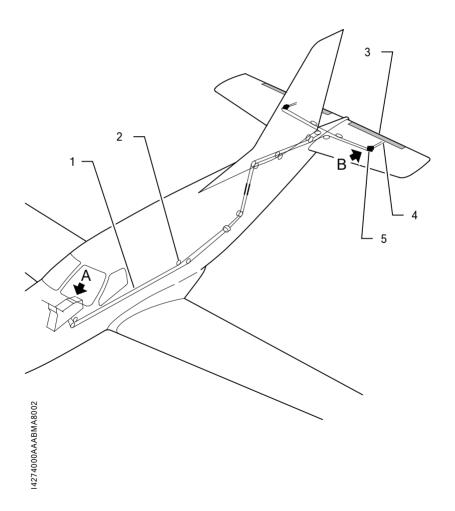
- 1) Control wheel assembly
- 2) Elevators
- 3) Lever assembly, fuselage rear part
- 4) Elevator bellcrank
- 5) Rod with presseal connection
- 6) Lever assembly under floor
- 7) Pedestal assembly
- 8) Stick shaker

C4273000AAACMA8000


PIM TBM 960 - Edition 0 Rev. 00 Page 7.4.13

- 1) Control wheel assembly
- 2) Elevators
- 3) Lever assembly, fuselage rear part
- 4) Elevator bellcrank
- 5) Pedestal assembly
- 6) Actuator

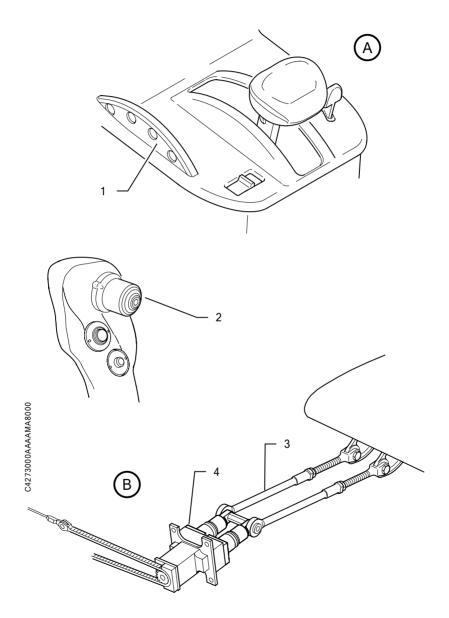
Figure 7.4.6 - Elevator (2/2)


PIM TBM 960 - Edition 0 Rev. 00 Page 7.4.15

- 1) Cables
- 2) Pulleys
- 3) Pitch trim tabs
- 4) Actuating rods
- 5) Actuator

Figure 7.4.7 - Pitch Trim (1/2)

PIM TBM 960 - Edition 0 Rev. 00


Page 7.4.17

- 1) Pitch trim manual control wheel
- 2) Electric pitch trim control
- 3) Actuating rods
- 4) Actuator

Rudder

See Figure 7.4.9 and Figure 7.4.10.

The rudder is hinged on three fittings attached to the vertical stabilizer rear spar.

The rudder pedals / rudder linkage is ensured through cables and a rod.

Pilot and front pasenger's station rudder pedal positions are adjustable at each station. The rudder pedal adjustment mechanism (for piloting comfort purposes) includes a manual control located against the external bulkhead beneath the instrument panel and a locking device on the rudder pedals. This ball locking device allows selecting six different positions.

When landing gear is down, rudder pedals are linked to nose gear steering system.

Spring system of rudder / roll combination induces aileron deflection at the time of pedal displacement and vice versa.

Rudder Trim

See Figure 7.4.11 and Figure 7.4.12.

A trim tab hinged at two points located at rudder trailing edge provides rudder trim.

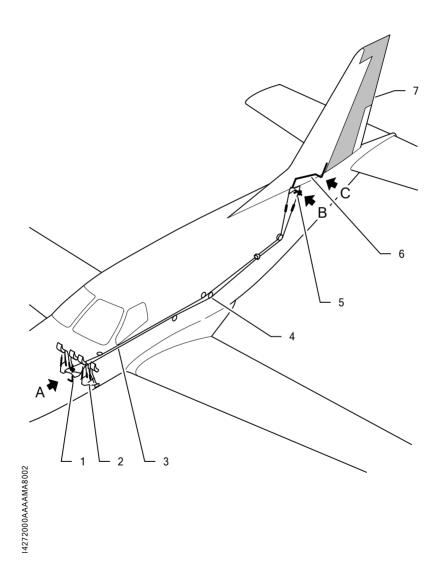
Trim tab is linked by two rods to an electric actuator attached to rudder. It is controlled by rudder trim switch (Y L / Y R) located on pilot control wheel.

Electrical circuit of rudder trim tab is protected by RUD TRIM breaker.

Page 7.4.20

Intentionally left blank

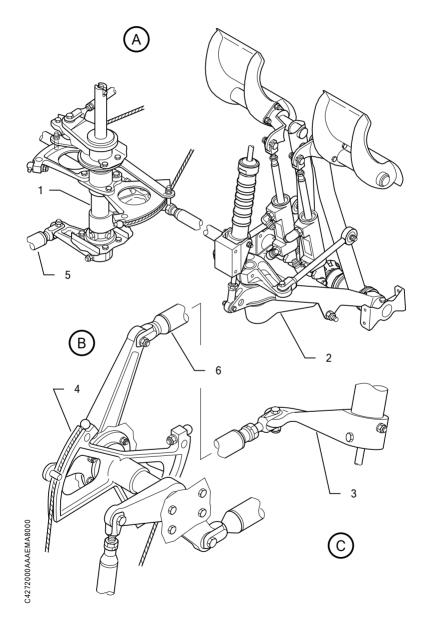
PIM TBM 960 - Edition 0 Rev. 00


Page 7.4.21

- 1) Roll / rudder combination bellcrank installation
- 2) Rudder pedals assembly
- 3) Control cables
- 4) Pulleys
- 5) Rudder lever assembly
- 6) Rod
- 7) Rudder

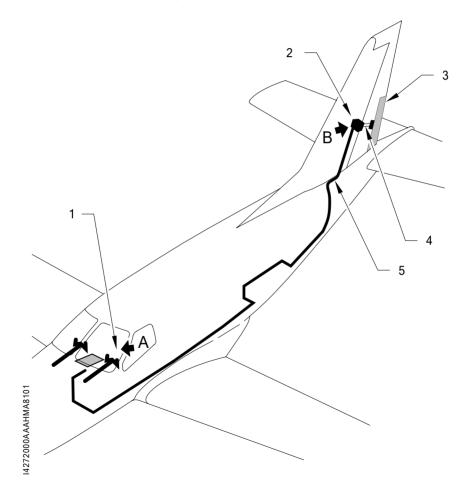
Figure 7.4.9 - Rudder (1/2)

PIM TBM 960 - Edition 0 Rev. 00


Page 7.4.23

- 1) Roll / rudder combination bellcrank installation
- 2) Rudder pedals assembly
- 3) Rudder
- 4) Rudder lever assembly
- 5) Nose gear steering rod
- 6) Rod

Figure 7.4.10 - Rudder (2/2)



PIM TBM 960 - Edition 0 Rev. 00 Page 7.4.25

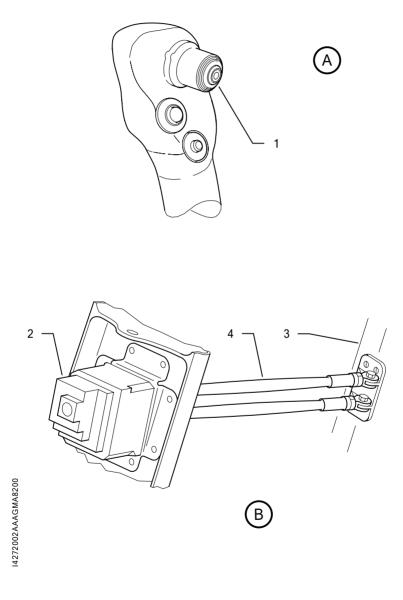
Figure 7.4.11 - Rudder Trim (1/2)

- 1) Trim switch on control wheel
- 2) Actuator
- 3) Rudder trim tab
- 4) Rods
- 5) Rudder trim control wiring

PIM TBM 960 - Edition 0 Rev. 00 Page 7.4.26

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00


Page 7.4.27

- 1) Trim switch on control wheel
- 2) Actuator
- 3) Rudder trim tab
- 4) Rods

Figure 7.4.12 - Rudder Trim (2/2)

PIM TBM 960 - Edition 0 Rev. 00

Page 7.4.29

Section 7 Description

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00

Page 7.4.30

7.5 - Landing Gear

The airplane is equipped with an electro-hydraulically actuated, fully retractable tricycle landing gear.

Each landing gear is equipped with one wheel and an oil-air shock absorber integrated in the strut.

The **main landing gears** swivel on two ball joints installed on wing spars. Each landing gear retracts toward airplane centerline. The operation is accomplished by a hydraulically actuated cylinder, which also provides up and down locking.

The **nose gear** swivels on two ball joints installed on a tubular steel mount frame. Its operation is performed by a hydraulically actuated cylinder, which also provides up and down locking. The nose wheel is steerable. It is connected to pedals through a spring rod and is provided with a shimmy damper. In up position, the nose wheel is automatically disconnected.

Actuating cylinders have a locking device integrated at both ends. This device maintains the landing gear in up or down position.

Landing gear doors – two on the nose gear, two on each main landing gear – are driven and maintained in the up position by the landing gear itself.

All doors are mechanically kept in the down position.

Hydraulic Pressure

Hydraulic pressure required for landing gear operation is provided:

- during normal operation by an electro-hydraulic generator with integrated reservoir,
- during emergency extension operation by a hand pump supplied with an auxiliary reservoir.

Landing Gear Lever

See Figure 7.5.1.

The LANDING GEAR lever is located on the LANDING GEAR panel at the bottom of the instrument panel's left portion. It actuates an electric selector that controls the hydraulic generator. At the end of this lever is a knob that represents a wheel. Raising and lowering of the landing gear is performed by pulling on the lever and moving it to either the UP (retracted) or DN (extended) position.

PIM TBM 960 - Edition 0 Rev. 03 Page 7.5.1

Landing Gear Position Indicator

See Figure 7.5.1.

Landing gear position indication is indicated by:

- Five lights on the LANDING GEAR control panel
 - Three green indicator lights (one per landing gear),
 - . One red warning light GEAR UNSAFE,
 - . One amber light in the LANDING GEAR lever.
- The **GEAR UNSAFE** CAS message.

NOTE -

The amber light flashes while the hydraulic pump is operating during the landing gear's extension or retraction.

A correctly downlocked landing gear is confirmed when:

- the three green indicator lights are ON,
- the **GEAR UNSAFE** red warning light is OFF,
- the **GEAR UNSAFE** CAS message is OFF, and
- the amber caution light is OFF.

Any other combination indicates that the gear is not downlocked.

If there is uncertainty about the landing gear being correctly in the downlocked position, an independent electrical circuit provides a countercheck capability of the indication system. Pressing the CHECK DOWN pushbutton – located on the LANDING GEAR panel – checks the gear's correct downlock, which is shown when the green indicator lights that correspond to the downlocked gear are flashing at a rate of 16 hertz.

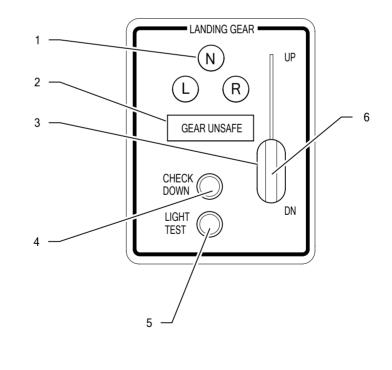
Pressing the LIGHT TEST pushbutton enables the testing of all LANDING GEAR panel lights, which will flash at a rate of one hertz.

Section 7 Description

Intentionally left blank


PIM TBM 960 - Edition 0 Rev. 03 Page 7.5.3




Key to Figure 7.5.1

- 1) Green indicator light
- 2) Red warning light
- 3) LANDING GEAR lever
- 4) CHECK DOWN pushbutton
- 5) LIGHT TEST pushbutton
- 6) Amber light

PIM TBM 960 - Edition 0 Rev. 03

14326001AAAFMA8100

Page 7.5.5

Safety

Safety Switch - Landing Gear Retraction

When the airplane is on ground, a safety switch installed on each main landing gear prevents an accidental retraction of the landing gear by detecting the shock strut's compression.

Landing Gear Aural Warning

The *"Landing gear / Landing gear"* (above 800 ft AGL) or the *"Check gear / Check gear"* (below 800 ft AGL) voice alert sounds, and **LDG GEAR UP** is displayed in the CAS window, when:

- the THROTTLE is close to the IDLE position and the landing gear is not downlocked,
- flaps are close to the LDG position (Landing) and the landing gear is not downlocked.

NOTE —

Pressing the MASTER CAUTION indicator mutes the "Landing gear / Landing gear" voice alert.

- NOTE –

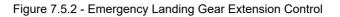
If one of above conditions exists and the airplane is in a stall situation, the "Stall / Landing gear" voice alert sounds and the control wheel vibrates. Pressing the MASTER CAUTION indicator mutes the "Stall / Landing gear" voice alert. The "Stall / Stall" voice alert will activate.

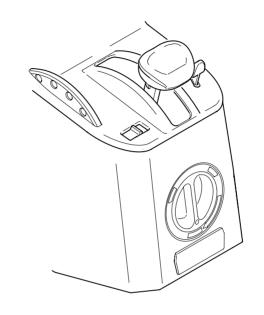
Emergency Landing Gear Extension Control

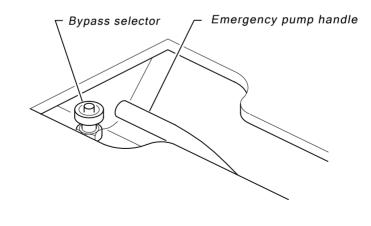
See Figure 7.5.2.

The emergency landing gear extension control consists of a hand pump and a bypass selector.

This control is accessible by removing the floor panel located aft of the pedestal.


After the bypass selector is closed, the hand pump operation sends hydraulic fluid directly into the landing gear actuators.




CAUTION

Depending on the airplane's altitude, the landing gear's full extension and locking requires up to 110 cycles of the hand pump. During the final pumping cycles, increased pressure must be felt while actuating the hand pump to confirm its proper operation in extending and locking the landing gear.

C4323500AAAAMA8000

PIM TBM 960 - Edition 0 Rev. 03 Page 7.5.8

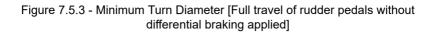
Ground Maneuvers

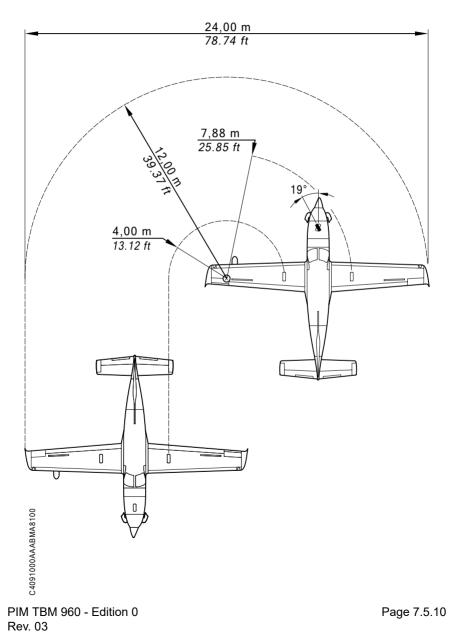
Nose Gear Steering Control

See Figure 7.5.3 and Figure 7.5.4.

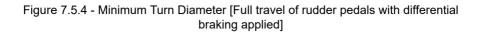
The nose gear steering control is combined with the rudder pedals and is fitted with a shimmy damper. When one of the rudder pedals is fully pushed, the nose wheel swivels approximately 20°. Steering may be increased up to 28° by applying differential braking to each side.

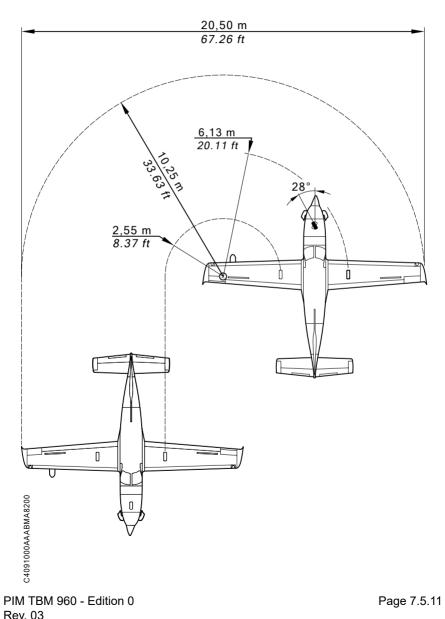
The airplane may be towed by attaching a steering or towing bar on the nose gear – refer to <u>Subsection 8.6. Ground Handling</u>. In this case, the nose wheel steering angle is limited to $\pm 28^{\circ}$.


Minimum Turn Diameter


Minimum turn diameter is obtained by using nose gear steering and differential braking – see Figure 7.5.4.

– NOTE –


As tight turns result in untimely tire wear, turns should be made using the largest possible turning radius.



Brake System

See Figure 7.5.5.

The airplane is equipped with a hydraulically actuated disc braking system installed on the main landing gear wheels.

Each toe brake at pilot and front passenger positions is equipped with a master cylinder which sends hydraulic pressure to the corresponding disc brake: left pedals, left-side brake; right pedals, right-side brake. Use differential braking to assist in maneuvering during taxiing.

A master cylinder actuated by a servomotor sends hydraulic pressure to the disc brakes when landing with the HomeSafe emergency function engaged.

HS ABN BRAKES is displayed in the CAS window when the servomotor is operating.

Parking Brake

See Figure 7.5.5 and Figure 7.5.6.

The parking brake control consists of a control knob located on pilot's side lower instrument panel and a valve that regulates the brake pressure.

To apply the parking brake, press on the rudder pedals' toe brake and set the control knob to ON.

PARK BRAKE is ON when the control knob is set to ON.

- NOTE -

Operating the parking brake knob without applying pressure on the rudder pedals' toe brake will not provide wheel braking.

- CAUTION

Failure to apply brake pressure while releasing the parking brake can damage the parking brake valve. This damage can cause the parking brake valve to not release the pressure.

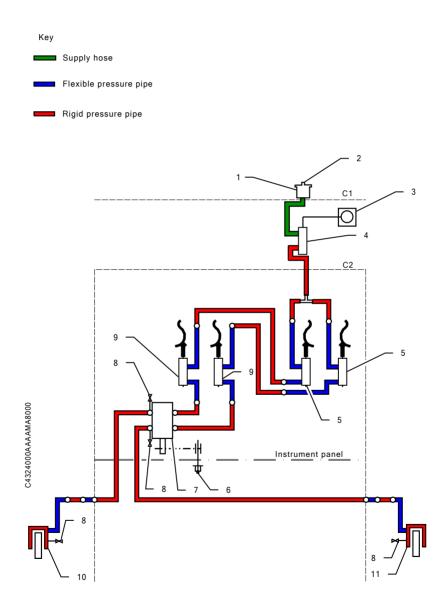
To release the parking brake, press on the rudder pedals' toe brake and set the control knob to OFF. Check that **PARK BRAKE** disappears at the same time.

PIM TBM 960 - Edition 0 Rev. 03 Page 7.5.12

Section 7 Description

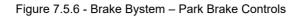
Intentionally left blank

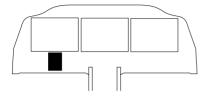
PIM TBM 960 - Edition 0 Rev. 03 Page 7.5.13

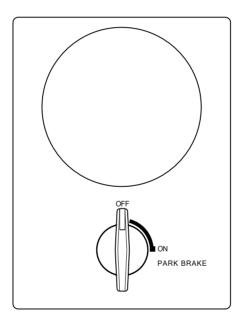


Key to Figure 7.5.5

- 1) Reservoir
- 2) Vent
- 3) HomeSafe braking servo-actuator
- 4) HomeSafe master cylinder
- 5) Front passenger's position master cylinders
- 6) PARK BRAKE control knob
- 7) PARK BRAKE valve
- 8) Drain
- 9) Pilot's position master cylinders
- 10) Left-side brake assembly
- 11) Right-side brake assembly




Figure 7.5.5 - Brake System



PIM TBM 960 - Edition 0 Rev. 03 Page 7.5.15

14351000AAAAMA18300

PIM TBM 960 - Edition 0 Rev. 03 Page 7.5.16

7.6 - Powerplant

Turboprop Engine Operation

See Figure 7.6.1.

The Pratt & Whitney Canada PT6E-66XT turboprop engine model is a free turbine engine flat-rated at 895 SHP, electronically controlled by a Full Authority Digital Engine Control (FADEC).

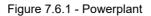
Intake air enters the engine through an annular casing and is ducted towards the compressor.

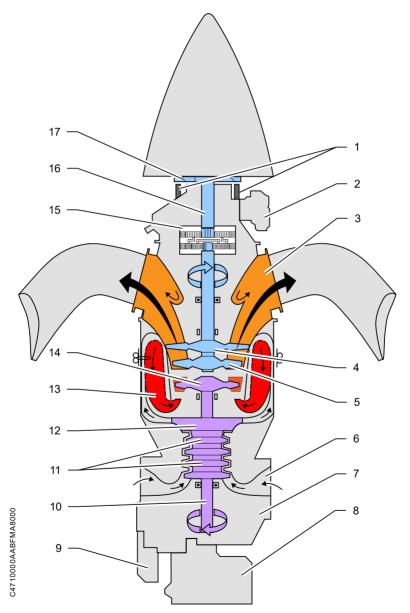
The compressor is composed of four axial stages and one centrifugal stage forming a whole assembly that compresses the air.

Fuel is sprayed by fuel nozzles into the combustion chamber and mixed with the compressed air. The mixture is first ignited by two spark igniter plugs; then combustion continues as a result of air-fuel mixture flow.

Gases resulting from combustion expand through a series of turbines:

- the gas generator turbine which drives the compressor assembly and accessories. The accessory gearbox is located rearward of the engine,
- the power turbines (two stages), independent from the gas generator turbine and rotating reverse way, which drive the propeller shaft through a reduction gearbox.


Hot gases are evacuated through two exhaust stubs located laterally on both sides forward of engine cowling.



Key to Figure 7.6.1

- 1) Np/beta sensors
- 2) Propeller Control Unit (PCU)
- 3) Exhaust
- 4) Power turbine 2nd stage
- 5) Power turbine 1st stage
- 6) Air intake
- 7) Accessory gearbox
- 8) Fuel Control Unit (FCU)
- 9) Oil to fuel heater
- 10) Accessory gearbox coupling shaft
- 11) Axial compressors
- 12) Centrifugal impeller
- 13) Combustion chamber
- 14) Gas generator turbine
- 15) Reduction gearbox
- 16) Propeller shaft
- 17) Beta ring

Page 7.6.3

Full Authority Digital Engine Control (FADEC)

The FADEC is a full dual-channel (Channel A and B), dual-processor digital engine control system with segregated control, redundant interfaces and protection signals.

The FADEC performs the full digital control of the engine power by adjusting the fuel flow through the Fuel Control Unit (FCU) and the propeller blade angle through the Propeller Control Unit (PCU) based on:

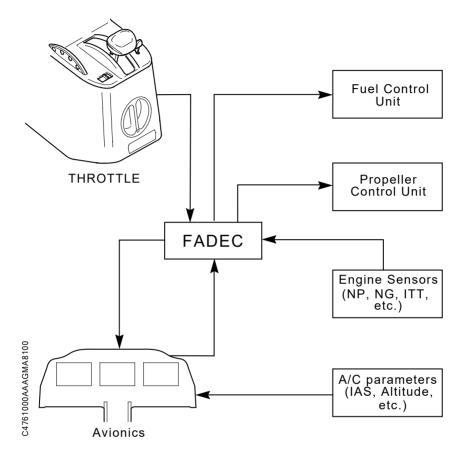
- THROTTLE position,
- ambient conditions,
- information from engine sensors and airframe data.

The FADEC includes several control loops to control:

- engine torque (TRQ) at reference propeller speed,
- Ng at idle, during engine accelerations/decelerations, in reverse range or in degraded mode.

The FADEC sends the engine parameters including fault messages to the avionics.

The FADEC is installed in the front cargo compartment and is connected to the engine accessories through the main engine harness.


When the engine is running, the FADEC is electrically supplied by the permanent magnet alternator – refer to <u>Paragraph Engine Accessories</u>.

If the permanent magnet alternator cannot provide enough electrical power to the FADEC, the airplane electrical system electrically supplies the FADEC as follows:

- Channel A is supplied by the ESS BUS 1 bar and protected by the FADEC CH.A breaker,
- Channel B is supplied by the BUS 2 bar and protected by the FADEC CH.B breaker.

FADEC Engine Protections

The FADEC provides protections against:

- Ng exceedance and underspeed during engine operation by modulating the fuel flow,
- TRQ exceedance during engine operation by reducing the fuel flow and, if necessary, increasing Np to 2,000 RPM,
- Np exceedance during engine operation by reducing the fuel flow and, if necessary, by feathering the propeller,
- uncommanded propeller reverse in flight, by feathering the propeller,

PIM TBM 960 - Edition 0 Rev. 04 Page 7.6.5

- ITT exceedance during ground engine start by aborting the start sequence refer to <u>Paragraph Engine Operations</u>,
- surge by reducing the fuel flow.

NOTE -

FADEC engine protections are fully independent of AT engine protections.

When FADEC engine protection is active, the engine power may be limited and **ENG PROT ACTIVE** is displayed in the CAS window.

The activation of protections may also lead to the loss of functions associated with CAS messages displayed in the CAS window.

FADEC System Faults Indications

The FADEC continuously monitors the integrity of its inputs, internal hardware functions and external driver circuits.

When an input fault is detected, the FADEC selects an alternative valid input. When an output fault is detected that prevents the channel in control from controlling the engine or propeller, the FADEC transfers control to the other channel in order to maintain engine operability.

Multiple faults are accommodated by alternative input sources, backup control loops and by always choosing the best channel to control the engine. Each channel is responsible for the detection and accommodation of its own failures and for transferring control to the other channel.

All detected faults are sent to the avionics, recorded on the DCTU and monitored through associated CAS messages triggered during ground and flight operations.

CAS message	Description
FADEC FAULT	Indicates that the FADEC system is in degraded mode without effect on engine operation. The control system has experienced a FADEC system component fault that has been automatically accommodated to provide continued operation without operational impact.

Continue ►

PIM TBM 960 - Edition 0 Rev. 04

CAS message	Description
ENG OP DEGRADED	Indicates that the FADEC system is in degraded mode with effect on engine operation. The control system has experienced an engine failure that has been automatically accommodated to provide continued operation with operational impact.
FADEC FAIL	Indicates that the FADEC system is in degraded mode with no ability to modulate and control engine power. The control system has experienced a FADEC system component failure that has been automatically accommodated by setting fixed fuel flow condition, or shutting down the engine.

Depending on the failure detected, other CAS messages are displayed to indicate the loss of some functions and/or protections:

CAS message	Description
FADEC COM 1 CHL	The communication between one FADEC channel and the avionics is lost. The fault has been automatically accommodated by using remote channel communication data to provide continued operation.
THROTTLE FAIL	Indicates that the FADEC no more receives information of the THROTTLE position. The FADEC commands the engine considering the last valid THROTTLE position.
FEATHER	Indicates that the propeller is feathered and the engine set to idle after a FADEC system component failure.

Continue ►

CAS message	Description
NP 2000 MAX	 Indicates that the FADEC commands a higher Np at 2,000 RPM due to: an avionics failure, or an overtorque, or a FCU runaway (fuel metering valve fully open). To comply with engine power limitations, the maximum available torque is reduced to 96%.

All FADEC system component failures are associated with dispatch indication on ground. The pilot is informed that the next flight can be performed or not with CAS messages displayed in the CAS window:

- **NO DISPATCH** indicates that the failure must be repaired prior further flight,
- **LMTD DISPATCH** indicates that further flight can be performed and the failure should be repaired within 50 flight hours after first appearance of the message. The duration of the flight after which **LMTD DISPATCH** appears for the first time must be taken into account in the 50 flight hours.

Engine Control Lever

THROTTLE

See Figure 7.6.3.

The pilot operates the engine using the THROTTLE (electro-mechanical device) located on the pedestal console.

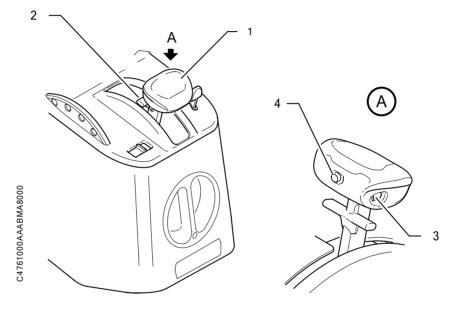
The FADEC receives information of the THROTTLE position to modulate the engine power from full reverse to maximum power:

- on ground, the power response to the THROTTLE movement is non-linear to provide more sensitivity at low power, close to IDLE,
- in flight, the power response is linear to provide a smooth response throughout the full range of operation.

IDLE position of the THROTTLE can lead to two different engine settings:

- in flight, flight IDLE setting with dedicated Ng and propeller pitch values,

- on ground, ground IDLE setting with reduced Ng to reduce fuel consumption during ground operations.


To select reverse thrust, the pilot must pull up the trigger and move the THROTTLE rearward in the REV range. Then, the FADEC commands a reversion of propeller pitch and an increase of Np, modulated depending on the THROTTLE position in the REV range.

Return to IDLE position is performed by pushing the THROTTLE forward.

Figure 7.6.3 - Engine Control Lever

- 1) THROTTLE
- 2) Trigger for reverse
- 3) TO/GA pushbutton
- 4) AT DISC pushbutton

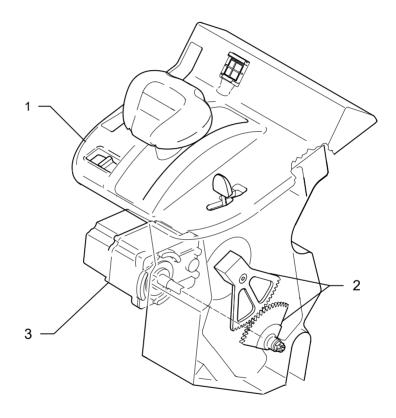
Page 7.6.10

Autothrottle Assembly

See Figure 7.6.4.

The THROTTLE can be commanded by the autothrottle system through a mechanical transmission (gears) between the THROTTLE and the autothottle servomotor which is fully integrated to the pedestal console.

The autothrottle function actuates the THROTTLE by a mechanical assembly (gears) permitting to link the Garmin servomotor.


When the Autothrottle function is activated, the THROTTLE movements are defined by the Autothrottle servomotor.

The autothrottle controls are integrated within the AFCS control unit located above the MFD.

Figure 7.6.4 - Autothrottle Assembly

- 1) Pedestal console
- 2) Gears
- 3) Servomotor

Engine Monitoring

Engine indicating consists of:

- engine torque expressed in percent (%), TRQ
- gas generator rotation speed expressed in percent (%), NG
- inter turbine temperature expressed in °C, ITT
- propeller speed in RPM, PROP RPM
- oil pressure expressed in psi, OIL PSI
- oil temperature expressed in °C, OIL °C

All these indications are merged in the Single Engine Indicator – refer to <u>Paragraph Single Engine Indicator</u>.

The monitoring is also ensured by CAS messages – refer to <u>Paragraph CAS</u> <u>Messages</u>.

Refer to the Garmin Pilot's Guide for further details.

Single Engine Indicator

See Figure 7.6.5, Figure 7.6.6 and Figure 7.6.7.

The single engine indicator simplifies the monitoring of engine parameters:

- TRQ, NG and ITT gauges are merged into one display window,
- PROP RPM is always displayed with a digital indicator,
- TRQ, NG and ITT indications have a dedicated tab.

At all times, only one indication has priority and is primarily displayed with an analog gauge and associated digital information. The two other indications that do not have priority are displayed only in the form of a digital information.

For each displayed parameter, the lower boundary of the yellow arc corresponds to the maximum continuous limit, and the red line corresponds to the absolute limit.

There is only one arc displayed at a time with either TRQ, NG or ITT. At all times the digital value of TRQ, NG and ITT are displayed.

Indication priority depends on engine condition (i.e. engine OFF, engine starting, engine running, engine shutdown or dry motoring) and parameter level (i.e. normal, amber or red):

- When the engine is OFF, during engine start and engine shutdown, the primarily displayed indication is ITT,

PIM TBM 960 - Edition 0 Rev. 04 Page 7.6.13

- When the engine is running, the primarily displayed indication is TRQ. NG and ITT indications take priority only if either parameter enters an amber or red operating range,
- When the pilot manually performs a dry motoring, the primarily displayed indication is NG.

Figure 7.6.5 - Priority Indication = TRQ

Figure 7.6.6 - Priority Indication = NG

Page 7.6.14

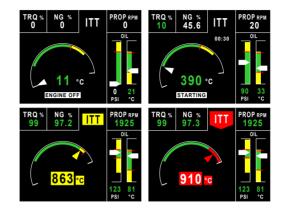


Figure 7.6.7 - Priority Indication = ITT

CAS Messages

C4342800AAAEMA18200

CAS message	Description
NG	 NG > 104.3%, or NG > 104% for more than 20 seconds.
	During engine start: - ITT > 1,000 °C, or - ITT > 900 °C for more than 5 seconds, or - ITT > 850 °C for more than 20 seconds. When engine is running: - ITT > 900 °C, or - ITT > 850 °C for more than 20 seconds.

Continue ►

PIM TBM 960 - Edition 0 Rev. 04

Table 7.6.1	- Engine	Monitoring	CAS	Messages

CAS message	Description
	During engine start:
	>> postMod: MOD70-0753-00C
	- ITT \ge 850 °C for less than 20 seconds, or
	>> All
	 ITT > 900 °C for less than 5 seconds. When engine is running: ITT > 850 °C for less than 20 seconds.
PROP	 PROP RPM ≥ 2,100 RPM, or PROP RPM > 2,030 RPM for more than 20 seconds.
OIL PRESS	 For overpressure: OIL PSI > 175 psi, or OIL PSI > 135 psi for more than 20 seconds. For low pressure: OIL PSI < 40 psi, or OIL PSI < 60 psi for more than 20 seconds, or OIL PSI < 100 psi for more than 20 seconds when NG > 72%.

Continue ►

CAS message	Description
	For overpressure: - OIL PSI > 135 psi for less than 20 seconds. For low pressure, when engine is running: - OIL PSI < 60 psi for less than 20 seconds, or
	>> preMod: MOD70-0753-00C
	 OIL PSI < 100 psi for more than 5 seconds when NG > 72%.
	>> All
	>> postMod: MOD70-0753-00C
	 OIL PSI < 100 psi for less than 20 seconds when NG > 72%, or OIL PSI < 100 psi when NG ≤ 72%.
	>> All
OIL TEMP	For overtemperature: - OIL °C > 110 °C, or - OIL °C > 104 °C for more than 10 minutes. For low temperature: - OIL °C < -40 °C.
	For overtemperature: - OIL °C > 104 °C for less than 10 minutes.
	>> preMod: MOD70-0753-00C
OIL TEMP	For low temperature, when engine is running: - OIL °C < 15 °C when NG > 72%.
	>> All
	>> postMod: MOD70-0753-00C
	For low temperature: - OIL °C < 15 °C.
	>> All

Continue ►

CAS message	Description
EXCEEDANCE	Displayed on ground when engine is off if avionics has recorded: - exceedance of at least one engine parameter, - airspeed exceedance (> V _{MO}). Inform maintenance department before further flight.

Engine Lubrication

Engine oil is in a tank incorporated into the powerplant. It ensures lubrication and engine cooling. A cooler located on the left side in the engine compartment maintains oil temperature within the limits. Oil flow into the cooler is metered by a thermostatic valve. Engine oil also supplies the PCU and the engine torquemeter.

A chip detection system enables the monitoring of the engine oil system. The system includes one chip detector installed on the propeller reduction gearbox and a second chip detector installed on the engine accessory gearbox. In case of chip detection, **CHIP** is displayed in the CAS window.

Lubrication system content, cooler included, is 12.7 quarts (12 liters). A graduated dipstick allows checking oil quantity in the system. A visual oil sight glass, located on the left side of the engine, allows a rapid checking of the oil level.

- NOTE -

For checking and oil filling-up, refer to Paragraph Engine Oil in Subsection 8.7.

Engine Operations

See Figure 7.6.8.

FADEC Power-up

During initialization, the FADEC performs built-in tests:

- to confirm the functioning of each channel's computing hardware, safety-related features, and key interfaces,
- to identity any fault.

PIM TBM 960 - Edition 0 Rev. 04

During this time, the FADEC briefly activates the output effectors on both channels. As a result it is normal for the pilot and the avionics to observe the effect of the activated output effectors (e.g spurious messages, etc.).

Ignition Function

The ignition system consists of an ignition unit that supplies, from 28 V source, high voltage current necessary to two spark igniter plugs.

The IGNITION pushbutton, located on the ENGINE/FUEL panel of the upper panel, enables the pilot to select between AUTO or ON positions:

- In the AUTO position, the FADEC controls the ignition system:
 - . during engine start,
 - . under certain conditions, to avoid engine flameout.
- In the ON position, the pilot commands continuous ignition.

<u>IGNITION</u> is displayed in the CAS window as long as the spark igniter plugs are supplied.

The table hereafter gives the status light colors corresponding to the state of the system.

System state	Status light
AUTO position	0
ON position	0

Starter Function

The FADEC provides the electrical power system with orders required to activate and deactivate the starter.

The STARTER switch, located on the ENGINE/FUEL panel of the upper panel, enables the pilot to send orders to the FADEC to initiate or abort the start sequence.

The STARTER switch is a mono-stable switch normally in the OFF position.

Before initiating the start sequence, the pilot must set the ENGINE MODE guarded switch to RUN.

Setting the STARTER switch to ON initiates the starting procedure which is automatically managed by the FADEC.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.6.19

STARTER is displayed in the CAS window as long as the starter generator is operating.

During start sequence, the starter operation is automatically limited by the FADEC.

- WARNING

Engine starting must be performed by qualified personnel and following procedures and parameters described in section 4 Normal Procedures.

Aborted Start

The pilot has the capability to interrupt the engine start sequence anytime by setting the STARTER switch to ABORT.

The pilot can also interrupt the engine start sequence by setting the ENGINE MODE switch to OFF. In this case, the automatic dry motoring is not performed and the pilot must perform a manual dry motoring before the next engine start – refer to Paragraph Dry Motoring.

The FADEC has also the capability to interrupt the engine start sequence if:

- light-up is not detected within 13 seconds after fuel is injected into the combustion chamber, or
- Ng does not increase after light-up, or
- ITT exceeds 945 °C.

ABORTING START is displayed in the CAS window during engine shutdown.

- CAUTION

The FADEC automatic start sequence aborting function is only available on ground.

Dry Motoring

The dry motoring procedure is used:

- to remove internally trapped fuel after an aborted start or a wet motoring,
- to cool the engine after shutdown in high OAT, or
- if there is evidence of smoke from the engine exhausts.

- WARNING

During automatic dry motoring run, the propeller continues turning. Remain clear of propeller area.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.6.20

The FADEC automatically commands a dry motoring for 30 seconds before complete engine shutdown when:

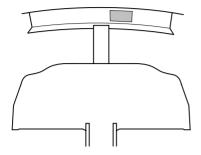
- the FADEC has automatically aborted the engine start sequence, or
- the pilot has set the STARTER switch to ABORT during engine start.

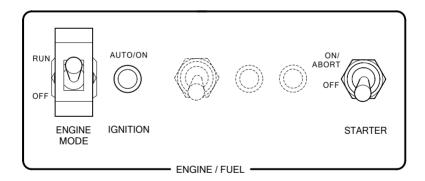
– **NOTE** –

The pilot can stop this automatic dry motoring by setting the ENGINE MODE switch to OFF. In this case, the pilot must perform a manual dry motoring before the next engine start.

During engine shutdown in high OAT, the FADEC may also command a dry motoring for 15 seconds before complete engine shutdown. The pilot is not able to interrupt this automatic dry motoring sequence.

The pilot can manually perform a dry motoring. The pilot activates the engine crank mode in the dedicated GTC sub-menu ("MFD Home," "Aircraft Systems," "Engine Crank") when the ENGINE MODE switch is set to OFF. Then, the pilot manually operates the starter by setting and maintaining the STARTER switch to ON during all the motoring duration – refer to limitations in <u>Subsection 2.4. Starter</u> <u>Operation Limits</u>.


For further details about activation of the Engine Crank mode in GTC, refer to the Garmin Pilot's Guide.


STARTER is displayed in the CAS window as long as the starter generator is operating.

Section 7 Description

Figure 7.6.8 - Engine Control Panel

C4243001AABAMA8000

PIM TBM 960 - Edition 0 Rev. 04 Page 7.6.22

Engine Air Inlet

The engine air inlet is located at the front lower section of engine cowling. The air inlet port is protected against icing by a hot air flow provided by the engine. Air is driven throughout a duct in the engine casing before entering the engine through a protective screen. An inertial separator system inside the air duct protects the engine from ingesting dense particles (water, ice, fine gravels, sand).

The inertial separator consists of two movable vanes. During normal operation, air is conducted directly towards the engine air intake. To separate particles suspended in the air, vanes are positioned to force the engine induction air to execute a sharp turn: under the effect of centrifugal force, denser particles separate from the air and are discharged overboard through two apertures located under engine cowling.

Operation of the inertial separator vanes is electrically controlled by the INERT SEP switch located on the DE-ICE SYSTEM panel. When the INERT SEP switch is set to ON, an electric actuator activates the vanes; **INERT SEP ON** is displayed in the CAS window when the vanes have reached their maximum deflection, and remains displayed as long as the switch remains in the ON position. Full deflection takes about 40 seconds. If the vanes do not reach the full deflection 50 seconds after activation or are not retracted 50 seconds after deactivation, **INERT SEP FAIL** is displayed in the CAS window.

The inertial separator is automatically activated when the Ice Detection System is in the AUTO mode and an ice signal is sent by the ice detector. It can be manually activated at any moment by pressing the INERT SEP switch. Deactivation is possible at any moment except if the DE ICE SYSTEM mode switch is set to AUTO and ice is detected by the ice detector. Description of the Ice Detection System is presented in Paragraph Ice Detection System in Subsection 7.14.

The table hereafter gives the CAS messages and the status light colors corresponding to the state of the system.

System state	Status light	CAS
OFF	OFF	
ON (AUTO mode)	ON	INERT SEP ON
ON (MAN mode)	ON	INERT SEP ON

Continue ► Page 7.6.23

PIM TBM 960 - Edition 0 Rev. 04

► Continuing

System state	Status light	CAS
FAIL		INERT SEP FAIL

Exhaust System

The exhaust gases are evacuated through exhaust stubs located on the sides of engine cowlings.

Engine Accessories

Fuel Control Unit (FCU)

The FCU is an electro-hydro-mechanical device (servo-valves) that modulates the fuel flow sent to the engine combustion chamber within the entire operational envelope of the engine.

The FCU contains:

- An engine fuel filter paired with a differential pressure sensor that triggers
 FUEL CLOGGING or FUEL CLOGGING, and
- A fuel temperature sensor mounted at the output of the filter.

The FCU is mounted on the accessory gearbox, rearwards of the engine.

Fuel High Pressure Pump (HP)

The fuel HP pump is part of the FCU. The FCU pumping stages are directly driven off an integrated driveshaft which interfaces with the accessory gearbox.

Fuel provided by the engine driven main pump (mechanical) enters the FCU through the low pressure pump (regent wheel), then flows into the engine mounted fuel heater prior returning to the FCU HP pump (gear pump) through the engine fuel filter.

In case of contamination of the engine fuel filter, a bypass valve allows fuel to go directly from the FCU to the downstream fuel nozzles.

Oil Pump

The oil pump is a self-controlled gear pump located at the bottom of the oil casing.

Permanent Magnet Alternator and Ng Determination

The Permanent Magnet Alternator is a dual-wound three-phase unit installed on the FCU, driven by the gas generator spool.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.6.24

It provides electrical power to the FADEC when the engine is running.

The Permanent Magnet Alternator frequency is sensed by the FADEC and used to derive the gas generator speed (Ng).

Torque Pressure Sensor

The torque pressure sensor sends oil pressure information to the FADEC which uses it to calculate the torque applied to the propeller.

The torque pressure sensor is mounted on the reduction gearbox.

Propeller Operations

The airplane is equipped with a composite five-bladed, constant-speed and full-feathering propeller.

Propeller Control Unit (PCU)

The PCU is an electro-hydro-mechanical device (servo-valves) that modulates the propeller blade angle within the entire operational envelope of the engine.

To control the propeller blade angle, the PCU uses high pressure engine oil. Oil pressure delivered by the PCU drives blades toward low pitch (including reverse range) while counterweights drives blades toward high pitch (feather).

The PCU is mounted on the reduction gearbox, forward of the engine.

In flight, the PCU modulates the propeller blade angle in order to govern propeller at nominal speed.

On ground, or during descent, when engine power is not sufficient to govern at nominal speed, the propeller blade angle will be a resultant from the THROTTLE position.

Np/Beta Sensors

Two Np/beta sensors (variable reluctance magnetic sensors) are used to measure timing between the teeth of the beta ring which is located at the rear of the propeller with longitudinal and oblique protuberances.

The FADEC uses this data to determine the propeller pitch angle and the propeller speed (Np).

Np value (PROP RPM) can be monitored by the pilot on the single engine indicator – refer to Paragraph Engine Monitoring.

The Np/beta sensors are symmetrically mounted at the lower part of the reduction gear box, forward of the engine.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.6.25

Reverse Operation

Propeller reverse pitch enables reduced landing roll.

Reverse is selected via the THROTTLE – refer to <u>Paragraph Engine Control</u> Lever.

The PCU modulates the propeller blade angle depending on the THROTTLE position.

In reverse operation, the FADEC limits engine power and propeller speed at 1,900 RPM.

Feathering

Depending on the conditions, the FADEC commands propeller feathering via the PCU and/or via an independent electrical solenoid.

During engine start, the propeller is feathered until sufficient engine oil pressure is available to pressurize the PCU.

Pilot Feather Request

The pilot can manually request a propeller feathering via the GND FEATHER guarded switch, located on the upper part of the pedestal console.

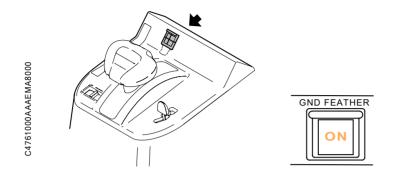
Before setting the GND FEATHER guarded switch to ON, the pilot must ensure that all the following conditions are met:

- Airplane is on ground (for at least 5 seconds),
- Engine is running,
- The THROTTLE is in the IDLE position (for at least 5 seconds).

In this case, the PCU commands propeller feathering through the servo valve (i.e. the independent electrical solenoid is not activated).

– CAUTION —

When the propeller is feathered and the THROTTLE is forced out of the IDLE position, the propeller will no longer be feathered.


— NOTE —

When the propeller is feathered after a pilot request, the autothrottle servomotor is clutched to prevent the THROTTLE from moving easily out of the IDLE position.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.6.26

Figure 7.6.9 - GND FEATHER Switch

CAS messages are displayed to monitor feathering:

CAS messages	Description
FEATHER MISMATCH	Indicates that the propeller is not feathered after a pilot feather request through the GND FEATHER guarded switch.
	>> postMod: MOD70-0753-00C
FEATHER SECURED	Indicates that the AT servomotor is clutched to secure the THROTTLE in the IDLE position after a pilot feather request through the GND FEATHER guarded switch. >> All

Engine Shutdown

- On ground, when an engine shutdown is commanded, as soon as gas generator speed drops below a given threshold, propeller feathering is commanded through both the PCU servo valve and the solenoid.

When the propeller and gas generator speeds drop below a given threshold, the solenoid is no longer electrically powered to preserve battery.

- In flight, after an engine flameout or if engine shutdown is commanded, as soon as gas generator speed drops below a given threshold, the PCU

PIM TBM 960 - Edition 0 Rev. 04 Page 7.6.27

commands propeller feathering. A few seconds later, the solenoid is also activated.

The PCU and the solenoid remain electrically powered and command propeller feathering until air start is performed.

Activation of FADEC Protections

- Minimum blade angle protection: if dedicated sensors indicate that the THROTTLE is in forward position and propeller blade angle goes below the minimum threshold, the solenoid commands propeller feathering to avoid uncommanded propeller reverse in flight.
- Overspeed protection: if propeller speed goes above the maximum threshold, the solenoid commands propeller feathering.

7.7 - Use of Autothrottle

General

The Autothrottle (AT) function is fully integrated with the Automatic Flight Control System (AFCS) and is associated with the Single Engine Indicator (SEI). AT automatically actuates the THROTTLE to control engine power within operational limits, in order to reach and maintain the manually selected airspeed (MAN mode) or programmed flight phase schedule (FMS mode).

For more information on AT modes and cockpit controls, refer to the Garmin Pilot's Guide, Autothrottle section.

For more information on the SEI, refer to <u>Paragraph Engine Monitoring in</u> <u>Subsection 7.6.</u> and to the Garmin Pilot's Guide, Engine Indication System (EIS) section.

AT Engine and Airspeed Protections

The AT function includes engine and airspeed protections to enhance flight safety. AT engine and airspeed protections automatically activate if necessary, both when the AT is engaged and when the AT is disengaged.

AT engine and airspeed protections are automatically inhibited below 400 ft AGL.

The default setting for the AT engine and airspeed protections is ON at avionics power up. The ESP system and the AT engine protection system must remain ON for all normal operations. If necessary, for a specific training maneuver or maintenance check, these systems can be temporarily turned off with the Stability & Protection button in the avionics setting of the GTC menu. The **ESP OFF** advisory CAS message indicates that the AT engine protection system and the ESP system protections are OFF. Following completion of the training maneuver or maintenance check turn ESP on.

AT Engine Protections

AT engine protections automatically reduce engine power, to ensure that ITT never remains above 840 $^\circ\text{C}$ in flight.

NOTE

When the AT is engaged in a mode that sets and maintains 100% TRQ (e.g. **TO**, **CLIMB** or any other mode that requires 100% TRQ to reach and maintain a specific airspeed or flight schedule), TRQ may temporarily exceed 100%. It is normal for the autothrottle system to take a few seconds to fully correct a torque exceedance. This may occur in acceleration phases or during extention or retraction of the inertial separator. The engine will only require inspection/maintenance if 118% torque is exceeded, or if 103% torque is exceeded for more than 20 seconds. In this case, **EXCEEDANCE** will be displayed after engine shutdown.

AT Airspeed Protections

AT airspeed protections are complementary to ESP, and operate as follows:

- AT automatically increases engine power to prevent any airplane underspeed condition.
- AT automatically reduces engine power to prevent any airplane overspeed condition.

- NOTE -

Airspeed thresholds taken into account by AT airspeed protections depend on the current flap setting and landing gear position.

For more information on AT protections, refer to the Garmin Pilot's Guide, Autothrottle and Electronic Stability & Protection (ESP) sections.

AT Engagement and Disengagement

AT Engagement

To engage AT, press the AT button on the AFCS control unit. AT status, and associated AT mode become active. If the AT is not engaged, AT may automatically engage if an engine or airspeed protection is triggered. **PROT** AT mode temporarily appears, until the condition for engine or airspeed protection is cleared.

AT Standard Disengagement

To disconnect AT in a standard manner, apply any of the following:

- Press the AT button on the AFCS control unit
- Press the AT DISC pushbutton on the THROTTLE

PIM TBM 960 - Edition 0 Rev. 03 Page 7.7.2

Press the AP/TRIM DISC pushbutton on the control yoke (AP/FD will also be disengaged)

At AT standard disengagement, an **AT** annunciation flashes during approximately 5 seconds and the *"Autothrottle"* voice alert is generated.

AT Non-Standard Disengagement

The following will cause non-standard AT disengagement:

- Manually forcing on the THROTTLE until the AT control servo is overridden
- AP SERVOS breaker is pulled or tripped
- FD captures the GS/GP in FMS mode

In the case of AT non-standard disengagement, the **AT** annunciation flashes and the *"Autothrottle"* voice alert is generated, until AT disengagement is acknowledged (i.e. until either the AT DISC pushbutton of the THROTTLE or the AP/TRIM DISC pushbutton of the control yoke is pressed).

Engine Start or Engine Air Start

- NOTE -

Autothrottle engine protection system is disabled during engine start. The FADEC provides protection against ITT exceedances during ground start only – refer to <u>Paragraph Full Authority Digital Engine Control (FADEC) in</u> <u>Subsection 7.6.</u>.

For additional information on SEI display during engine start, refer to <u>Paragraph</u> <u>Engine Monitoring in Subsection 7.6.</u> and to the Garmin Pilot's Guide, Engine Indication System (EIS) section.

Taxi

Do not engage AT for taxi – refer to <u>Paragraph Autothrottle (AT) Limits in</u> <u>Subsection 2.6.</u>.

Takeoff

AT can be engaged for takeoff, as follows:

When the airplane is lined up on the runway, press the AT button to arm AT (**TO** AT mode is displayed). Then, manually set takeoff torque to more than around 75%, until AT takes control over the THROTTLE. **TO** AT mode and **AT** status both become active.

TO AT mode sets and maintains maximum TRQ available.

PIM TBM 960 - Edition 0 Rev. 03 Page 7.7.3

NOTE

AT engine and airspeed protections are inhibited below 400 ft AGL.

NOTE -

With AT engaged during takeoff or go-around, the THROTTLE position must be guarded by keeping the pilot's hand on the THROTTLE.

Climb

Above 1,000 ft AGL:

For climb with the AT engaged, it is recommended to use the **FLC** FD vertical mode.

When **FLC** is active, AT engagement activates the **CLIMB** AT mode that sets and maintains engine power in accordance with the climb performance tables – refer to <u>Subsection 5.8. Engine Operation</u>.

Then, the target airspeed is tracked via FD pitch orders. In MAN mode, the target airspeed is the manually selected airspeed. In FMS mode, the target airspeed is retrieved from the FMS climb schedule.

Torque Target Display

In MAN or FMS mode, the Maximum Climb Torque index is displayed on the torque gauge. Its value corresponds to the Maximum Climb power – refer to <u>Subsection 5.8. Engine Operation</u>.

Figure 7.7.1 - Maximum Climb Torque Index

C4342800AAAFMA18000

Cruise

NOTE -

During the acceleration between the climb and the cruise airspeed, the AT may increase engine power, slightly before engine aerodynamic cooling becomes fully effective. As a result, the NG and/or ITT parameters may temporarily enter the cautionary range of the SEI and trigger the AT and/or the FADEC engine protection (engine power reduction associated with NG amber parameter and **ENG PROT ACTIVE** CAS message, and/or with **ITT HI** CAS message). This may occur until cruise airspeed is stabilized.

Cruise in MAN Mode

In MAN mode, AT engagement activates the **SPD XXXXX** AT mode that controls engine power within operational limits to reach and maintain the selected airspeed.

NOTE -

If the selected airspeed cannot be reached (e.g. selected airspeed is too high with respect to maximum permitted engine power, or engine performance is affected when inertial separator is ON, etc.), the AT maintains the maximum permitted engine power and the resulting airspeed may remain below the selected airspeed. This is to remain within the normal engine operating range.

Cruise in FMS Mode

In FMS mode, the selectable cruise schedules are Recommended Cruise (**RCR**), Maximum Cruise (**MXCR**), Long Range Cruise (**LRCR**). In either mode, AT controls engine power within operational limits, in order to reach and maintain the selected cruise schedule.

In FMS speed mode, the AT takes speed constraints of the flight plan into account. If the active leg of the flight plan has a speed constraint, the speed constraint is displayed above the airspeed indicator and the AT mode switches to **SPD XXXXX**.

NOTE

If the inertial separator deploys, the **MXCR** schedule is automatically selected. As a result, the FADEC changes engine ratings to the MXCR TRQ tables with INERT SEP ON. At the same time, the maximum available TRQ is reduced (the size of the green arc on the SEI reduces). **RCR** and **LRCR** schedules are no longer selectable.

If the AT was active with a speed target requiring TRQ below the maximum available TRQ, the AT will try to maintain the speed at the selected target and then may move the THROTTLE forward.

Torque Target Display

In MAN or FMS mode, the optimum torque index is displayed on the torque gauge. Its display depends on the selected cruise schedule, refer to the Garmin Pilot's Guide, Vertical Navigation section.

If Maximum Cruise schedule is selected, a white "I" is displayed, which corresponds to the Maximum Cruise power – refer to <u>Subsection 5.8. Engine</u> <u>Operation</u>.

If Recommended Cruise schedule is selected, a green "I" is displayed, which corresponds to the Recommended Cruise power – refer to <u>Subsection 5.8. Engine</u> <u>Operation</u>.

If Long Range Cruise schedule is selected, a white "T" is displayed, which corresponds to the Long Range Cruise power – refer to <u>Subsection 5.8. Engine</u> <u>Operation</u>.

Figure 7.7.2 - Maximum Cruise Torque Index

C4342800AAAFMA18100

PIM TBM 960 - Edition 0 Rev. 03 Page 7.7.6

Figure 7.7.3 - Recommended Cruise Torque Index

Figure 7.7.4 - Long Range Cruise Torque Index

C4342800AAAFMA18200

Examples

Example, with no speed constraints:

- FL 280, Selected Cruise Schedule: Maximum Cruise. No Speed Constraint.
 - . AT mode: MXCR
 - . Managed AT TRQ = 98%
 - IAS \simeq 210 kt (maximum airspeed corresponding to torque value)

Examples, with speed constraints:

- Altitude 5,000 ft, Selected Cruise Schedule: Long Range Cruise. Speed Constraint = 250 kt.
 - . Displayed AT mode: SPD 250kt
 - . Managed AT TRQ = 41%
 - IAS \simeq 180 kt (maximum airspeed corresponding to torque value)
- Altitude 3,000 ft, Selected Cruise Schedule: Maximum Cruise. Speed Constraint = 120 kt.
 - . Displayed AT mode: SPD 120kt
 - . Managed AT TRQ $\simeq 28\%$

PIM TBM 960 - Edition 0 Rev. 03 Page 7.7.7

IAS = 120 kt

Descent

For descent with the AT engaged, it is recommended to use the **FLC** or **VS** FD vertical mode.

When **FLC** is active, AT engagement activates the **DESC** AT mode that sets engine power from around 18% TRQ at high altitude to 0% at the end of the descent. Then, the target airspeed is tracked via FD pitch orders. In MAN mode, the target airspeed is the manually selected airspeed. In FMS mode, the target airspeed is retrieved from the FMS descent schedule.

When **VS** is active, AT engagement activates the **SPD XXXK** AT mode that controls engine power within operational limits to reach and maintain the target airspeed. In MAN mode, the target airspeed is the manually selected airspeed. In FMS mode, the target airspeed is retrieved from the FMS descent schedule. Then, the target vertical speed is tracked via FD pitch orders.

NOTE -

If the inertial separator deploys, the FADEC changes engine ratings and reduces power. At the same time, the maximum available TRQ is reduced (the size of the green arc on the SEI reduces).

If the AT was active with a speed target requiring TRQ below the maximum available TRQ, the AT will try to maintain the speed at the selected target and then may move the THROTTLE forward.

Approach

For approaches (i.e. from the Initial Approach Fix), the SPD source switch must be in MAN mode or the autothrottle must be disengaged – refer to <u>Paragraph</u> <u>Autothrottle (AT) Limits in Subsection 2.6.</u>

This is because use of AT in FMS mode until final approach may result in an unstabilized approach, because the predefined FMS descent schedule is not appropriate for approach. A go-around maneuver may be necessary, due to all of the following:

- Airspeed may be too high at GS/GP capture,
- Airspeed may be too high to timely configure the airplane before landing,
- AT automatically disengages at GS/GP capture and cannot be re-engaged, if in FMS mode.

As a result, only MAN mode is permitted for approach, to ensure an appropriate airspeed management until touchdown.

PIM TBM 960 - Edition 0 Rev. 03 Page 7.7.8

AT must be disengaged before 200 ft AGL. Then, engine torque must be manually adjusted to manage airspeed until touchdown.

Go-Around

With the AT engaged, if the TO/GA pushbutton is pressed, both of the following simultaneously occur:

- The **TO** AT mode becomes active. **TO** AT mode sets and maintains maximum TRQ available.
- The **GA** FD lateral and vertical modes become active.

With the AT disengaged, if the TO/GA pushbutton is pressed, only the **GA** FD lateral and vertical modes become active. The AT remains disengaged.

- NOTE -

With AT engaged during takeoff or go-around, the THROTTLE position must be guarded by keeping the pilot's hand on the THROTTLE.

Landing

- WARNING

If AT is still engaged during the flare, the airplane will fly at the selected approach airspeed, a few feet above the runway, not allowing a correct and safe landing. In that case, perform a go-around.

AT must be disengaged before 200 ft AGL. Then, engine torque must be manually adjusted to manage airspeed until touchdown.

FD Vertical Modes and Corresponding AT Modes Summary

The following table provides the correspondence between FD vertical modes and AT modes, depending on the MAN/FMS mode.

PIM TBM 960 - Edition 0 Rev. 03

Active FD Vertical Mode	Corresponding AT Mode (MAN)	Corresponding AT Mode (FMS)
PIT	SPD XXXkt	SPD XXXkt
ALT, ALTS, ALTV, LVL	SPD XXXkt	RCR or MXCR or LRCR
VS	SPD XXXkt	SPD XXXkt
FLC (climb)	CLIMB	CLIMB
FLC (descent)	DESC	DESC
GS, GP, PATH	SPD XXXkt	SPD XXXkt
ТО	ТО	ТО
GA	ТО	ТО
None (FD disengaged)	SPD XXXkt	SPD XXXkt

7.8 - Fuel System

See Figure 7.8.1.

The fuel system is comprised of fuel tanks, a fuel unit, manual and automatic selectors, electric and mechanical boost pumps, an engine fuel system, a gauging installation, a monitoring installation and drains.

Key to Figure 7.8.1

- 1) Flow divider
- 2) Flowmeter
- 3) Collector tank
- 4) Fuel regulator
- 5) High pressure pump (HP)
- 6) Oil to fuel heater
- 7) Low pressure switch
- 8) Fuel jet
- 9) Main mechanical boost pump
- 10) Electric boost pump
- 11) Fuel filter
- 12) Filter clogging bypass valve
- 13) Filter clogging indicator
- 14) Fuel unit
- 15) Filter drain
- 16) Fuel return pipe
- 17) Filling port
- 18) Tank vent valve
- 19) NACA scoop
- 20) Fuel level gauges
- 21) Tank drain valve
- 22) Check-valve
- 23) Low level detector
- 24) Suction strainer
- 25) Fuel amplifier
- 26) Sequencer

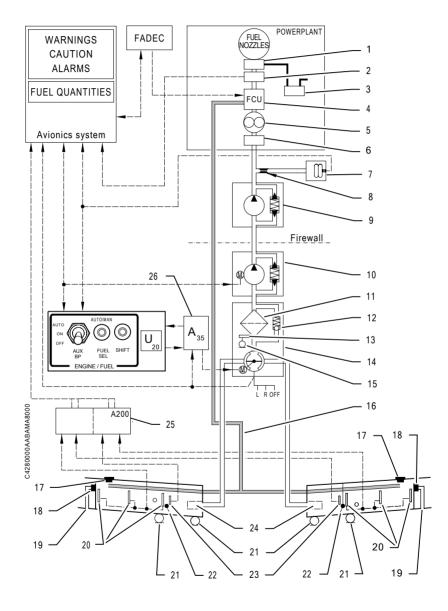
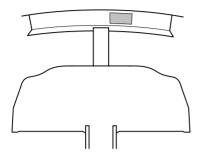
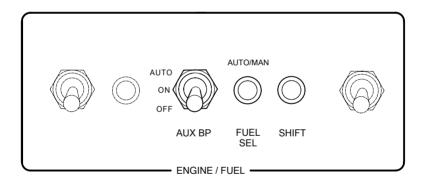


Figure 7.8.1 - Fuel System


Key to Figure 7.8.2


- 1) AUX BP switch
- 2) FUEL SEL pushbutton
- 3) SHIFT pushbutton

Section 7 Description

Figure 7.8.2 - Fuel Control Panel

C4243001AABAMA8300

PIM TBM 960 - Edition 0 Rev. 04 Page 7.8.5

Fuel Tanks

The fuel tanks are made with sealed casings located in each wing. Each fuel tank comprises a filling port located at the end of wing upper surface, two drain valves located at the lower surface (one is near the main landing gear on the trailing edge side, the other is near the wing root side at the leading edge), a vent valve located on the lower surface, a suction strainer and three level gauges.

Fuel Unit

The fuel unit combines the shut-off valve, tank selector and filter functions. It is connected to the manual selector through a mechanical control. The fuel filter is located in a bowl at the lower part of the unit. It is fitted with a bypass valve, a clogging indicator and a drain valve.

Tank Manual Selector

See Figure 7.8.3.

The FUEL TANK SELECTOR is located on the pedestal's rear face. It allows a manual selection of the tank to be used (R or L), and to place the selector in the OFF position. To change from the L position to the OFF position, turn the selector clockwise (L \rightarrow R \rightarrow OFF). Changing the selector from the R position to the OFF position requires a voluntary action from the pilot (pulling and turning). The requirement to pull and turn the selector to the OFF position prevents an involuntary positioning of the selector OFF.

When the unit is set to OFF, **FUEL OFF** is displayed in the CAS window.

Section 7 Description

C4282002AAACMA8000

PIM TBM 960 - Edition 0 Rev. 04 Page 7.8.7

Automatic Tank Selector

See Figure 7.8.2 and Figure 7.8.3.

Automatic tank selection enables the engine to be fed from one tank or the other in predetermined sequences without the pilot's intervention. These sequences depend on the airplane's configuration (on the ground, in-flight, and when CAS messages of a fuel low situation are displayed).

The automatic tank selection system comprises an electronic sequencer, an actuator attached on the fuel unit, the FUEL SEL pushbutton and the SHIFT pushbutton located on the ENGINE/FUEL panel.

The automatic selector is operated by pressing the FUEL SEL pushbutton to the AUTO position (status light in blue) and setting the manual selector to R or L.

The following table lists the status light's colors corresponding to the system state:

System state	Status light
AUTO position	0
MAN position	0

Selector Operation

When the system is operated, **AUTO SEL** disappears; the sequencer chooses a tank (R or L) and positions the FUEL TANK SELECTOR to the selected tank via the actuator. The sequencer controls the time during which the selected tank will operate.

This time varies, depending on the following conditions:

- When the airplane is on the ground: the tank is changed every 1 minute and 15 seconds.
- When the airplane is in flight: the tank is changed every five minutes, as long as **FUEL LOW L** or **FUEL LOW R** does not appear. When the first CAS message of a fuel low situation is displayed, the sequencer immediately selects the other tank. The selected tank will operate until the second CAS message of a fuel low situation is displayed. When **FUEL LOW L-R** is displayed, the sequencer changes tanks every 1 minute and 15 seconds.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.8.8

NOTE ·

The manual selector's positioning is driven by the fuel unit; it is positioned on the R or L mark corresponding to the tank selected by the sequencer. Therefore, the pilot is continuously aware of which tank is in operation.

Test for System Proper Operation

The SHIFT pushbutton enables the pilot to test the system's proper operation at any time.

When the system is operating, the fuel tank is changed when the SHIFT pushbutton is pressed once.

If the airplane is on ground or in flight, and CAS messages of a fuel low situation are not displayed, the newly-selected tank remains operating and a new sequence is initiated.

- NOTE -

This procedure enables the tank to be selected from which the pilot wants to take fuel, even when the automatic tank selector is in operation.

In all cases, proper automatic tank selector operation is indicated by the rotation of the manual selector each time the automatic selector switches tank or when pressing the SHIFT pushbutton.

Setting the FUEL SEL pushbutton to the MAN position (status light in green) or setting the FUEL TANK SELECTOR to OFF position results in system deactivation and the display of **AUTO SEL**. **AUTO SEL** is also displayed when order given by the sequencer has not been executed after 12 seconds.

Electric Boost Pump (AUX BP)

See Figure 7.8.2.

The electric boost pump is an auxiliary pump located between the fuel unit and the main mechanical boost pump. It is controlled through the AUX BP switch located on the ENGINE/FUEL panel. This switch allows the two pump operating modes to be stopped or selected:

- when set to ON, the electric boost pump operates permanently,
- when set to AUTO, the electric boost pump is automatically operated if there is a fuel pressure drop at the mechanical boost pump outlet.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.8.9

Main Mechanical Boost Pump

The mechanical boost pump is attached to the accessory gearbox and supplies fuel necessary for engine operation.

Engine Fuel System

The engine fuel system consists of a mechanical engine driven fuel HP pump, an oil to fuel heater, an engine fuel filter paired with a differential pressure sensor, a fuel temperature sensor, a FCU, a fuel divider and fuel nozzles.

Refer to Paragraph Engine Accessories in Subsection 7.6.

Fuel Gauging Installation

Fuel quantity is measured using capacitive-type sensors. Fuel quantity is displayed in US gallons.

Three fuel level gauges are installed in each tank. The fuel level gauge on the wing root side is equipped with a low level detector which leads to the display of CAS messages of a fuel low situation when usable fuel quantity remaining in the concerned fuel tank is under approximately 9 USG (34 liters).

Fuel System Monitoring

Fuel system monitoring is ensured by the following CAS messages:

CAS message	Description
FUEL OFF	FUEL TANK SELECTOR is set to OFF
FUEL PRESS	Fuel pressure at mechanical boost pump outlet is under 10 psi (± 2 psi)
FUEL CLOGGING	Engine fuel filter is clogged and fuel is no longer filtered
FUEL CLOGGING	Engine fuel filter clogging is imminent
AUX BP ON	Electric fuel boost pump is running (manual or automatic mode)

 Table 7.8.1 - Fuel System Monitoring CAS Messages

Continue ►

PIM TBM 960 - Edition 0 Rev. 04 Page 7.8.10

► Continuing

Table 7.8.1 - Fuel System Monitoring CAS Messages

CAS message	Description
FUEL LOW L-R *	Fuel quantity is less than, or equal to, 9 USG (34 liters) of usable fuel in the specified tank
LOW LVL FAIL L-R *	Fuel low level sensor has failed
AUTO SEL	Fuel sequencer is inactive or a fault has occurred
FUEL IMBALANCE	Fuel tanks are imbalanced by more than 15 USG (57 liters) for more than 30 seconds
* Only the affected fuel tank (L, R or L-R) is displayed on the CAS message	

Fuel System Draining and Clogging Indication

See Figure 7.8.4.

The fuel system comprises five drain points:

- a drain on the filter bowl,
- two drain valves on each tank, located on wing lower surface:
 - . one at the wing root, and
 - . one outboard of the landing gear well.

These drains allow a draining of water or sediments that are contained in the fuel.

Fuel tank drain valves are provided with a slot which enables them to be opened with a screwdriver.

- WARNING -

Fuel system draining shall be performed prior to the first flight of the day and after each tank refueling, using a sampler to draw fuel at the two drain valves of each tank and at the filter vent valve.

Filter clogging is indicated by a red filter bypass flag on the fuel unit that is externally visible when an inspection door located on the left side under the front baggage compartment is open. A pushbutton adjacent to the inspection door controls the illumination of a light that provides improved visibility of the clogging indicator. This indicator shall be visually checked during preflight inspection.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.8.11

NOTE -

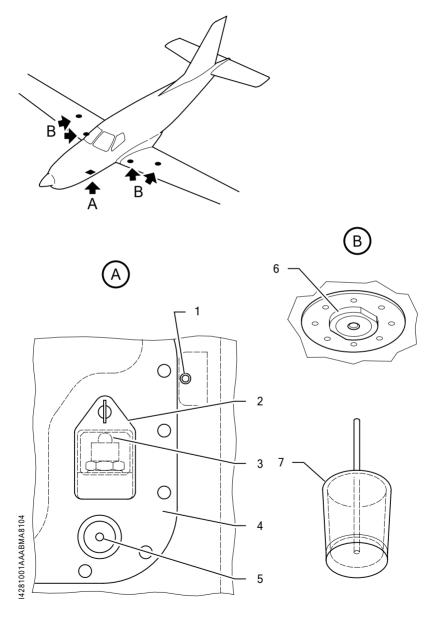
When the engine fuel filter gets clogged in flight, **FUEL CLOEGING** is diplayed, and the filter is bypassed in order not to interrupt fuel flow to the engine.

In this situation, the engine is supplied with non-filtered fuel. Maintenance action is required before further flight.

Section 7 Description

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04 Page 7.8.13


Key to Figure 7.8.4

- 1) Lighting pushbutton
- 2) Mirror door
- 3) Clogging indicator
- 4) Central access door
- 5) Filter drain
- 6) Tank drain
- 7) Drain bowl

Section 7 Description

PIM TBM 960 - Edition 0 Rev. 04 Page 7.8.15

Section 7 Description

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04 Page 7.8.16

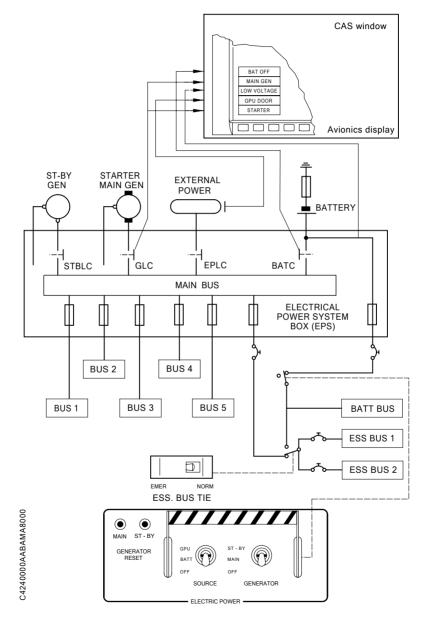
7.9 - Electrical System

See Figure 7.9.1, Table 7.9.1 and Figure 7.9.2.

The airplane is fitted with a 28-volt direct-current electrical system.

Electrical supply is obtained from various power supplies:

- a starter generator,
- a standby generator,
- a battery,
- a ground power unit, via a plug, located on left side.


Connection relays, main bus bar, generator regulation and protection systems and control logic systems are grouped in the electrical power system box located in the front baggage compartment upper section.

Electrical system indicating is displayed on the MFD and monitoring is ensured by CAS messages.

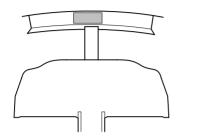
On ground, when the crash lever is positioned in the UP position (SOURCE selector in the OFF position), the battery supplies the electrical power system through the BATT BUS. A Power Up Built In Test (P-BIT) of the EPS internal functions is performed to verify the operating status. In case of failure detection, the "EPS – Service required" message appears in the message window of the GTC.

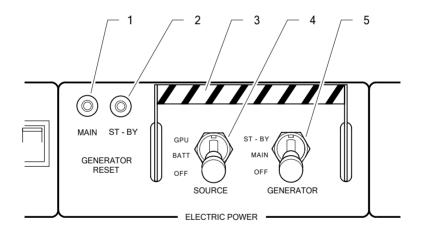
Figure 7.9.1 - Electrical Diagram

PIM TBM 960 - Edition 0 Rev. 04 Page 7.9.2

	Swit	ches		Buses are powered by				
Crash lever	SOUR CE	GENE RATO R	ESS BUS TIE	BATT BUS	ESS BUS 1	ESS BUS 2	BUS 1 TO 5	
UP	BATT	OFF	NORM	Battery	Battery	Battery	Battery	
UP	BATT	MAIN	NORM	Battery & MAIN	Battery & MAIN	Battery & MAIN	Battery & MAIN	(*)
UP	BATT	ST-BY	NORM	Battery & ST- BY	Battery & ST- BY	Battery & ST- BY	Battery & ST- BY	(*)
UP	OFF	MAIN	NORM	MAIN	MAIN	MAIN	MAIN	
UP	OFF	ST-BY	NORM	ST-BY	ST-BY	ST-BY	ST-BY	
UP	BATT	OFF	EMER	Battery	Battery	Battery	None	
(*) In that case, power is done by MAIN or ST-BY and battery is used as a floated battery.								

Table 7.9.1 - Bus Bars Supply Configurations




Key to Figure 7.9.2

- 1) MAIN GENERATOR RESET pushbutton
- 2) ST-BY GENERATOR RESET pushbutton
- 3) Crash lever
- 4) SOURCE selector
- 5) GENERATOR selector

Figure 7.9.2 - Electrical Control

14240000AAAUMA8300

PIM TBM 960 - Edition 0 Rev. 04 Page 7.9.5

Starter Generator

The starter generator is the main electrical power source. It only performs its generator function when starting sequence is completed.

Generator connection with main bus bar is controlled through the GENERATOR selector set to MAIN. It will be effective when connection conditions are met. Generator connection is indicated by **MAIN GEN** disappearance.

- **NOTE** -

Starter generator will not supply the airplane if the SOURCE selector is on GPU. On ground, generator load should be maintained below 200 A.

Standby Generator

The standby generator supplies a 28-volt standby direct current which may be used in case of main generator failure.

Generator connection with main bus bar is controlled through the GENERATOR selector set to ST-BY. It will be effective when connection conditions are met.

NOTE -

The standby generator will not supply the airplane if the SOURCE selector is on GPU.

In order to prevent possible errors during flight, access to ST-BY position requires a double action from the pilot (pull to unlock). On ground, avoid using the standby generator at full load.

Battery

The battery provides the power required for starting when no ground power unit is available and is a power supply source when engine driven generators are stopped.

The battery is always connected to the BATT BUS bar except when the crash lever is pulled down.

Battery connection to main bus bar is controlled through the SOURCE selector set to BATT.

BAT OFF is displayed in the CAS window when the battery is isolated from the main bus and when main bus is supplied through another source.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.9.6

Ground Power Receptacle

The ground power receptacle allows connection to a ground power unit.

Ground power receptacle connection with main bus bar is controlled through the SOURCE selector when set to GPU. It will be effective when connection conditions are met.

When the SOURCE selector is set to GPU, the battery and the ground power unit are connected simultaneously on main bus bar.

Ground power receptacle door opening is indicated by **GPU DOOR** displayed in the CAS window.

– NOTE –

Before connecting a GPU to the airplane, ensure that the voltage of the GPU is regulated between 27.5 volts and 28.5 volts.

The amperage output needs to be consistent with the airplane placard in front of the compartment door: GPU shall provide a current limiting function, and current limit shall be set per placard.

Do not use batteries pack as GPU sources.

CAUTION

Use of a ground power source with voltage in excess of 28.5 volts or current exceeding current limit indicated on placard may damage the airplane electrical system.

Distribution

Airplane electrical systems are connected to bus bars and protected by pull-off type breakers located on the right-side upholstery panel – see <u>Table 7.9.2</u> and <u>Figure 7.9.3</u>. In case of overload of a system, the breaker triggers and switches the system off.

CAUTION

If a breaker corresponding to a non-essential system trips, do not reset in flight.

If a breaker corresponding to an essential system trips:

- allow it to cool for about three minutes, then the breaker may be reengaged (pressed down)
- if the breaker trips again, do not reset.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.9.7

BUS 1, BUS 2, BUS 3 and BUS 4 bus bars are directly connected to main bus bar and protected by fuses located in the electrical power system.

The ESS BUS 1 and ESS BUS 2 essential bus bars are connected to main bus bar through the ESS BUS TIE switch set to NORM. The ESS BUS TIE switch is attached to the breaker panel; NORM position is protected and locked by a cover. Common power supply to both essential bus bars is protected by a fuse, located in the EPS box, and a breaker, located in the front cargo compartment on Frame C2 right side, each bar being individually protected by a breaker.

The BATT BUS bar is directly connected to the battery; it is protected by a fuse, located in the EPS box, and a breaker, located in the front cargo compartment on Frame C2 left side.

— NOTE —

The electrical distribution of bus bars is described in Figure 7.9.4, Figure 7.9.5 and Figure 7.9.6.

ESS BUS TIE	
BUS 1	
AP SERVOS	Autopilot servo protection
FLAPS	Flaps protection
AIL TRIM	Aileron trim protection
RUD TRIM	Pitch trim protection
BUS 2	
LDG GEAR	Landing gear general supply protection
ESS BUS 1	
ESS BUS 1	Essential bus 1 circuit protection
PFD 1	Primary Flight Display 1 protection
COM 1	VHF 1 protection
GPS/NAV 1	GPS NAV 1 protection
ADC 1	Air Data Computer 1 protection
ENGINE AIRFRAME 1	Powerplant cont. protec.: Oil temp. & pres., torque, propeller

 Table 7.9.2 - Breaker Panel (Typical arrangement)

Continue 🕨

PIM TBM 960 - Edition 0 Rev. 04 Page 7.9.8

► Continuing

Table 7.9.2 - Breaker Panel (Typical arrangement)

ENGINE AIRFRAME 2	Powerplant cont. protection: Ng, flowmeter & ITT
FUEL GAGE 1	Left-side fuel gauge protection
FUEL GAGE 2	Right-side fuel gauge protection
FADEC CH. A	FADEC channel A protection
ESS BUS 2	
ESS BUS 2	Essential bus 2 circuit protection
PASS MASKS	Passengers' oxygen masks protection
STBY INSTR	Standby Attitude Module (MD302) protection
AUDIO	Audio control panel protection
TOUCH CTRL 1	Touchscreen controller 1 protection
XPDR 1	Transponder 1 protection
AHRS 1	Attitude and Heading Reference System 1 protection
LDG SIG	Landing gear indicating system protection
CPCS PWR1	Cabin Pressurization Control System power supply 1 protection
CAB BLEED	Cabin bleed air system protection
IGNITION	Powerplant ignition protection
BUS 1	
AP CTRL	Flight controller protection
PFD 2	Primary Flight Display 2 protection
COM 2	VHF 2 & radio protection
GPS/NAV 2	GPS NAV 2 protection
ADC 2	Air Data Computer 2 protection
XPDR 2	Transponder 2, if installed protection
VDL	Controller-Pilot Data Link Communications system, if installed protection
AIRFRAME DE ICE	Empennage and wing leading edges deicing
INERT DE ICE	Inertial separator protection

Continue 🕨

► Continuing

Table 7.9.2 - Breaker Panel (Typical arrangement)

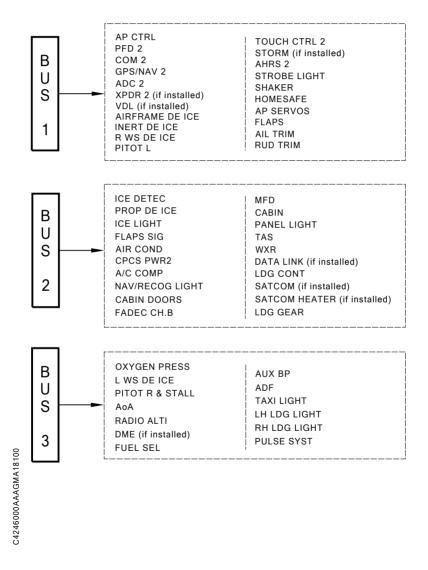
R WS DE ICE	Right-side windshield deicing protection
PITOT L	Pitot L heating protection
TOUCH CTRL 2	Touchscreen controller 2 protection
STORM	Stormscope protection, if installed
AHRS 2	Attitude and Heading Reference System 2 protection
STROBE LIGHT	Strobe lights protection
SHAKER	Stick shaker protection
HOME SAFE	HomeSafe emergency function protection
BUS 2	
ICE DETEC	Ice detection system protection
PROP DE ICE	Propeller deicing protection
ICE LIGHT	Left wing leading edge lighting and lighting test protection
FLAPS SIG	Trim and flaps regulator protection
AIR COND	Cabin ventilation and vapor cycle system protection
CPCS PWR2	Cabin Pressurization Control System power supply 2 protection
A/C COMP	Air conditioning compressor clutch protection
NAV/RECOG LIGHT	Navigation and recognition lights protection
CABIN DOORS	Cabin doors opening protection
FADEC CH. B	FADEC channel B protection
MFD	Multifunction display protection
CABIN	Passengers' reading lamps protection
PANEL LIGHT	Instruments lighting protection
TAS	TAS, if installed protection
WXR	Weather radar protection
DATA LINK	Data Link, if installed protection
LDG CONT	Landing gear control protection

Continue 🕨

► Continuing

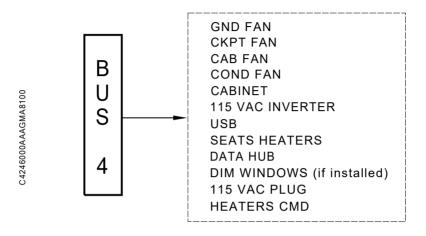
Table 7.9.2 - Breaker Panel (Typical arrangement)

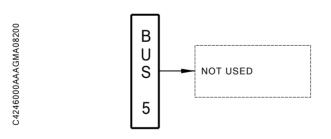
SATCOM protection, if installed
SATCOM heater protection, if installed
Oxygen/Pressure indication protection
Left-side windshield deicing protection
Pitot R and stall warning heating protection
Angle of Attack protection
RADIO ALTI, if installed protection
DME protection, if installed
Tank selector timer protection
Electrical fuel pump protection
ADF protection, if installed
Taxi light protection
Left-side landing light protection
Right-side landing light protection
Pulse lite system protection, if installed
Instrument panel emergency lighting protection
Ground clearance protection
Cabin access lighting protection
Electrical power system protection

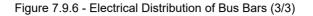


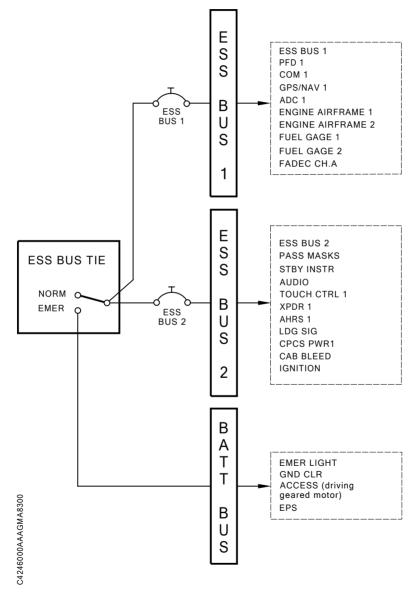
					BUS 1			BL	IS 2	
			\bigcirc	\bigcirc				\bigcirc	С)
\geq	S. BUS TIE	EMER AF	P SERVOS	5 FLAPS	6 AIL TI	RIM RUD	TRIM L	DG GEAR		
ESS BUS 1	ESS BUS 1	PFD 1		GPS/ NAV1	ADC 1	ENGINE A	IRFRAME 2	FUEL	GAGE 2	FADEC CHA
ESS BUS 2	ESS BUS 2	PASS MASKS	STBY INSTR	AUDIO	TOUCH CTRL 1	XPDR 1	AHRS 1	LDG SIG	CPCS PWR1	CAB BLEED
BUS 1	AP CTRL AIRFRAME DE ICE O	PFD 2	COM 2 COM 2 R WS DE ICE	GPS/ NAV 2 O PITOT L	ADC 2	XPDR 2	VDL AHRS 2	STROBE LIGHT	SHAKER	IGNITION
	DETEC BUS 2	PROP DE ICE	ICE LIGHT	FLAPS SIG PANEL LIGHT	AIR COND TAS	CPCS PWR2	A/C COMP DATA LINK	NAV/RECOOL LIGHT	A CABIN DOORS	FADEC CH.B SATCOM HEATER
00	BUS 3	OXYGEN PRESS	L WS DE ICE	PITOT R & STALL		RADIO ALTI		FUEL SEL	AUX BP	ADF
C4255004AAACMA8200	BATT BUS	EMER LIGHT	GND CLR	ACCESS	EPS	\bigcirc	TAXI LIGHT	LH LDG LIGHT	RH LDG LIGHT	PULSE SYST
C425										


Figure 7.9.3 - Breaker Panel (Typical arrangement)








NOTE -

Breakers located on Frame C13bis and Frame C15.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.9.15

Emergency Use

With both generators deactivated in flight, it is still possible to use battery power to supply all airplane systems maintaining the SOURCE selector on BATT position.

In order to save battery power, it is possible to shed the charges that are not essential for flight safety, for that set the ESS BUS TIE switch to EMER.

In this configuration, only ESS BUS 1, ESS BUS 2 and BATT BUS bars are supplied.

NOTE -

Supplying BUS 1, BUS 2, BUS 3 and BUS 4 bars is always possible, resetting temporarily the ESS BUS TIE switch to NORM position.

Indicating

Electrical system indicating consists of voltage and ampere indicating – refer to the Garmin Pilot's Guide for further details.

The following CAS messages may be displayed in the CAS window:

CAS message	Description			
BAT OFF	Battery is not connected to main bus bar			
MAIN GEN	Starter generator is not connected to main bus bar			
LOW VOLTAGE	Battery voltage is below the minimum value			
GPU DOOR	Ground power receptacle access door is not closed			

Protection - Safety

See <u>Table 7.9.1</u> and <u>Figure 7.9.2</u>.

The electrical power system provides systems protection in case of:

- overvoltage,
- short-circuits.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.9.16

In case of disconnection of starter generator or standby generator following a failure, MAIN or ST-BY reset can be done by pressing the corresponding GENERATOR RESET MAIN or GENERATOR RESET ST-BY pushbutton.

A battery reset is done by setting the SOURCE selector to OFF and back to BATT.

In case of disconnection of ground power unit following a failure, it is possible to re-activate the system by turning the SOURCE selector to OFF and setting it again to GPU position to reset the protection.

A crash lever located on the upper panel center part allows isolating simultaneously the BATT BUS bar and setting to OFF the SOURCE and GENERATOR selectors when lowered. In this case all bus bars are isolated from generators.

Exterior Lighting

See Figure 7.9.7.

The airplane is equipped with three strobe and navigation lights, two landing lights, two taxi lights, two recognition lights and a wing leading edge icing inspection light.

Landing Lights

The landing lights are embedded in the winglets' leading edge. These lights are controlled by setting a switch located on upper panel to LDG.

The Pulse lite system, if installed, allows the pilot to have the landing lights flash continuously, making the airplane more visible to the control tower and to nearby aircraft.

Taxi Lights

The taxi lights are embedded in the winglets' leading edge. These lights are controlled by setting a switch located on upper panel to TAXI.

Navigation Lights and Strobe Lights

Two strobe and navigation lights are installed in the winglets and one on the tail cone.

They are controlled by the NAV and STROBE switches located on upper panel.

NOTE ·

At night, do not use anti-collision lights in fog, clouds, or mist – as reflection of the flashing lights may lead to dizziness and disorientation.

Page 7.9.17

Recognition Lights

Recongnition lights are embedded in the winglets.

They are automatically switched on when the airplane is on ground.

Leading Edge Icing Inspection Light

The leading edge icing inspection light is installed on the left side of the fuselage and illuminates the wing leading edge. This light is controlled by the ICE LIGHT switch installed on the DE ICE SYSTEM panel.

Forward Compartment Light

The dome light illumination of the forward compartment is controlled by the switch located in the upper section of the door frame.

Fuel Unit Compartment Light

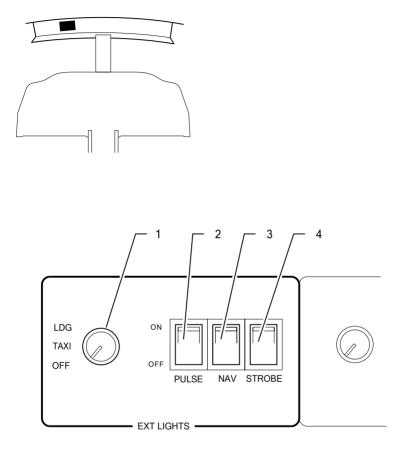
The lighting of the fuel unit compartment allows improving the visibility of the clogging indicator by pressing the pushbutton located besides the inspection door.

Section 7 Description

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04

Page 7.9.19



Key to Figure 7.9.7

- 1) Taxi and landing light switch
- 2) Pulselite system switch
- 3) Navigation lights switch
- 4) Strobe lights switch

14240000AAAVMA18000

PIM TBM 960 - Edition 0 Rev. 04

Page 7.9.21

Interior Lighting

See Figure 7.9.8.

Interior lighting consists of access, cabin, instrument panel, instruments, baggage compartment and emergency lighting.

Access Lighting

Access lighting consists of moon-lights located on the ceiling upholstering, two for the cabin and cockpit area and two for the baggage compartment. The access lighting is controlled by the ACCESS switch on INT LIGHTS panel or through the cabin touchscreen control panel located above the passenger's table.

- NOTE -

The cabin touchscreen control panel also allows passengers to set the cabin temperature and fan speed.

If the crash lever is down, access lighting is automatically cut out after three minutes.

If the crash lever is up, there is no access lighting automatic cut out.

Cabin Lighting

Cabin lighting consists of two individual floodlights for front seats and six individual floodlights for rear passenger seats. Each floodlight is touch-controlled and dimmable by directly touching the light. The floodlights can also be controlled through the cabin touchscreen control panel located above the passenger's table.

NOTE -

The cabin touchscreen control panel also allows passengers to set the cabin temperature and fan speed.

The pilot can switch off the cabin lights by setting the CABIN switch to OFF.

Instrument Panel Lighting

Instrument panel lighting is controlled by the PANEL rheostat located on the INT LIGHTS panel. This lighting consists of backlighted panels and a led lighting for the pedestal.

Breaker Panel Lighting

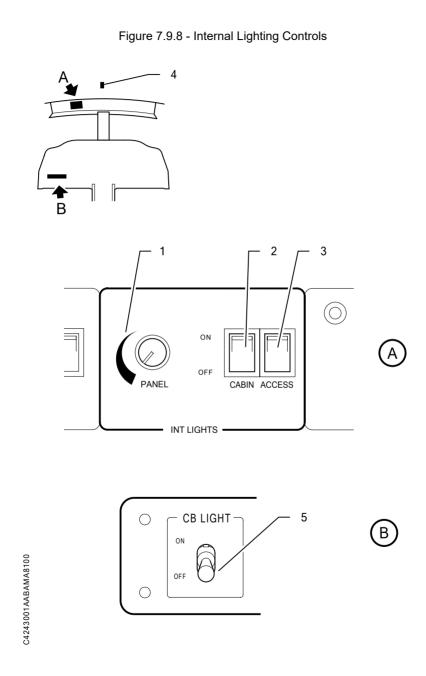
Breaker panel lighting is controlled by a switch located on the instrument panel near the pilot's control wheel.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.9.22

Emergency Lighting

Emergency lighting consists of two swiveling floodlights located on both sides of the cockpit overhead panel above front seats. It illuminates the instrument panel assembly in case of visor lighting tubes and/or instrument integrated lighting failure.

A rheostat located on the cockpit overhead panel controls emergency lighting operation and intensity. Forward rotation of control knob allows changing from OFF position to minimum lighting then increasing lighting to maximum brightness.



>> preMod: MOD70-0800-00

Key to Figure 7.9.8

- 1) Instrument panel lighting switch (rheostat)
- 2) Cabin lighting switch (rear seats reading light)
- 3) Access lighting pushbutton
- 4) Emergency lighting switch
- 5) Breaker panel lighting switch

PIM TBM 960 - Edition 0 Rev. 04 Page 7.9.25

Section 7 Description

>> A//

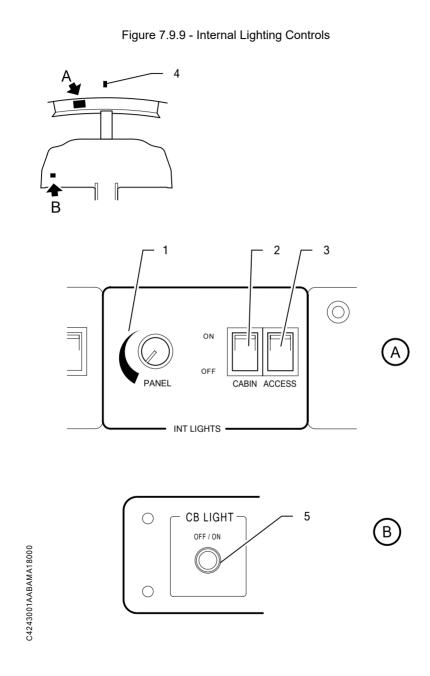
Page 7.9.26

Section 7 Description

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04

Page 7.9.27



>> postMod: MOD70-0800-00

Key to Figure 7.9.9

- 1) Instrument panel lighting switch (rheostat)
- 2) Cabin lighting switch (rear seats reading light)
- 3) Access lighting pushbutton
- 4) Emergency lighting switch
- 5) Breaker panel lighting pushbutton

PIM TBM 960 - Edition 0 Rev. 04 Page 7.9.29

Section 7 Description

>> A//

Page 7.9.30

115 V Plug

The 115 V plug permits to connect external equipment (max power: 250 W).

The plug is located on the right aft side of the cabin compartment, in the storage pocket.

BatteryMINDer Charger

While the airplane is on ground, the BatteryMINDer charger is used to maintain a constant charge of the battery from main electrical network. It is an external equipment.

The BatteryMINDer charger is connected to a plug located next to the GPU plug.

The Quick-Disconnect connector shall be connected to the battery to allow the BatteryMINDer charger to keep the charge of the battery.

For servicing, refer to Paragraph BatteryMINDer Charger in Subsection 8.7.

Section 7 Description

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04

Page 7.9.32

7.10 - Cabin Air Temperature and Pressurization

NOTE -

A list of abbreviations used in this chapter is given in Figure 7.10.1.

The airplane is equipped with an Environmental Control System (ECS), which ensures cabin air temperature and pressurization control – see Figure 7.10.1.

- Cabin Air Temperature corresponds to the cockpit / cabin air flow and temperature management.
- Pressurization corresponds to the cabin altitude / rate of change management.

The ECS is composed of three sub-systems:

- Engine Bleed Air System (EBAS),
- Cabin Pressurization Control System (CPCS),
- Dual-zone Temperature Control System (TCS).

The ECS controls are located on:

- the PRESSURIZATION and the ECS panels on the right side of the left control wheel,
- a touchscreen control panel located above the passenger's table.

The pilot monitors the system through information and CAS messages displayed in the CAS window. These indications are independent of the ECS controls and internal sensors.

Key to Figure 7.10.1

- 1) ECS controller
- 2) Ground safety microswitch
- 3) OutFlow Valve 1 (OFV)
- 4) OutFlow Valve 2 (OFV)
- 5) Negative Pressure Relief Valve (NPRV)
- 6) Condenser
- 7) Cabin air controller
- 8) AUTO EXER maintenance switch
- 9) Cabin fan
- 10) Cabin evaporator
- 11) Distribution manifolds
- 12) ECS and PRESSURIZATION control panel
- 13) Cabine altitude alarm switch
- 14) Cabin touchscreen control panel
- 15) Cabin Zone Temperature Sensor (ZTS)
- 16) Cabin pressure sensor
- 17) Cockpit Zone Temperature Sensor (ZTS)
- 18) Air outlets
- 19) MFD unit
- 20) Cockpit evaporator
- 21) Cockpit fan
- 22) Demisting outlets
- 23) EMERGENCY RAM AIR
- 24) Differential pressure switch
- 25) Hot Air Diverter (HAD) with Cabin Duct Temperature Sensor (CDTS)
- 26) Recirculator ejector
- 27) Suction pressure sensor
- 28) Bleed controller with muffler and flow sensor
- 29) Bleed check valve
- 30) Compressor
- 31) Flow Control Shut-Off Valve (FCSOV)
- 32) Bleed Ejector Valve (BEV)
- 33) Shut-Off Valve (SOV)

PIM TBM 960 - Edition 0 Rev. 02 Page 7.10.2

Key to Figure 7.10.1

- 34) Bleed air high temperature sensor
- 35) Temperature Modulating Valve (TMV)
- 36) Ground Fan (GF)
- 37) Ram air check valve
- 38) Heat exchanger

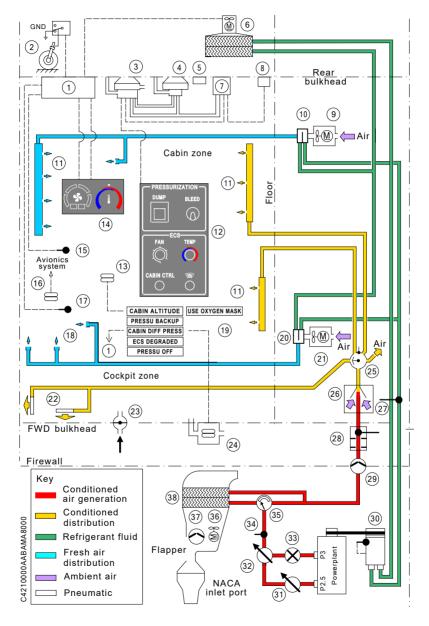


Figure 7.10.1 - ECS Architecture

PIM TBM 960 - Edition 0 Rev. 02 Page 7.10.4

Engine Bleed Air System

The engine bleed air system is designed to ensure the following functions:

- to regulate the bleed air from the engine,
- to ensure a controlled airflow in the cabin,
- to adjust the bleed air temperature for cabin heating.

To Regulate the Bleed Air from the Engine

The engine bleed air system operates from both the P2.5 (compressor inter-stage) or P3 (compressor discharge) engine bleed ports.

The system normaly operates on the P2.5 port, through the Flow Control Shut-Off Valve (FCSOV), as long as the bleed flow rate demand is met by this port.

If this demand is not met, the system opens the Shut-Off Valve (SOV) on the P3 port, and the Bleed Ejector Valve (BEV) adjusts the bleed flow from the P3 port and mixes it with the bleed flow from the P2.5 port in order to meet the demand.

The BEV, the FCSOV, and the SOV are commanded by the Bleed Flow Controller.

Regarding the bleed status, two messages can be displayed on the Single Engine Indicator – see Figure 7.10.2:

- When the bleed air flow on the P2.5 port exceeds 7 pounds per minutes, **P2.5 HI** is displayed.
- When the P3 port is open, P3 is displayed.

- NOTE -

When either **P2.5 HI** or **P3** is displayed, the FADEC may command a decrease of torque to maintain ITT within engine limitations.

Figure 7.10.2 - Bleed Status Display

C4342800AAAGMA8000

PIM TBM 960 - Edition 0 Rev. 02 Page 7.10.5

To Ensure a Controlled Airflow in the Cabin

The bleed air flow is controlled by the Bleed Ejector Valve (BEV), the FCSOV and the SOV driven by the Bleed Flow Controller.

To Adjust the Temperature of the Bleed Air

The bleed air outlet temperature control is ensured by the Temperature Modulating Valve (TMV) in association with the Heat Exchanger, making use of the Ground Cooling Fan if the aircraft is on ground.

Based on pilot's or passengers' TEMP selector position, the ECS Controller computes the appropriate cabin air inlet temperature target and compares it to the actual measured inlet temperature in order to set the TMV position. The TMV diverts the required amount of bleed air through the Heat Exchanger in order to mix it with cabin air, and then provides air at the Cabin Duct Temperature Sensor (CDTS) target.

System Operation

See Figure 7.10.4.

The BLEED switch allows selection of the engine bleed air system, provided that the engine is running.

The Ground Cooling Fan (GCF) operates until takeoff, when the BLEED switch is set to AUTO and **MAIN GEN** is OFF.

The BLEED switch is fitted with a blocking device between the AUTO and OFF/RST positions. This prevents the operator from inadvertently setting the BLEED switch to the OFF/RST position.

To reset the system, set the BLEED switch to OFF/RST, then back to AUTO.

System Protection

Power for the engine bleed air system is supplied by the ESS BUS 2 bar and is protected by the CAB BLEED breaker.

Cabin Pressurization Control System

In flight, the Cabin Air Controller controls the modulation of the Outflow Valve (OFV) in order to reach the computed cabin altitude.

System Operation

See Figure 7.10.4.

BLEED switch actuation in the AUTO position is required for proper operation of the CPCS which regulates the cabin altitude.

PIM TBM 960 - Edition 0 Rev. 02 Page 7.10.6

The pressurization system will not operate normally if the BLEED switch is set to OFF/RST.

Cabin Altitude Management

During all phases of flight, the cabin altitude is automatically computed by the Cabin Air Controller using flight parameters (such as airplane altitude, altitude rate of change) provided by the avionics.

During climb, the cabin altitude will start increasing shortly after takeoff.

During descent, the Cabin Air Controller uses the Landing Field Elevation (LFE) to manage the optimal cabin altitude rate of change so that the airplane lands with a cabin altitude equal to LFE. To ensure a perfect accordance between the airplane altitude and the cabin altitude at landing, the Cabin Air Controller will manage the cabin altitude to reach the Landing Field Elevation from 1,500 ft AGL to landing.

The pilot selects LFE on the touchscreen controller:

- automatically, by setting a destination airport in the flight plan,
- manually, by pressing "MFD Home," "Aircraft Systems," "Pressu," then selecting the "Manual" LFE mode and setting the LFE value.

System Monitoring

The pilot monitors the pressurization system through information displayed on the MFD:

- landing field altitude in ft,
- cabin altitude in ft,
- cabin climb speed in ft/min,
- cabin differential pressure in psi.

These indications are independent of the ECS controls and internal sensors.

Figure 7.10.3 - Cabin Altitude Monitoring

14213000AAAVMA8000

CAS messages are displayed in the CAS window:

Table 7.10.1 -	- Pressurization	System	Monitoring	CAS Messages

CAS message	Description
PRESSU OFF	The BLEED switch is in the OFF/RST position, or the EBAS is closed due to a system malfunction.
CABIN ALTITUDE	The cabin altitude is over 10,000 ft.
CABIN DIFF PRESS	The cabin differential pressure is over 6.4 psi (441 mb). The DUMP switch could be used in case of necessity to depressurize the cabin.
PRESSU BACKUP	The Cabin Air Controller is unable to compute optimal cabin altitude due to an electrical failure or a loss of communication with the avionics. In this condition, the CPCS will control the cabin altitude to a default value of 9,800 ft.
ECS DEGRADED	The cabin pressurization is degraded without total loss of cabin pressurization, or the heating system is degraded.

Protection - Safety

As soon as the airplane is on the ground, the cabin is automatically depressurized though the activation of the landing gear switches (airplane on ground), or – if necessary – by actuating the DUMP switch located on the PRESSURIZATION panel. In normal operation, this switch is protected and locked by a cover.

Overpressure safety is managed by both the OFV, and negative relief safety is managed by the Negative Pressure Relief Valve (NPRV). The safety functions are ensured by independent pneumatic modules fitted on both valves, which override the ECS controls when necessary.

The DUMP switch allows the pilot to open the OFV in order to depressurize the cabin.

Each OFV is fitted with a cabin altitude limitation device which overrides the DUMP function and forces the closure of the OFV if the cabin altitude reaches 14,300 ft.

The CPCS is powered by both the ESS BUS 2 bar (protected by the CPCS PWR1 breaker) and the BUS 2 bar (protected by the CPCS PWR2 breaker).

Dual-Zone Temperature Control System (TCS)

The TCS controls both the cockpit and cabin heating and cooling functions.

The TCS consists of two independent air management subsystems:

- the Cabin Heating System (CHS)
- the Vapor Cycle System (VCS)

Cabin Heating System

The TCS regulates hot air coming from the bleed air system (also used for pressurization) and mixes it with the ambient cabin air at the Recirculation Ejector to lower the delivered air temperature.

The resultant air flow enters the Hot Air Diverter (HAD) and is distributed in the cockpit / cabin zones depending on the demand.

The air is distributed:

- into the cockpit zone through:
 - . ports located on pedestal sides,
 - . ports under each seat or
 - . the demisting outlets.
- into the cabin zone through:
 - ports located under each intermediate seat,

PIM TBM 960 - Edition 0 Rev. 02 Page 7.10.9

- ports located on the lower section of the left-side and right-side cabin upholstery.
- Under the floor, to be recirculated through the cooling circuit evaporators, if cool air is needed.

Vapor Cycle System

The VCS is selected on only when the ECS controller receives a cooling command. It is composed of two independent circuits:

- one for the cockpit zone,
- one for the cabin zone.

For each circuit, the intake of air is by means of a variable speed electrical fan, with the air blown through an evaporator and ducted to the different zones:

- into the cockpit by passing through:
 - . the upper panel equipped with swiveling and adjustable air outlets,
 - . air outlets located on the armrests of pilot and front passenger stations and
 - . ports located under the instrument panel.
- into the cabin by passing through:
 - . the overhead duct equipped with swiveling and adjustable air outlets,
 - . ports located on the floor between the cabinets and the intermediate passenger seats.

System Operation

See Figure 7.10.4.

Cockpit ECS Control Panel:

If the FAN selector is set to OFF:

- Cockpit / cabin evaporator fans are OFF,
- VCS is inhibited,
- The cabin touchscreen control panel is inhibited and displays "PILOT IN CONTROL".

The pilot can set the desired temperature and fan speed. Desired temperature can be selected through the TEMP selector. Fan speed can either be set to AUTO or to the desired position on the FAN selector. When set to AUTO, the ECS controller drives the fan speed in order to reach the selected temperature in the most efficient way.

PIM TBM 960 - Edition 0 Rev. 02 Page 7.10.10

NOTE

The AUTO mode is recommended in order to obtain the best temperaure regulation in both cockpit and cabin areas.

By pressing the CABIN CTRL pushbutton on the ECS panel, the pilot can override the cabin settings and apply the cockpit settings to the cabin area. Then, the cabin touchscreen control panel displays "PILOT IN CONTROL". To give the control back to passengers, the pilot can press again the CABIN CTRL pushbutton. The cabin touchscreen controller then returns to the previously selected settings, and passengers can modify them as required again.

NOTE -

The cabin touchscreen control panel also allows passengers to control cabin or baggage area ambient lighting.

In case of windshield or side windows misting, the pilot can press the DEFOG pushbutton. The ECS controller will command the HAD to divert hot air towards the windshield and side windows for 10 minutes.

Cabin Touchscreen Control Panel:

In the cabin zone, passengers can set the cabin temperature and fan speed on the touchscreen control panel.

Emergency Air System:

An emergency ventilation valve allows outside air to enter the cabin when the EMERGENCY RAM AIR control knob is pulled out. The EMERGENCY RAM AIR control knob is located under the right side of the instrument panel, near the right control wheel.

- In the NORMAL position, the valve is closed and the control is locked.
- To open the emergency ventilation valve, press the locking button on the knob and pull out.

– NOTE –

Reduce the cabin differential pressure to be able to pull out the EMERGENCY RAM AIR control knob. If necessary, depressurize the cabin.

System Protection

Power for the ECS is supplied by the BUS 2 bar and is protected by the AIR COND breaker.

PIM TBM 960 - Edition 0 Rev. 02 Page 7.10.11

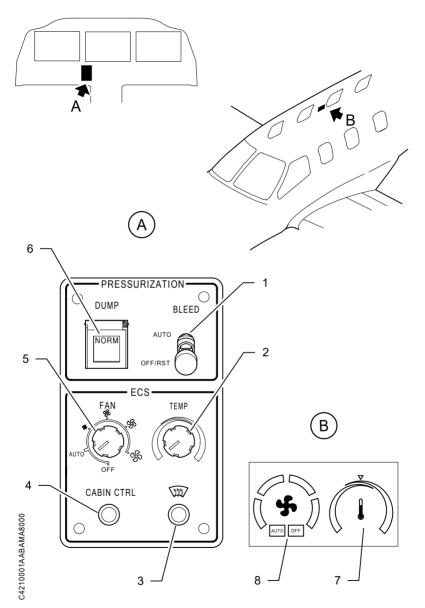
Four fans are supplied by the BUS 4 bar and respectively protected by the following breakers: COND FAN, CAB FAN, CKPT FAN and GND FAN.

The system includes an automatic load shedding feature which:

- when **MAIN GEN** is ON:
 - . turns off the Ground Fan (GF),
 - . turns off the Condenser Fan (COND FAN),
 - . opens the compressor clutch.
- during engine start:
 - . turns off the Vapor Cycle System (VCS).

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 02 Page 7.10.13



Key to Figure 7.10.4

- 1) BLEED switch
- 2) Cockpit TEMP selector
- 3) DEFOG pushbutton
- 4) CABIN CTRL pushbutton
- 5) Cockpit FAN selector
- 6) DUMP switch
- 7) Cabin temperature control
- 8) Cabin fan control

PIM TBM 960 - Edition 0 Rev. 02 Page 7.10.15

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 02 Page 7.10.16

7.11 - Emergency Oxygen System

See Figure 7.11.1.

The gaseous oxygen system is to be used by the crew and the passengers when the cabin altitude is greater than 10,000 ft following a loss of pressurization, or if there is smoke or fumes in the cabin.

USE OXYGEN MASK is displayed in the CAS window and the "Use oxygen mask / Use oxygen mask" voice alert sounds when the cabin altitude is greater than 10,000 ft.

The oxygen reserve is contained in an oxygen cylinder made of composite material and located outside of the pressurized cabin, in a compartment in the right wing's fairing. Its capacity is 50.3 cu.ft (1,425 liters) STPD and the use limit pressures are:

- maximum pressure 1,850 PSIG (127 bars) at 70 °F (21 °C). The maximum pressure for different outside temperatures is provided in <u>Figure 8.7.2</u>, as well as on a placard on the inside of the cylinder service door,
- minimum pressure 217 PSIG (15 bars).

- CAUTION -

If the oxygen cylinder pressure falls below the minimum, the cylinder must be purged before refilling. If this occurs, inform the maintenance department.

in the coolie, menn the maintenance depart

The oxygen cylinder head is equipped with:

- a hand-controlled isolation valve to permit cylinder installation and removal,
- a microswitch that triggers **O2 CYL CLOSED**. This message is ON when the isolation valve is closed,
- a graduated pressure gauge,
- a charging valve; refer to the replenishment procedure in <u>Paragraph Oxygen</u> in <u>Subsection 8.7.</u>,
- an overpressure system consisting of a safety disc. This disc is designed to rupture between 2,500 and 2,775 PSIG (172 and 191 bars) discharging the cylinder contents overboard,
- a pressure-reduction valve that regulates oxygen pressure to the oxygen masks at between 64 and 85 PSIG (4.4 and 5.9 bars),
- a low-pressure safety valve calibrated to 116 PSIG (8 bars).

A control panel located in the cockpit's overhead panel includes:

PIM TBM 960 - Edition 0 Rev. 00 Page 7.11.1

- a two-position valve ON/OFF (OXYGEN switch) to permit the supply of the masks for those occupying the front seats,
- a two-position valve DEPLOY/STBY (PASSENGER OXYGEN switch) with guard to permit the supply of the four passenger masks when the OXYGEN switch is set to ON.

Oxygen pressure is displayed on the MFD.

An altimetric valve provides an automatic actuation function for passenger masks at a cabin altitude between 13,000 and 14,000 ft when the OXYGEN switch is set to ON.

Two pressure-demand type masks that allow quick donning with a single hand to cover the nose and the mouth are at disposal of the pilot and the front passenger, along with two pairs of smoke goggles. These masks are installed in cups on the cabin walls aft of the front seats. For the ease of donning and for ergonomic reasons, the pilot's mask is located in the right-side cup, and the front passenger mask is located in the left-side cup. The masks are permanently connected to the oxygen system.

The smoke goggles are stowed in the cabinet drawer behind the right front seat.

Each cockpit mask is equipped with:

- 1. a microphone, controlled by the MICRO/MASK switch under a cover located on the instrument panel near the left control wheel.
- 2. a Smart Mike system, which reduces the breathing noise in the headsets. The noise reduction function operates when the switch located on the O_2 connecting line is set to ON see Figure 7.11.3.
- 3. a vent valve integrated in the facepiece of the mask to provide airflow to the goggles see Figure 7.11.2.

- NOTE -

Manual opening of the vent valve is necessary when goggles are in place.

- 4. a regulator see <u>Figure 7.11.2</u> equipped with:
 - a two-position N-100% control tab that selects between a mix of cabin air and oxygen (NORMAL mode) and 100% oxygen (100% mode),
 - an EMERGENCY rotating knob with a PRESS TO TEST function.

PIM TBM 960 - Edition 0 Rev. 00 Page 7.11.2

NOTE

When smoke or fumes are present, the mask can be set to provide positive pressure to prevent smoke or fumes from infiltrating the mask and to provide airflow to clear the goggles. Push the N-100% control tab in toward the mask to the 100% position and turn the EMERGENCY control knob to the EMERGENCY position. After donning the goggles, open the goggle vent on the bridge of the mask by pulling the slide fully downward.

CAUTION ·

Use of 100% oxygen and/or the EMERGENCY pressurized breathing function will significantly decrease the duration of available oxygen.

A flow indicator (blinker) into the oxygen tubing signals the proper flow.

Depending on the specific airplane configuration, refer to the mask manufacturer's documentation available on the <u>MyTBM.aero</u> website for more information.

Four permanently-connected passenger constant-flow type masks that cover the nose and mouth are installed in two containers on the cabin ceiling. The opening of these containers and the deployment of the masks are controlled:

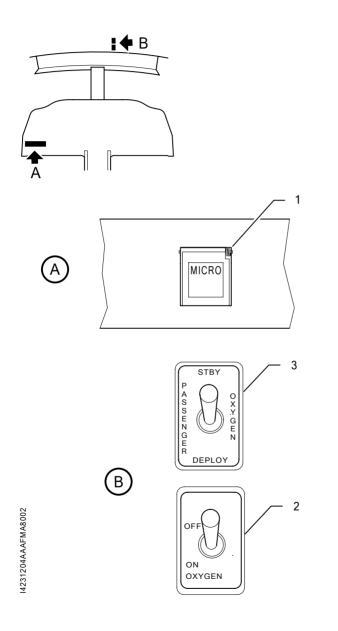
- by the pilot, when the OXYGEN switch is set to ON and the PASSENGER OXYGEN switch is set to DEPLOY,
- or automatically at a cabin altitude between 13,000 ft and 14,000 ft with the OXYGEN switch set to ON.

Oxygen flow to the passenger masks is obtained when the passenger pulls on the lanyard to release the connected pin. The green bag on the oxygen mask inflates when oxygen flow is obtained.

- WARNING

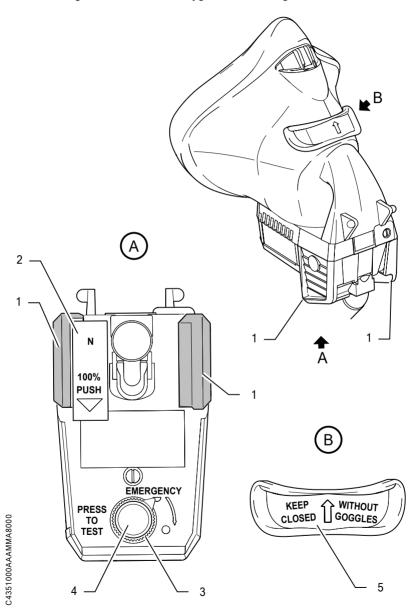
Smoking is strictly prohibited when the oxygen system is in use. Before using oxygen, remove any trace of oil, grease, soap and other fatty substances (including lipstick, make-up, etc.) on the user's face.

PIM TBM 960 - Edition 0 Rev. 00 Page 7.11.3


Key to Figure 7.11.1

- 1) MICRO/MASK switch
- 2) OXYGEN switch
- 3) PASSENGER OXYGEN switch

PIM TBM 960 - Edition 0 Rev. 00 Page 7.11.4


PIM TBM 960 - Edition 0 Rev. 00 Page 7.11.5

Key to Figure 7.11.2

- 1) Harness inflation side vanes
- 2) N (Normal) 100% regulator control tab
- 3) EMERGENCY control knob
- 4) PRESS TO TEST function
- 5) Vent valve

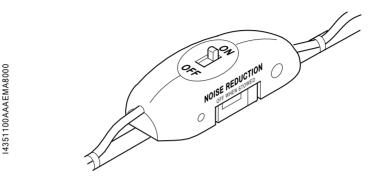


Figure 7.11.2 - Crew Oxygen Masks - Regulator Controls

PIM TBM 960 - Edition 0 Rev. 00 Page 7.11.7

Flight Above 15,000 ft with Possible Emergency Descent

Minimum oxygen pressure (PSIG) for following conditions:

- Crew oxygen masks in NORMAL mode, _
- Four minutes of utilization by each pilot and passenger from 31,000 ft to 15,000 ft,
- Plus 30 minutes of utilization by each pilot and passenger at 15,000 ft,
- Plus 86 minutes of utilization by each pilot at 10,000 ft.

	Possible Emergency Descent]							
Numb	per of pants	Outside temperature						
Cockpit	Cabin						-10 °F (-23°C)	
1	0	631	614	597	580	563	546	529

Table 7.11.1 - Minimum Oxygen Pressure (PSIG) [Flight Above 15,000 ft with

occu	pants	Outside temperature						
Cockpit	Cabin	110 °F (43 °C)	90 °F (32 °C)	70 °F (21°C)	50 °F (10°C)	30 °F (-1°C)	10 °F (-12°C)	-10 °F (-23°C)
1	0	631	614	597	580	563	546	529
1	1	759	736	713	691	668	646	623
1	2	885	856	828	799	771	743	715
1	3	1010	976	941	907	873	839	806
1	4	1,137	1,096	1,056	1,015	975	935	897

Continue

PIM TBM 960 - Edition 0 Rev. 00

Page 7.11.8

► Continuing

Table 7.11.1 - Minimum Oxygen Pressure (PSIG) [Flight Above 15,000 ft with Possible Emergency Descent]

Num occu		Outside temperature						
Cockpit	Cabin	110 °F (43 °C)	90 °F (32 °C)	70 °F (21°C)	50 °F (10°C)	30 °F (-1°C)	10 °F (-12°C)	-10 °F (-23°C)
2	0	1,037	1,001	965	930	894	859	825
2	1	1,164	1,122	1,080	1,038	997	956	916
2	2	1,289	1,241	1,192	1,144	1,097	1,050	1,004
2	3	1,416	1,361	1,306	1,252	1,198	1,145	1,093
2	4	1,541	1,480	1,418	1,357	1,297	1,238	1,180

— NOTE ———

Increase the pressure in the table by 8% if the airplane has been parked in sunlight for an extended period of time.

When Required to Remain Above 15,000 ft Due to Minimum Enroute Altitude

Minimum oxygen pressure (PSIG) for following conditions:

- Crew oxygen masks in NORMAL mode,
- Flight above 15,000 ft. All equipment in use,
- One hour of utilization by each pilot and passenger,
- Plus one hour of utilization by each pilot under 15,000 ft.

Num occu	per of pants	Outside temperature						
Cockpit	Cabin	110 °F (43 °C)	90 °F (32 °C)	70 °F (21°C)	50 °F (10°C)	30 °F (-1°C)	10 °F (-12°C)	-10 °F (-23°C)
1	0	618	602	585	569	552	536	520
1	1	842	816	789	763	736	710	685
1	2	1,067	1,029	992	955	918	882	846
1	3	1,513	1,240	1,192	1,144	1,097	1,050	1,004
1	4	1,513	1,452	1,392	1,333	1,275	1,217	1,161
2	0	992	958	925	891	858	825	793
2	1	1,215	1,170	1,125	1,081	1,037	994	952
2	2	1,439	1,382	1,326	1,270	1,215	1,161	1,108
2	3	1,662	1,593	1,525	1,457	1,391	1,326	1,262
2	4	1,888	1,807	1,725	1,645	1,567	1,490	1,415

Table 7.11.2 - Minimum Oxygen Pressure (PSIG) [When Required to Remain Above 15,000 ft Due to Minimum Enroute Altitude]

NOTE -

Increase the pressure in the table by 8% if the airplane has been parked in sunlight for an extended period of time.

Flight Between 15,000 ft and 10,000 ft

Minimum oxygen pressure (PSIG) for following conditions:

- Crew oxygen masks in NORMAL mode,
- Flight under 15,000 ft,
- 90 minutes of utilization by each pilot and one passenger,
- Plus 30 minutes of utilization by each pilot at 10,000 ft.

PIM TBM 960 - Edition 0 Rev. 00 Page 7.11.10

Numb	per of pants	Outside temperature						
Cockpit	Cabin	110 °F (43 °C)	90 °F (32 °C)	70 °F (21°C)	50 °F (10°C)	30 °F (-1°C)	10 °F (-12°C)	-10 °F (-23°C)
1	0	618	602	585	569	552	536	520
1	1	961	929	896	864	833	801	770
1	2	961	929	896	864	833	801	770
1	3	961	929	896	864	833	801	770
1	4	961	929	896	864	833	801	770
2	0	992	958	925	891	858	825	793
2	1	1,333	1,282	1,231	1,181	1,131	1,083	1,035
2	2	1,333	1,282	1,231	1,181	1,131	1,083	1,035
2	3	1,333	1,282	1,231	1,181	1,131	1,083	1,035
2	4	1,333	1,282	1,231	1,181	1,131	1,083	1,035

Table 7.11.3 - Minimum Oxygen Pressure (PSIG) [Flight Between 15,000 ft and 10,000 ft]

NOTE -

Increase the pressure in the table by 8% if the airplane has been parked in sunlight for an extended period of time.

PIM TBM 960 - Edition 0 Rev. 00 Page 7.11.11

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00

Page 7.11.12

7.12 - Air Data System and Instruments

See Figure 7.12.1.

The airplane's air data system consists of:

- Primary systems:
 - two separate static pressure systems,
 - two separate dynamic pressure systems.
- An alternate static pressure system.

Static Pressure Systems

Primary Systems

Two dual static ports (one on each side of the fuselage tail section) supply a dual system routed to the cockpit.

Static system 1 supplies:

- ADC 1,
- the standby instrument, through the Normal / Alternate static source switching valve, when the ALTERNATE STATIC SOURCE selector is in the Normal position (pushed). The ALTERNATE STATIC SOURCE selector is located on the instrument panel under the right-side control wheel.

Static system 2 supplies ADC 2.

Each line has a drain plug located under the instrument panel on the right side.

Alternate Static Source

The alternate static port, located inside the rear fuselage, supplies a line routed to the Normal / Alternate static source switching valve.

If a false airspeed indication or primary static system failure is suspected, the pilot can pull the ALTERNATE STATIC SOURCE selector fully out to select the alternate static source. In this case, static pressure from the alternate line is only provided to the standby instrument. Static pressure from the alternate line is not provided to either ADC.

CAUTION

Do not rely on PFD indications when the alternate static source is selected. Only refer to the standby instrument for airspeed and altitude.

The alternate line has a drain plug located under the instrument panel on the right side.

Dynamic Pressure Systems

Dynamic pressure is provided by two heated pitot probes, one installed under each wing.

The left probe supplies ADC 1 and the standby instrument.

The right probe supplies ADC 2.

Each line has a drain plug located in the root of the wing.

Pitot Heating

Pitot heating is controlled by the PITOT L/R & STALL HTR switch located on the DE-ICE SYSTEM panel. For further details, refer to <u>Subsection Ice Protection</u> Equipment.

- CAUTION -

To avoid probe overheating while on the ground, do not turn on the pitot heat for long periods.

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00

Page 7.12.3

Key to Figure 7.12.1

- 1) Pitot L
- 2) Dynamic system drain
- 3) Standby instrument
- 4) ADC 1
- 5) ADC 2
- 6) Forward pressure bulkhead
- 7) Static system drain
- 8) Static system drain
- 9) Static system drain
- 10) Alternate static system drain
- 11) Static source switching valve (Normal / Alternate)
- 12) Instrument panel
- 13) Dynamic system drain
- 14) Pitot R
- 15) Rear pressure bulkhead
- 16) Static port
- 17) Alternate static port
- 18) Static port

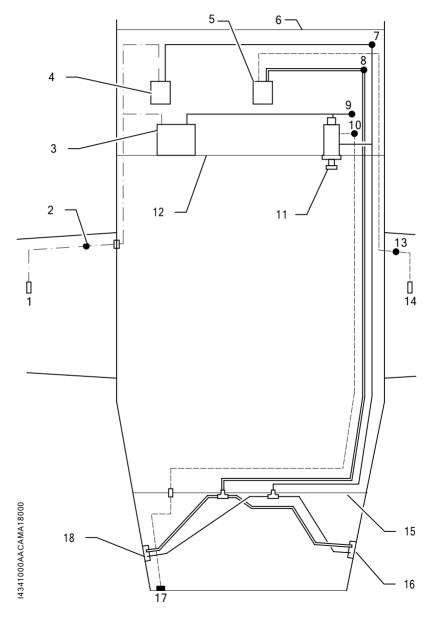


Figure 7.12.1 - Air Data System

Page 7.12.5

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00

Page 7.12.6

7.13 - Vacuum System and Instruments

See Figure 7.13.1.

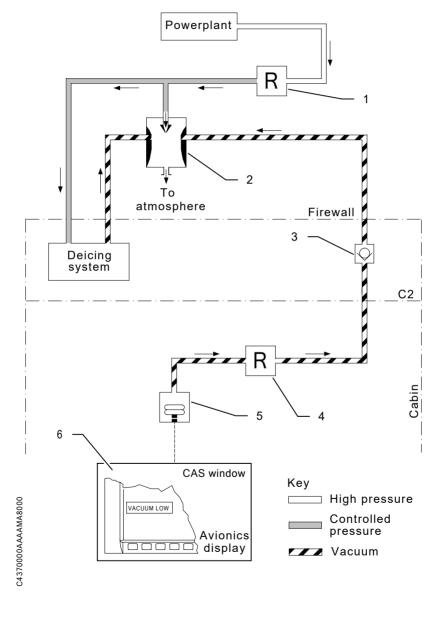
The airplane is fitted with a vacuum system that provides the suction necessary to operate the leading edge deicing.

The vacuum system includes:

- a regulating and relief valve,
- an air ejector,
- an air check valve,
- a suction relief valve,
- a pressure switch.

Compressed air necessary for the ejector to create decompressed air is taken from the powerplant. The airflow is regulated before entering the ejector, which creates the necessary vacuum by venturi effect.

The suction relief valve, fixed in the cabin to Frame C2, maintains the vacuum for monitoring of the system. In case of pressure drop, a pressure switch installed in the system indicates the failure, and **VACUUM LOW** is displayed in the CAS window.



Key to Figure 7.13.1

- 1) Regulating and relief valve
- 2) Air ejector
- 3) Air check valve
- 4) Suction relief valve
- 5) Pressure switch
- 6) Failure CAS message

Figure 7.13.1 - Vacuum System

Standby Attitude Module (MD302)

The Mid-Continent Instruments and Avionics MD302 Standby Attitude Module consists of two LCD screens:

- one for the display of airplane attitude (pitch, roll and magnetic heading),
- one for the display of airplane altitude and airspeed.

The MD302 is powered from the ESS BUS 2 bar (protected by the STBY INSTR breaker) or by the module's internal replaceable battery, ensuring that the airplane can continue safe flight and landing in the event of a loss of the primary attitude and air data displays.

Dynamic and static pressure is provided to the MD302 solid state electronic sensors using the airplane's pitot probe and static sources.

The magnetic heading data is provided by the MD32 magnetometer installed on the left wing.

The standby attitude module is located on the instrument panel's top left-hand corner.

7.14 - Ice Protection Equipment

The ice protection equipment is as follows:

- Ice Detection System
- Pneumatic deice system for inboard, central and outboard wing and for stabilizers: AIRFRAME DE ICE
- Propeller electrical deice system: PROP DE ICE
- Windshield electrical deice system: WINDSHIELD
- Electrical heating system for both pitots and for the stall warning sensor: PITOT L/R & STALL HTR
- Turbine air inlet deice systems: INERT SEP

The deicing check and control panel is located on the lower left side of the instrument panel.

Ice Detection System

- CAUTION -

Ice Detection System is only an advisory system. The pilot has the primary responsibility for detecting icing conditions through visual cues and activating ice protection systems.

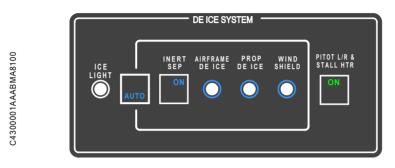
The system is composed of one ice detector providing an ice signal to the system when and as long as ice is detected on the sensing element.

The default mode of the system is AUTO with all the protection systems deactivated – see Figure 7.14.1

DE ICE SYSTEM

Figure 7.14.1 - DE ICE SYSTEM Panel – AUTO Mode with No Ice Detected

PIM TBM 960 - Edition 0 Rev. 00


C4300001AAABMA8000

Page 7.14.1

In AUTO mode, when ice is detected, all the ice protection systems are automatically activated – see Figure 7.14.2, and **ICE DETECTED** is displayed in the CAS window.

Figure 7.14.2 - DE ICE SYSTEM Panel – AUTO Mode with Ice Detected

Pilot action is required to revert the system in MAN mode by pressing the DE ICE SYSTEM mode switch. When MAN mode is selected, all deicing systems turn on – see Figure 7.14.3.

In MAN mode, all the ice protection systems can be activated/deactivated individually.

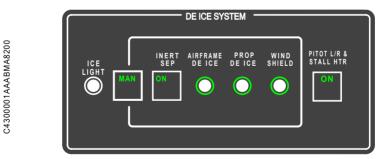


Figure 7.14.3 - DE ICE SYSTEM Panel – MAN Mode Activated

When icing conditions are no longer detected by the ice detector for 60 seconds after the last detection, **NOICE DETECTED** is displayed in the CAS window and the system may be reverted in AUTO mode by pressing the DE ICE SYSTEM mode switch. Then all the ice protection systems turn off.

ICE DETECTION FAIL is displayed in the CAS window in the following cases:

PIM TBM 960 - Edition 0 Rev. 00 Page 7.14.2

- failure of the ice detector. The system shall be reverted in MAN mode by the pilot,
- failure of the DE ICE SYSTEM panel printed circuit. The system is automatically reverted in MAN mode.

Wing and Empennage Deicing

A pneumatic deice system assures protection of wing leading edges, horizontal stabilizer, elevator horns and vertical stabilizer. The system automatically cycles when AIRFRAME DE ICE system is activated either manually or automatically. The 67-second cycle breaks down in two inflation cycles:

- a first cycle induces inflation of leading edges deicer boots in wing central and outboard sections,
- the second cycle induces inflation of leading edges deicer boots in horizontal stabilizer, elevator horns, vertical stabilizer and wing inboard section.

The table hereafter gives the CAS messages and the status light colors corresponding to the state of the system.

System state	Status light	CAS
OFF	Ô	
ON (AUTO mode)	0	
ON (MAN mode)	O	
FAIL	0	AFRM DEICE FAIL

Wing leading edge icing inspection light – see <u>Paragraph Exterior Lighting in</u> <u>Subsection 7.9.</u>.

Propeller Deicing

Propeller deicing is accomplished through electrical heating of blade roots. This system operates cyclically and alternately on the inboard and outboard zones of all blades when PROP DE ICE system is activated either manually or automatically. Each cycle is 180 seconds long. The cycles continue as long as the system is activated.

PIM TBM 960 - Edition 0 Rev. 00 Page 7.14.3

The table hereafter gives the CAS messages and the status light colors corresponding to the state of the system.

System state	Status light	CAS
OFF	Ô	
ON (AUTO mode)	O	
ON (MAN mode)	O	
FAIL	0	PROP DEICE FAIL

PROP DEICE ON is displayed in the CAS window if the engine is shutdown with PROP DE ICE switch still ON.

- CAUTION -

When the engine is shutdown, do not set the PROP DE ICE switch to ON for more than 10 seconds, damage to the propeller blades could result.

Windshield Deicing

The windshields are electrically deiced by integrated heating resistors. The system includes two controllers and two heat probes embedded in each windshield. They are operated by the WINDSHIELD switch.

When WINDSHIELD deice system is activated either manually or automatically, the controllers supply the heating resistors, the windshield temperature is controlled via heat probes. When the temperature reaches 45 °C (113 °F), the controllers cut the electrical supply to the heating resistors and resume supply when the temperature falls below 30 °C (86 °F). The cycle continues as long as the system is activated.

In the event of failure of probe 1, the controller receives the temperature data from probe 2. The electrical supply to the heating resistors is cut when the windshield temperature reaches 56 °C (133 °F). In that case, the windshield is no longer heated, the pilot can reset the system by setting the WINDSHIELD switch to OFF, then to ON.

PIM TBM 960 - Edition 0 Rev. 00 Page 7.14.4

The table hereafter gives the status light colors corresponding to the state of the system.

System state	Status light
OFF	0
ON (AUTO mode)	O
ON (MAN mode)	0

Heating of Pitots and Stall Warning Sensor

The two pitots, which supply ADCs and the standby instrument, and the stall warning sensor are electrically heated. This deice equipment must be used even during flight into non-icing conditions.

The system is operated by the PITOT L/R & STALL HTR switch.

The system condition messages **PITOT NO HT L** or **PITOT NO HT R**, **PITOT HT ON L** or **PITOT HT ON R**, **STALL HEAT ON** or **STALL NO HEAT** are displayed in the CAS window. Refer to the Garmin Pilot's Guide for further details.

- NOTE —

Correct operation of the audible stall warning may be altered by severe or prolonged icing.

Turbine Air Inlet Protection

Operation and description are detailed in <u>Paragraph Engine Air Inlet in Subsection</u> <u>7.6.</u>.

PIM TBM 960 - Edition 0 Rev. 00 Page 7.14.5

Section 7 Description

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00

Page 7.14.6

7.15 - Miscellaneous Equipment

Stall Warning System

The airplane is equipped with an electrically deiced stall sensor in the leading edge of the right wing. This sensor fitted with a vane is electrically connected to an audible warning. The vane senses the change in airflow over the wing and operates the warning unit, which produces an aural warning alert. This warning alert begins no later than 5 knots above the stall in all configurations.

Simultaneously, the control wheel vibrates through the stick shaker.

The stall warning system should be checked during the preflight inspection by momentarily turning on the SOURCE selector and by manipulating the vane in the wing.

The stall warning system should also be checked during the preflight inspection by momentarily turning on the SOURCE selector and by depressing the TEST pushbutton on cockpit upper panel.

The system is operational if a "stall / stall" aural warning alert is heard on the alarms speaker.

NOTE -

Correct operation of the audible stall warning may be altered by severe or prolonged icing.

Static Dischargers

As an aid in flight, static dischargers are installed to improve radio communications during flight by reducing interference from dust or various forms of precipitations (rain, snow or ice crystals).

Under these conditions, the build-up and discharge of static electricity from the trailing edges of the wings (flaps and ailerons), rudder, stabilator, propeller tips and radio antennas can result in loss of usable radio signals on all communications and navigation radio equipment. Usually, the ADF is first and VHF communication equipment is the last to be affected.

Installation of static dischargers reduces interference from precipitation static, but it is possible to encounter severe precipitation static conditions which might cause the loss of radio signals, even with static dischargers installed. Whenever possible, avoid known severe precipitation areas to prevent loss of dependable

PIM TBM 960 - Edition 0 Rev. 04 Page 7.15.1

radio signals. If avoidance is impractical, minimize airspeed and anticipate temporary loss of radio signals while in these areas.

Cabin Fire Extinguisher

The fire extinguisher is located on the right-side cockpit upholstery panel.

A pressure gauge allows checking the fire extinguisher condition. Follow the recommendations indicated on the extinguisher.

Autopilot

The autopilot control panel is located above the MFD.

Refer to <u>Paragraph GFC 700 Autopilot Limits in Subsection 2.6.</u> and to the Garmin Pilot's Guide for further details.

GPS

GPS navigation is performed through the Garmin system.

Refer to <u>Paragraph GNSS (GPS/SBAS) Navigation System Limitations in</u> <u>Subsection 2.6.</u> and to the Garmin Pilot's Guide for further details.

Weather Radar

The weather information can be displayed on PFD 1, PFD 2 and MFD.

Refer to <u>Paragraph Weather Radar in Subsection 2.6.</u> and to the Garmin Pilot's Guide for further details.

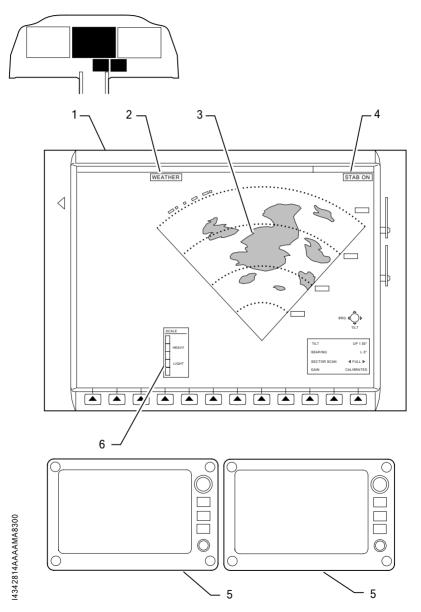
The controls for the weather radar are located on the touchscreen controllers.

The weather radar is protected by the WXR breaker.

Section 7 Description

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04


Page 7.15.3

Key to Figure 7.15.1

- 1) MFD
- 2) Radar mode
- 3) Area of weather display
- 4) Antenna stabilization status
- 5) Touchscreen controllers
- 6) Scale for weather display

PIM TBM 960 - Edition 0 Rev. 04 Page 7.15.5

Emergency Locator Transmitter

The airplane is equipped with an ELT ARTEX 1000 emergency locator transmitter which enables to locate it in case of distress. It is located in fuselage rear section with a service door on the right side of the fuselage.

The emergency locator transmitter assembly is constituted of a transmitter supplied by a battery, of an antenna attached on upper fuselage and of a remote control located on the upper panel.

– NOTE –

For test sequences, refer to the manufacturer manual.

Operation of the emergency locator transmitter is obtained as follows:

- from the instrument panel by setting the ELT remote control switch to ON (locator transmitter ARM/OFF switch set to ARM/OFF),
- from the locator transmitter by setting its ARM/OFF control switch to ON,
- automatically in case of shock, when the remote control switch is set to ARM/OFF and the locator transmitter switch is set to ARM/OFF.

A red indicator light located on the ELT remote control switch in the cockpit indicates to the pilot that the emergency locator transmitter is transmitting.

A red indicator light located above the locator transmitter switch and a buzzer located in the fuselage rear section indicate that the emergency locator transmitter is transmitting.

- CAUTION -

Reset the ELT after an inadvertent activation.

- NOTE -

The ELT cannot be reset if either the remote control switch or ELT switch is ON.

Reset procedure:

- 1. Set the remote control switch or ELT switch to ON.
 - A. The ELT keeps on transmitting emergency signal.
 - B. On the remote control box, red indicator light flashes.
 - C. On the ELT, red indicator light flashes.
 - D. Near the ELT, the buzzer sounds.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.15.6

- 2. Wait approximately for one second.
- 3. Set the remote control switch to ARM/OFF or the ELT switch to ARM/OFF.
 - A. The ELT does not transmit emergency signal any longer.
 - B. On the remote control box, red indicator light illuminates for about one second, then goes off.

or

- C. On the ELT, red indicator light goes off.
- D. Near the ELT, the buzzer does no more sound.

The ELT is then reset.

End of procedure.

Lightweight Data Recorder (LDR 1000)

The airplane is equipped with a lightweight data recorder which is a crashsurvivable system, recording both cockpit voices and flight data. These data are intended to be used after an accident or an incident.

The lightweight data recorder system includes a cockpit microphone located on instrument panel, between the standby instrument and the autopilot control panel.

The lightweight data recorder simultaneously records audio from the GMA audio control panel, audio from the cockpit microphone, data from the ECS controller, data from the FADEC Channel A, and data from the GIA integrated avionics unit 1 (Garmin flight deck system).

The lightweight data recorder is powered from the BATT BUS and controlled by a printed circuit as follows:

- If the crash lever is set upward, the lightweight data recorder starts recording.
- If the crash lever is set downward, the lightweight data recorder goes on recording for 10 minutes (audio only) and then automatically stops recording.

ADS-B OUT Function

The ADS-B OUT function enables the airplane to broadcast data, such as position information, to ground stations and to other airplanes equipped with ADS-B IN system.

The loss of an interfaced input to the selected extended squitter transponder may cause the transponder to stop transmitting ADS-B OUT data. Depending on the nature of the fault or failure, the transponder may no longer be transmitting all of the required data in the ADS-B OUT messages.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.15.7

ADS-B OUT data can be transmitted via transponder 1 or transponder 2, if installed.

If transponder 1 [2] detects any internal fault or failure with the ADS-B OUT functionality, the following CAS message **XPDR1 ADS-B FAIL** [XPDR2 ADS-B FAIL] will be displayed in the CAS window.

After being informed of ADS-B OUT failure either by the CAS message **XPDR1 ADS-B FAIL** [XPDR2 ADS-B FAIL] or by Air Traffic Control, it is possible to restore ADS-B OUT function by selecting transponder 2 [1].

Flight Deck Information System (GDL 60)

The airplane is equipped with a flight deck information system allowing portable electronic devices to stream data to and from the Garmin system through wireless connection.

This wireless connection is used to transfer information such as Flight Plans.

For the system description and its utilization, refer to the Garmin Pilot's Guide.

Data Collection and Transmission Unit (DCTU)

The Data Collection and Transmission Unit (DCTU) collects data from the FADEC and from the GIA to record it in resident non-volatile memory.

When the airplane is on the ground with a low engine power set, DCTU connection with a local cellular network is established. Once the engine is shutdown, recorded data are automatically transmitted to a ground station via the established connection. These data are intended to be used for maintenance and trend monitoring.

The DCTU also includes:

- a WiFi local hot spot with full security in order to communicate with a local smart device,
- a wired connection via a USB port.

The DCTU is also used for engine maintenance tasks (e.g. FADEC software uploads, engine trim, etc.).

The DCTU starts recording data as soon as the engine is running, and stops recording data when the engine is shutdown.

The DCTU is installed in the front cargo compartment and is connected to the FADEC. It does not require a pilot input to operate.

The DCTU is electrically supplied by:

PIM TBM 960 - Edition 0 Rev. 04 Page 7.15.8

- the FADEC when the engine is running,
- the BATT BUS bar, protected by the REC circuit breaker, when the engine is shutdown.

After engine shutdown, the DCTU is electrically supplied by the BATT BUS bar as long as flight data is transferred.

– NOTE –

If data transfer lasts more than 60 minutes, the DCTU is automatically disconnected from the BATT BUS bar to preserve airplane battery.

Garmin Integrated Flight Deck (GIFD) Approaches

The purpose of this section is to provide an overview of the GIFD capabilities and operation related to GIFD approaches.

Detailed descriptions, as well as operating instructions for these approaches, are provided in the Garmin Pilot's Guide.

RNP Approaches Operation

The GIFD is capable of performing approaches with GNSS guidance – also designated as RNP approaches.

RNAV (GPS) or RNAV (GNSS) – LNAV, LNAV+V

LNAV approaches provide lateral GPS-based guidance to legs defined by the navigation database.

Vertical deviations may be available if the necessary information to construct a vertical path is contained in the database.

Any vertical path information for LNAV approaches is strictly advisory.

There is no guarantee that stepdown fix altitudes will be honored and the crew must level off at the MDA if the runway is not visible.

LNAV approaches may be executed with or without SBAS, and advisory vertical guidance is dependent on sufficient GPS vertical error estimates rather than SBAS vertical integrity.

LNAV+V approaches do not downgrade in general because they do not require SBAS, although high GPS vertical error estimate anomalies could result in loss of advisory vertical guidance.

If GPS is lost, the LNAV approach will be aborted.

RNAV (GPS) or RNAV (GNSS) – L/VNAV

PIM TBM 960 - Edition 0 Rev. 04 Page 7.15.9

LNAV/VNAV approaches add published vertical guidance in addition to LNAV guidance. They are different from LNAV+V in that the vertical deviations are not advisory, but serve instead as published guidance.

The minimums of an LNAV/VNAV approach represent a DA rather than a MDA.

Execution of an LNAV/VNAV approach does not require SBAS integrity as long as a system is configured to support barometric VNAV for approach.

If SBAS integrity is available, it will be used to provide vertical guidance.

During execution of a GPS approach with LNAV/VNAV service levels while the airplane is between the FAF and MAP, excessive deviation indicators appear as white vertical lines to indicate an area where the vertical deviation exceeds ± 75 feet.

If the glide-path indicator is within an area of excessive deviation, the glide-path indicator becomes yellow and the vertical lines also become yellow.

RNAV (GPS) or RNAV (GNSS) – LPV

LPV approaches provide both localizer precision lateral guidance and a vertical path definition.

SBAS integrity is required to execute the approach.

Baro-VNAV Approaches

The GIFD provides the ability to perform barometric based VNAV operations while conducting certain GPS approaches using an automatically-generated temperature-compensated glidepath.

Baro-VNAV approach functionality is separate and distinct from enroute and terminal descent VNAV functions.

Temperature Compensation

If SBAS is unavailable or disabled, the GIFD will provide automatic temperature compensated glidepath vertical guidance on approaches that have LNAV/VNAV minima published, or on some approaches that are not authorized for SBAS.

No pilot action is required to receive the temperature compensated glidepath when SBAS is not available or allowed.

Final Approach Segment (FAS)

Altimeter systems follow the ISA temperature modelling.

When actual atmospheric conditions deviate from the ISA model, errors in altitude will occur.

For example, performing a Baro-VNAV approach during a hot day would result in guidance relative to a glide path angle steeper than the published glide path angle. On the contrary, during a cold day, a Baro-VNAV approach would be based on guidance relative to a glide path smoother than the published glide path angle.

The approach plates indicate a temperature range for which the approach has been designed.

Within this temperature range, the LNAV/VNAV can be used with uncompensated Baro-VNAV systems.

Outside of this temperature range, LNAV/VNAV minimums shall not be used with uncompensated Baro-VNAV systems.

The Garmin approach Baro-VNAV system is automatically temperaturecompensated to produce a glidepath position in space such that Baro-VNAV approaches are always flown at the published glide path angle when the actual temperature deviates from the ISA model. This produces results similar to ILS glideslopes and LPV glide-paths that remain in the same position in space without respect to temperature.

To produce the correct geometric glide path angle on the final approach segment, temperature compensation is applied to the barometric altitude and used to determine the displayed vertical deviation.

However, the altimeter continues to display uncompensated barometric altitude.

The temperature compensation required depends on the temperature profile over the altitude range between the point at which the barometric setting is measured (presumed to be the approach airport) and the present altitude of the airplane.

This temperature profile is estimated by using the air data system static air temperature (SAT) and applying the standard temperature lapse rate to determine the temperature over the rest of the range.

When using barometric altitude for vertical guidance along the final approach segment, temperature compensation is applied whether the temperature is above or below standard temperature. The actual compensated altitude is not displayed to the pilot during an approach.

Compensating Waypoint Altitudes

Depending on the terrain, temperature compensation may be required for waypoints in the approach prior to the final approach segment due to terrain and/or obstacle clearance requirements.

Temperature Compensation of Approach Minimums

PIM TBM 960 - Edition 0 Rev. 04 Page 7.15.11

To enable temperature compensation of the minimum altitude, select the TEMP COMP, option for the minimum altitude reference type (in addition to OFF, BARO, and RAD ALT). The temperature at the destination airport is used for this purpose.

The temperature at the destination airport is invalidated when a different approach is loaded into the active flight plan or when the system powers up. This disables temperature compensation of both the published approach waypoint altitudes on the active flight plan page and the minimum altitude.

The minimum altitude selection type changes to BARO if it was previously set to TEMP COMP.

Temperature compensation of the minimum altitude is not dependent on use of barometric altitude for vertical guidance on the FAS, and is therefore available for any type of approach; in fact, only the destination airport and temperature are required.

Compensating the approach minimums bug simply determines where the minimums reference is displayed on the altimeter.

No adjustment to the barometric altitude is made as a result of temperature compensating the minimums reference.

Approach Level Downgrade

Some automatic approach service downgrade may be performed automatically upon loss of SBAS or when GPS approach alarm limits are exceeded, depending on the approach service level that has been loaded in the flight plan and activated.

This automatic downgrade is annunciated to the pilot through the display of **APR DWNGRADE** in the CAS window and a change in the annunciated service level in the HSI.

As **APR DWNGRADE** may not be triggered under certain circumstances, the HSI annunciation shall be considered as the primary means to annunciate any approach downgrade.

Under certain circumstances when the GNSS integrity requirement is not met, the approach may be aborted. This is annunciated through the display of **ABORT APR**, while the service level annunciation is no longer displayed on the HSI.

If SBAS becomes unavailable on an RNAV LNAV/VNAV approach, **LVNAV** is displayed in yellow, the system switches to LNAV/VNAV (Baro-VNAV) service level and **APR DWNGRADE** will be displayed (the VDI will be flagged "NO GP" until **APR DWNGRADE** has been acknowledged).

If **APR DWNGRADE** is acknowledged, **L/VNAV** is displayed in magenta.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.15.12

If **APR DWNGRADE** is not acknowledged, the system will downgrade to LNAV service level, (**LNAV** displayed in magenta), the VDI will remain flagged "NO GP", and no additional downgrade system messages will be generated.

If SBAS becomes unavailable on an RNAV LPV approach, **LPV** will be displayed in yellow, but the CDI and VDI will continue to be shown. At one minute to the FAF, **APR DWNGRADE** will be displayed.

The VDI will be flagged "NO GP". Depending on the available lines of minima for the approach, the system will switch to either LNAV/VNAV or LNAV service level.

Advisory Visual Approaches

The GIFD will provide advisory visual approaches to many runways in the aviation database. Lateral guidance for the visual approach is aligned with the runway bearing. The system also generates vertical guidance from the runway threshold at a GIFD-defined glidepath (usually 3°; refer to the Garmin Pilot's Guide for further information) allowing coupling of the autopilot to the appropriate minimums.

The pilot interface for visual approaches is an extension of the normal approach selection method. At the end of the list of instrument approaches, there will be a set of visual approaches added. Nominally, there will be a visual approach listed for each runway end. The approaches will be labeled with the name VISUAL and the runway number.

Each visual approach has two transitions: the Straight-in transition and the Vectors-to-Final transition. The transitions will be labeled STRAIGHT and VECTORS, respectively. The FMS creates the visual approach waypoints (fixes) based on the runway position and course specified in the navigation database. These are defined in the following table:

Fix Identifier	Description	Distance to runway
RWxxx	Runway fix defined in the navigation database. "xxx" is the runway number and suffix (e.g. RW19L).	N/A
FINAL	The roll-out from the turn to the final approach course is accomplished as this fix is sequenced.	3.5 NM
STRGHT	Initial fix for the Straight-in transition.	6 NM

The waypoints created by the FMS to define a visual approach are fixes stored in the flight plan. When the approach is no longer a part of a flight plan, these waypoints are deleted. A visual approach can be inserted onto the Active Flight Plan or the Standby Flight Plan. A visual approach also can be inserted into a

PIM TBM 960 - Edition 0 Rev. 04 Page 7.15.13

stored flight plan or copied to a stored flight plan in the course of saving the active or standby flight plan.

CDI and VDI indications are equivalent to those of other GPS-based approaches (e.g.- **LPV** or **L/VNAV**). The GIFD annunciates **VISUAL** in the HSI to indicate a visual approach is active.

When conducting a visual approach, it is the pilot's responsibility to ensure terrain and obstacle avoidance. The visual approach does not take terrain or obstacles into account. It is important for the pilot to understand that the Garmin visual approach does not guarantee terrain or obstacle clearance. Therefore, when a visual approach is selected, the message OBSTACLE CLEARANCE IS NOT PROVIDED FOR VISUAL APPROACHES is displayed on the approach selection page and must be acknowledged before the visual approach is loaded into the flight plan.

The TAWS function normally provides some elimination of terrain alerts when flying an approach with vertical guidance. The TAWS logic is adjusted to ensure that there is no elimination of terrain alerts while flying a visual approach.

Visual approaches are intended to be used as an aid to situational awareness. Visual approaches are advisory in nature and do not guarantee terrain and obstacle clearance for the approach runway.

Advisory Vertical Guidance for VOR and NDB Approaches

- CAUTION

Advisory vertical guidance does not change the published approach minima.

For VOR and NDB approaches, when a published glide path angle is resident in the navigation databases, the system will provide a GPS-based advisory vertical guidance.

On the touchscreen controllers, the approach selection includes +V when an advisory vertical guidance is available.

During a VOR+V or NDB+V approach, the advisory glidepath indicator is a magenta diamond on the vertical deviation scale.

HomeSafe Emergency Function

HomeSafe is based on the Garmin Emergency Autoland function, which is described in the Garmin Pilot's Guide.

HomeSafe is an emergency autopilot function that is meant to be used in the event of pilot incapacitation, i.e. in situations where the pilot is not capable of

PIM TBM 960 - Edition 0 Rev. 04 Page 7.15.14

operating the airplane. Once activated, HomeSafe enables the automatic landing of the airplane without pilot input.

- NOTE -

When HomeSafe is activated, the system declares an emergency.

HomeSafe Emergency Function Activation

Anyone on board the airplane can activate the HomeSafe emergency function by pushing the HomeSafe button located on top of the instrument panel.

The HomeSafe emergency function activates when any of the following conditions occurs:

- The HomeSafe activation button is pressed,
- The Level mode has been in operation for two minutes (either by pressing the LVL pushbutton or automatically),
- The EDM function reaches the stabilization altitude (15,000 ft).

When HomeSafe is activated, **HOMESAFE ROST** is displayed in the CAS window for 15 seconds before HomeSafe starts the automatic landing process. During these 15 seconds, if the autopilot was not engaged prior to the activation of HomeSafe, the Level mode is activated.

HomeSafe uses all of the airplane's systems to perform the airplane's automatic landing.

Once initiated, HomeSafe will perform the following tasks:

- Change the user interface to address non-pilot occupants and inform them about what will occur during the HomeSafe operation in the different flight phases, as shown by a series of informational videos on the MFD,
- Set the transponder to the emergency code (7700),
- Communicate with Air Traffic Control,
- Choose a destination airport and an appropriate flight path to this airport,
- Perform an RNAV approach,
- Establish the airplane in its landing configuration (deploying flaps and the landing gear),
- Land and stop the airplane on the runway,
- Shut down the engine.

To perform this entire sequence, HomeSafe requires the airplane's systems to be fully operational.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.15.15

WARNING

Use of the HomeSafe emergency function may result in serious injury and/or death because there are too many unknown variables that may affect the successful outcome of an HomeSafe function flight.

HomeSafe Emergency Function Deactivation

The pilot can override the HomeSafe function at any time.

WARNING

HomeSafe deactivation must be performed by a pilot who is:

- fully capable of flying the airplane, and
- fully aware of all actions needed to be performed in reconfiguring the airplane (the flight plan in the FMS is lost, the landing gear and flap positions may not agree with the lever positions for the landing gear and flaps).

CAUTION

Deactivation of HomeSafe is not recommended while the airplane is on final approach.

While HomeSafe is activated, the cockpit displays no longer comply with the pilot interface requirements (in particular, the engine parameters and CAS messages are not available).

If the pilot is no longer incapacitated and is capable of flying the airplane, he/she must deactivate HomeSafe before taking control of the airplane.

HomeSafe can be deactivated by any of the following actions:

- Pressing twice on the control wheel's AP/TRIM DISC pushbutton,
- Pressing the AP button on the AFCS control unit (applicable only if HomeSafe has taken control of the airplane).

CAUTION

MFD reconfiguration can take up to one minute. During this time, engine instruments and CAS messages can be displayed on the PFD by using DISPLAY BACKUP.

PIM TBM 960 - Edition 0 Rev. 04 Page 7.15.16

ACFT CONF MISM is displayed in the CAS window if HomeSafe is deactivated after it has begun to set up the airplane in the landing configuration. In this case, the pilot must set the positions of the FLAPS and LANDING GEAR levers to agree with the actual positions of the flaps and landing gear in order to retake control of them.

As the initial flight plan in the FMS has been lost, the pilot will need to create a new one.

Protection - Safety

HS CONFIG MODE is displayed in the CAS window when HomeSafe is in configuration mode.

The HomeSafe function is protected by the HOMESAFE breaker.

Optional Equipment

For optional equipment such as the stormscope, SVS or TAWS, refer to Section 9: Supplements.

Such other optional equipment – as the radio altimeter, the Chartview system or the TAS – are described in the Garmin Pilot's Guide.

– NOTE –

Refer to <u>Paragraph Chartview System Operating Limitations in Subsection 2.6.</u> for operating limitations of the Chartview system.

Section 7 Description

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04

Page 7.15.18

Section 8

Handling, Servicing and Maintenance

Table of Contents

8.1	- General	8.1.1
8.2	- Identification Plate	8.2.1
8.3	- Publications	8.3.1
8.4	- Inspection Periods	8.4.1
8.5	- Alterations or Repairs	8.5.1
8.6	- Ground Handling	8.6.1
	Towing	8.6.1
	Parking	8.6.1
	Tie-down	8.6.2
	Jacking	8.6.2
	Leveling	8.6.2
	Flyable Storage (28 Days or Less)	8.6.2
	Long Term Storage Without Flying (More Than 28 Days)	8.6.3
8.7	- Servicing	8.7.1
	Maintenance	8.7.1
	Engine Oil	8.7.1
	Fuel	8.7.2
	Landing Gear	8.7.7
	Oxygen	8.7.7
	BatteryMINDer Charger	8.7.13
8.8	- Airplane Cleaning and Care	8.8.1
	Windshield and Windows	8.8.1
	Painted Surfaces	8.8.1
	Propeller Care	8.8.2
	-	8.8.2
	Engine Care Interior Care	8.8.2 8.8.2

Page 8.0.2

8.1 - General

This section contains the manufacturer-recommended procedures for the airplane's proper ground handling, routine care and servicing of the airplane. Also included in this section are the inspection and maintenance requirements that must be followed if the airplane is to retain its performance and dependability.

It is recommended that a planned schedule of lubrication and preventive maintenance be followed, and this schedule be tailored to the climatic or flying conditions to which the airplane is subjected.

For additional information, refer to the manufacturer's Airplane Maintenance Manual.

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00 Page 8.1.2

8.2 - Identification Plate

Any correspondence regarding the airplane should include its serial number. This number – together with the model number, type certificate number and production certificate number – is stamped on the identification plate attached to the left side of the fuselage beneath the horizontal stabilizer.

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00 Page 8.2.2

8.3 - Publications

When the airplane is delivered from the factory, it is supplied with a POH, the Garmin Integrated Flight Deck Pilot's Guide and supplemental data covering optional equipment installed in the airplane (refer to Section 9: Supplements and Pilot's Guides).

In addition, the owner/operator has access to the following publications on the <u>MyTBM.aero</u> website:

- Airplane Maintenance Manual,
- Illustrated Parts Catalog,
- Catalog of Service Bulletins, Service Letters.

CAUTION

The POH must always be carried in the airplane.

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00 Page 8.3.2

8.4 - Inspection Periods

For information concerning preventive maintenance to be performed, refer to regulations in force in the country of certification.

An Airplane Maintenance Manual must be consulted prior to performing any preventive maintenance to make sure that proper procedures are followed.

Maintenance must be performed by licensed personnel.

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00 Page 8.4.2

8.5 - Alterations or Repairs

It is essential that the appropriate airworthiness authorities be contacted prior to any alterations or repairs on the airplane to ensure that airplane's airworthiness is not compromised.

Alterations or repairs must be performed by licensed personnel.

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 00 Page 8.5.2

8.6 - Ground Handling

- CAUTION -

Only move or tow the airplane with someone in the cockpit.

Towing

- CAUTION -

Using the propeller for ground handling could result in serious damage, especially if pressure or pulling is exerted on blade tips.

The airplane should be moved on the ground with a tow bar and a suitable vehicle in order not to damage the nose gear steering mechanism. The nose gear fork is equipped with an integrated towing fitting.

CAUTION -

Do not tow the airplane when the flight controls are secured. When towing with a vehicle, do not exceed the nose gear turning angle, as this may result in damage to the gear and steering mechanism – see Figure 8.6.1.

Parking

When parking the airplane, position it into the wind. Do not set the parking brake when brakes are overheated, or during cold weather when accumulated moisture may freeze the brakes. Care should be taken when using the parking brake for an extended period of time – during which an air temperature rise or drop could cause difficulty in releasing the parking brake or damage the brake system.

Make sure that the FUEL TANK SELECTOR is set to OFF.

- **NOTE** -

When the airplane is on ground, do not use solar screens or shields that are installed inside the airplane, or leave sun visors down against windshield. The reflected heat from these items causes a temperature increase that accelerates crack growth or crazing, and may cause the formation of bubbles in the inner layer of multilayer windshields.

When parking the aircraft for periods of longer than 24 hours, use the protective windshield cover, securing it with the lateral and underside straps.

PIM TBM 960 - Edition 0 Rev. 01 Page 8.6.1

For long term parking, the use of plugs and covers (static ports, pitot, engine air inlet, NACA air inlets, exhaust stubs), along with the cockpit cover, tie-downs, wheel chocks, propeller lock and control lock is recommended.

In severe weather and high wind conditions, tie the airplane down as outlined in the following description.

Tie-down

A proper tie-down procedure is the best protection against damage to the airplane caused by gusty or strong winds. To tie down the airplane securely, proceed as follows:

- Install the control lock see Figure 8.6.2,
- Chock all wheels,
- Use sufficiently strong ropes or chains to hold airplane down; insert a rope/ chain in each fitting located under the wings; secure each rope to a ramp tiedown or to a mooring rod,
- Check that airplane doors are closed and locked.

Jacking

When it is necessary to jack the airplane off the ground, refer to the Airplane Maintenance Manual for specific procedures and for the equipment required.

Leveling

Level the airplane as described in the Airplane Maintenance Manual.

Flyable Storage (28 Days or Less)

Airplanes placed in storage for a maximum of 28 days are considered in flyable storage.

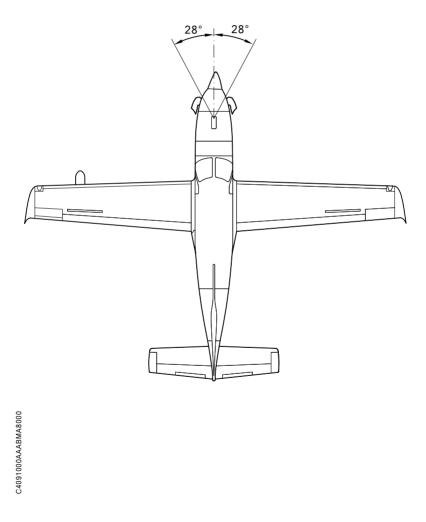
Storage from 0 to 7 days:

- Engine: according to the P&WC Engine Maintenance Manual.
- Airplane fueling: keep fuel tanks full to minimize condensation in the tanks.
- Keep the battery fully charged to prevent the electrolyte from freezing in cold weather.
- Close the oxygen cylinder isolation valve.

Storage from 8 to 28 days:

- Engine: according to the P&WC Engine Maintenance Manual.
- Airplane fueling: keep fuel tanks full to minimize condensation in the tanks.
- Battery:
 - Pull the BATT BUS breaker in the front cargo compartment,

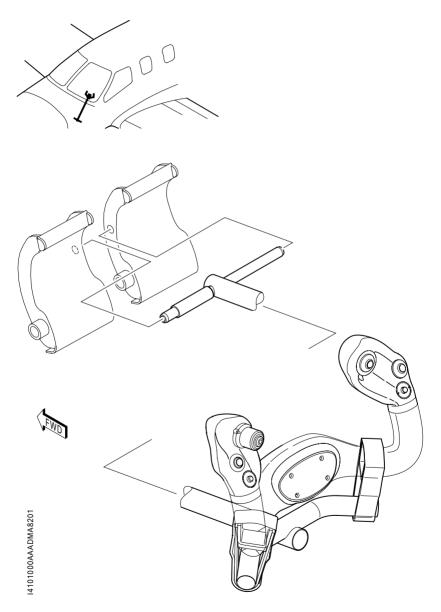
PIM TBM 960 - Edition 0 Rev. 01 Page 8.6.2


- Check the charge level at regular intervals. Keeping the battery fully charged prevents the electrolyte from freezing in cold weather.
- Close the oxygen cylinder isolation valve.

Long Term Storage Without Flying (More Than 28 Days)

Refer to the Airplane Maintenance Manual for the procedures to follow.

Figure 8.6.1 - Turning Angle Limits



PIM TBM 960 - Edition 0 Rev. 01

Page 8.6.4

PIM TBM 960 - Edition 0 Rev. 01

Page 8.6.5

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 01 Page 8.6.6

8.7 - Servicing

Maintenance

In addition to the preflight inspection – refer to procedure <u>Preflight Inspection in</u> <u>Subsection 4.4.</u>, the Airplane Maintenance Manual details the airplane's servicing, inspection and test requirements.

The Airplane Maintenance Manual outlines all items that require servicing, inspection, testing or overhaul.

Engine Oil

Type of Oil

CAUTION

Do not mix different viscosities or specifications of oil as their different chemical structure can make them incompatible.

Specification:

Table 8.7.1 - Recommended Engine Oil Types [Reference: P&WC Engine Maintenance Manual, latest revision]

Nominal viscosity	Specification	NATO code
5cSt	MIL-PRF-23699	O-156 (STD) O-154 (HTS)

Oil Capacity

- System total capacity: 12.7 quarts (12 liters) (oil cooler included)
- Usable capacity: 6 quarts (5.7 liters)

Servicing

The oil filter should be cleaned/replaced at intervals recommended in the P&WC Engine Maintenance Manual (EMM) (Refer to Chapter 05-20 – Scheduled Maintenance – Table 2).

Oil Level Check

To prevent overfilling of the engine oil system, and high oil consumption, an oil level check is recommended within 30 minutes after engine shutdown. The ideal interval is 15 to 20 minutes. If more than 30 minutes have passed and the dipstick

PIM TBM 960 - Edition 0 Rev. 04 Page 8.7.1

indicates that oil is needed, start the engine and run at IDLE for five minutes, then recheck the oil level.

Check the oil level against the dipstick marking, and top up as required. Normal oil level is between MAX HOT and one US quart (0.83 Imp. Quart, 0.95 liters) below MAX HOT, with the engine in horizontal attitude.

– NOTE ————

Filling the oil to the maximum level may result in a high consumption rate, with oil exiting through the accessory gearbox breather.

- CAUTION -

When the filler cap assembly is installed and locked, no movement of the cap should occur.

Fuel

For fuel type, and limitations, refer to Paragraph Fuel in Subsection 2.3.

- CAUTION -

Never fly the airplane with non-approved or contaminated fuel (containing water, sand, rust, dust, etc.).

— WARNING —

During all fueling operations, ensure that fire fighting equipment is available nearby

Do not allow smoking or an open flame in the vicinity of the airplane while fueling.

Attach a grounding wire to an unpainted metallic part of the airplane. Do not operate any avionics or electrical equipment on the airplane during fueling.

- CAUTION -

During fueling operations, take care to not damage the pneumatic deicer boots located on wing leading edges.

A protective apron should be used if possible.

PIM TBM 960 - Edition 0 Rev. 04

Page 8.7.2

Fuel Quality Management

Fuel is contaminated when it contains any material (water, sand, rust, dust, microbial growth, etc.) that was not provided under the fuel specification. In addition, additives that are not compatible with the fuel used can cause the fuel to become contaminated.

All aviation fuels absorb water from the air and contain some dissolved, suspended and/or free water. The amount of dissolved water can increase with the temperature of the fuel. Whenever the temperature of the fuel decreases, the dissolved water becomes suspended water that slowly fall to the bottom of tank and becomes free water.

Among contaminants, water is always present in the fuel because:

- Remaining free water becomes suspended water when the airplane is in motion,
- Dissolved water cannot be fully removed during a fuel service and will be released from suspension as the fuel temperature decreases during flight,
- Water can also be introduced during refueling, or during flight through the fuel tank vent system when descending in humid air.

Fuel quality management is ensured by frequent fuel sampling.

Refer to procedure Preflight Inspection in Subsection 4.4.

Fuel Sampling

Prior to the first flight of the day and after each fueling, use a clear sampler and drain fuel from all five fuel drain valves to determine if contamination is present in the fuel system and to verify that the airplane was fueled with proper fuel.

If contamination is present, repeatedly take samples from all five of the fuel drain valves until all the contamination has been removed.

- WARNING

If after repeated sampling there is still evidence of contamination, the fuel tanks must be completely drained, and the fuel system must be cleaned. Do not fly the airplane with contaminated or unapproved fuel.

– NOTE -

To minimize the possibility of water condensing on the walls of partially filled tanks, and so free water, it is recommanded that airplane be refueled after each flight, respecting the weight and balance limits.

PIM TBM 960 - Edition 0 Rev. 04 Page 8.7.3

Fuel Additives

The fuel used must contain an anti-ice additive that conforms to MIL-I-27686 or MIL-I-85470 specifications.

Strict adherence to recommended preflight draining instructions, as outlined in Section 4, will eliminate any free water accumulations in the tank sumps. While small amounts of water may still remain emulsified in the gasoline, it will normally be consumed and go unnoticed during operation of the engine.

One exception to this can be encountered when operating under the combined effect of the use of certain fuels with high humidity conditions on the ground, followed by flight at high altitude and low temperature. Under these unusual conditions, small amounts of emulsified water can precipitate from the fuel stream and freeze in sufficient quantity to induce partial icing of the engine fuel system.

While these conditions are quite rare and will not normally be a problem for owners and operators, they do exist in certain areas of the world and consequently must be dealt with whenever encountered.

Therefore, to alleviate the possibility of fuel icing occurring under these unusual conditions, it is required to add an ethylene glycol monomethyl ether (EGME or DIEGME) compound to the fuel supply.

The introduction of an EGME or DIEGME compound into the fuel provides two distinct effects:

- It absorbs the dissolved water from the fuel,
- Alcohol lowers the fuel's freezing temperature.

EGME or DIEGME must be carefully mixed with the fuel in a concentration of between a minimum of 0.06% and a maximum of 0.15% by volume. Figure 8.7.1 provides EGME or DIEGME / fuel mixing ratio information.

— CAUTION –

Do not permit the EGME or DIEGME to come in contact with the airplane finish or fuel tank.

Proper mixing of the EGME or DIEGME with the fuel is extremely important. An excessive concentration (greater than 0.15% by volume maximum) will result in detrimental effects to the fuel tanks through deterioration of the protective primer, sealants and system seals, and engine components. Use only blending equipment recommended by the manufacturer to obtain proper proportioning.

Prolonged storage of the airplane will result in a water buildup in the fuel which leeches out the additive. An indication of this is when an excessive amount of water accumulates in the fuel tank sumps. The concentration can be checked using a differential refractometer. It is imperative that the differential

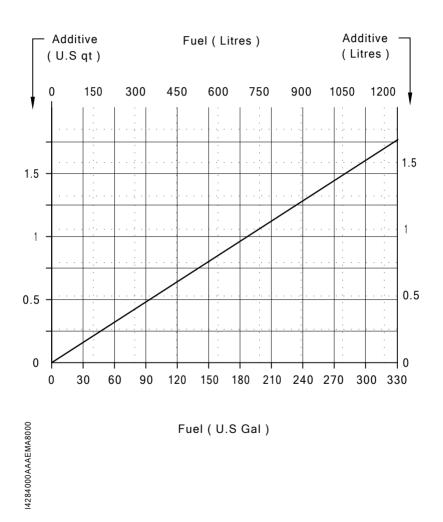
PIM TBM 960 - Edition 0 Rev. 04 Page 8.7.4

refractometer's technical manual be followed explicitly when checking the additive concentration.

Fuel and Fuel Additives in Ukraine and CIS countries

It is possible to use kerosene GOST 10227 RT with the addition of anti-icing additive:

- Liquid И - GOST 8313-88


The above-mentioned additive is added in the quantity equal to 0.3% per volume.

– CAUTION –

Refer to the P&WC Engine Maintenance Manual's latest revision for appropriate quantities of anti-ice additive.

PIM TBM 960 - Edition 0 Rev. 04 Page 8.7.6

Landing Gear

Nose Gear Tire

5.00-5 10 PR - Inflation pressure: 98 psi (6.7 bars) *

Main Gear Tires

18 5.5 10 PR - Inflation pressure: 135 psi (9.32 bars) *

Nose Gear Shock Absorber

Fill with AIR 3520 B (MIL.H5606E) hydraulic fluid; inflate with nitrogen to 87 psi (6 bars).

Main Gear Shock Absorbers

Fill with AIR 3520 B (MIL.H5606E) hydraulic fluid; inflate with nitrogen to 160 psi (11 bars).

Hydraulic System

Check every 100 hours and service with AIR 3520 B (MIL.H5606E) hydraulic fluid.

Brakes

Service as required with AIR 3520 B (MIL.H5606E) hydraulic fluid.

— NOTE –

In very cold conditions, it is necessary to apply higher inflation pressures to tires and shock absorbers – refer to <u>Subsection Utilization in Cold Weather (-0</u> <u>°C to -25 °C) or Very Cold Weather (-25 °C to -40 °C)</u>.

(*) Tire inflation pressures are given for an airplane on the ground at 21 °C. An ambient temperature change of 3 °C produces a change in pressure of approximately 1%.

Oxygen

An oxygen replenishment device is installed directly on the oxygen cylinder head. It consists of a charging valve and a pressure gauge graduated from 0 to 2,000 PSIG. A chart located on the inside of the cylinder service door – see Figure 8.7.2 – indicates the maximum cylinder charge pressure for the ambient temperature.

PIM TBM 960 - Edition 0 Rev. 04 Page 8.7.7

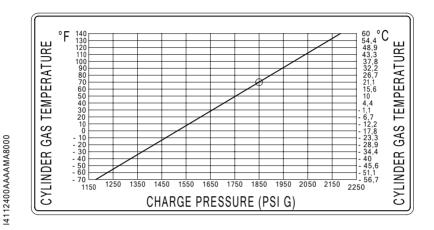


Figure 8.7.2 - Cylinder Charge Pressure Chart

Replenishment Procedure

- WARNING

Make sure that the airplane is fitted with a grounding cable and is properly grounded. The oxygen cart must be electrically bonded to the airplane.

Do not operate the airplane's electrical switches or connect/disconnect ground power during oxygen system replenishment.

Do not operate the oxygen system during refueling/defueling or perform any other servicing procedure that could cause ignition.

The contact of petroleum-based substances such as grease or oil to oxygen creates a serious fire hazard. Do not use oil or grease with the oxygen replenishment equipment.

Always open the shut-off valve slowly to avoid generating heat, and replenish the system slowly at a rate not exceeding 200 PSIG (13.7 bars) per minute.

- CAUTION -

Replenishment of the oxygen system should only be performed by qualified personnel.

PIM TBM 960 - Edition 0 Rev. 04 Page 8.7.8

NOTE ·

The cylinder is fully charged at a pressure of 1,850 PSIG (127 bars) at a temperature of 70 °F (21 °C). For cylinder temperatures other than 70 °F (21 °C), refer to Figure 8.7.2, which lists the required pressures according to the cylinder temperature.

- 1. Open the oxygen service door at the rear of the right wing's fairing.
- 2. Measure the oxygen cylinder temperature.
- 3. Make sure the thermometer indication is constant. Note the indication.
- 4. Refer to the temperature/pressure chart for the correct oxygen cylinder pressure.
- 5. If the pressure on the oxygen cylinder gauge is lower than the maximum for the cylinder temperature, fill the oxygen cylinder:

- CAUTION ·

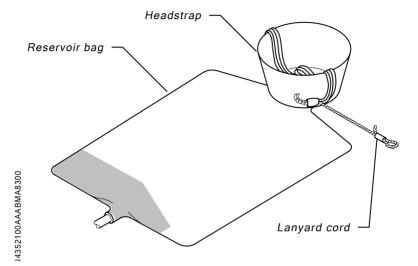
The minimum pressure for the oxygen cylinder is 217 PSIG (15 bars). If the oxygen cylinder pressure falls below the minimum, the cylinder must be purged before refilling. Inform the maintenance department.

- Make sure the area around the oxygen cylinder charging valve is clean.
- Remove the cap from the charging valve.
- Make sure the oxygen supply hose is clean, and connect it to the charging valve.
- Slowly pressurize the oxygen cylinder to the correct pressure.
- Close the oxygen supply and allow the cylinder temperature to stabilize.
- Monitor the oxygen pressure on the gauge and fill to the correct pressure if necessary.
- Release the pressure in the oxygen supply hose and disconnect from the charging valve.
- Install the cap on the charging valve.
- 6. Make sure all tools and materials are removed and the work area is clean and free from debris.
- 7. Close the oxygen service door.

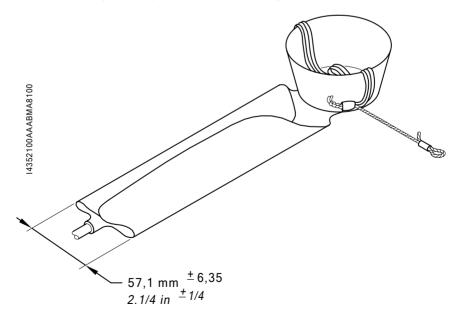
PIM TBM 960 - Edition 0 Rev. 04 Page 8.7.9

Repacking Instructions for Passenger Masks

CAUTION


Do not use oil or other petroleum-based lubricants on passenger oxygen masks or deployment containers. Oil-based lubricants are a fire hazard in oxygen-rich environments. Repacking procedures shall be performed by personnel familiar with the instructions and warnings in this document. Improper packing can damage the masks or result in failure of the masks to deploy.

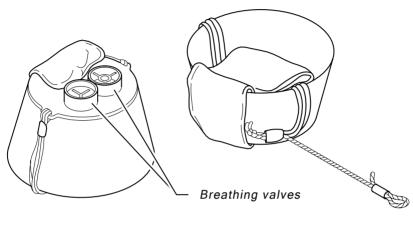
- WARNING -


Masks shall be repacked in an area free of oil, grease, flammable solvents or other contaminants.

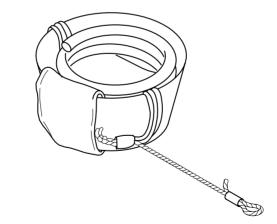
- Inspect and disinfect the mask and deployment container with an aqueous solution of Zephiran Chloride (Scott Aviation P/N 00-2572) or with disinfection cleaners (EROS P/N SAN50). After disinfecting and thoroughly drying the mask, lightly dust the outside of the facepiece with Neo-Novacite powder (Scott Aviation P/N 00-736). Contamination can be removed with mild soap and water solution.
- 2. Fold the headstrap into the facepiece. Pull the lanyard cord outward to the facepiece's side so that it does not interfere with repacking.
- 3. Lay the reservoir bag on a flat surface and smooth out any wrinkles.

4. Gently fold reservoir bag lengthwise into thirds (outside edges folded inward over the bag's center). Do not crease the bag.

PIM TBM 960 - Edition 0 Rev. 04 Page 8.7.11


14352100AAABMA8400

14352100AAABMA18000


5. Fold the reservoir bag away from breathing valves and into the facepiece. Make sure the bag does not cover the breathing valves.

Top view

Bottom view

6. Coil the oxygen tubing inside facepiece over the reservoir bag.

7. Connect oxygen tubing to the manifold oxygen fitting.

PIM TBM 960 - Edition 0 Rev. 04 Page 8.7.12

WARNING

Make sure the lanyard pin is inserted into the correct check valve for the mask that is being installed. If pins are cross-connected, lanyard cords pulled by passengers will initiate oxygen flow to another mask.

- 8. Insert lanyard pin into the corresponding check valve.
- 9. 9. Place the mask in the deployment container with facepiece first. Make sure that the oxygen tubing and lanyard cord are free to deploy and are not caught between the container and the lid.
- 10. Close and latch deployment container lid.

BatteryMINDer Charger

See Figure 8.7.3.

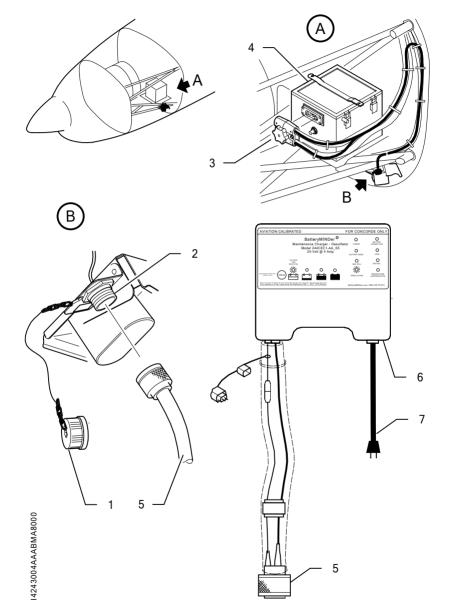
- CAUTION

Carefully read the charger manufacturer's instructions prior to use. The charger shall be used only on the ground. The charger is not designed to be permanently installed on the airplane. Never charge a battery that is frozen or is at a temperature above 51 °C (123 °F).

CAUTION

Make sure that the Quick-Disconnect connector (3) is connected to the battery (4) before setting the BatteryMINDer charger's power.

- 1. Pull down the crash lever.
- 2. Pull the BATT BUS breaker located in the front cargo compartment.
- 3. Remove the cap (1).
- 4. Connect the BatteryMINDer charger connector plug (5) to the airplane connector (2).
- 5. Connect the BatteryMINDer charger (6) to the electrical mains with the plug (7).
- 6. Begin the operations according to the charger's instruction manual.
- 7. After use, disconnect the BatteryMINDer charger plugs (7) then (5), put the cap (1) back on the connector (2) and push the BATT BUS breaker located in the front cargo compartment.


PIM TBM 960 - Edition 0 Rev. 04 Page 8.7.13

Key to Figure 8.7.3

- 1) Cap
- 2) Connector
- 3) Quick-Disconnect connector
- 4) Battery
- 5) BatteryMINDer charger connector plug
- 6) BatteryMINDer charger
- 7) Plug

Figure 8.7.3 - Removal / Installation of BatteryMINDer Charger

PIM TBM 960 - Edition 0 Rev. 04 Page 8.7.15

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 04 Page 8.7.16

8.8 - Airplane Cleaning and Care

Windshield and Windows

The windshield and windows should be cleaned with an airplane windshield cleaner.

– NOTE –

Refer to the Airplane Maintenance Manual for products and application procedures.

Apply the cleaner sparingly with a soft cloth and rub with moderate pressure until all dirt, oil scum and bug stains are removed. Allow the cleaner to dry, then wipe it off with a soft flannel cloth.

— CAUTION –

Do not use any of the following products on – or for – the cleaning of windows: methanol, methylated alcohol, gasoline, benzene, xylene, methyl-ethyl-ketone, acetone, carbon tetrachloride, lacquer paint thinners, and commercial or household window cleaning sprays. In case of doubt concerning a product, do not use it. During the cleaning operation, avoid wearing objects such as rings, watches

and bracelets; and exercise care to prevent buttons, buckles and any hard objects from touching the windshield and the windows.

Adhesive tapes other than Minnesota 3M Type 670 shall not be used on acrylic surfaces.

Never use buffing machines, as excessive force or speeds might produce irremediable defects.

Continue the process by carefully washing the windshield/windows with a mild detergent and plenty of water. Rinse thoroughly, then dry with a clean moist chamois. Do not rub the plastic with a dry cloth, as this builds up an electrostatic charge that attracts dust. Waxing will finish the cleaning operation. A thin, even coat of wax polished out by hand with a clean, soft flannel cloth will fill in minor scratches and help prevent further scratching.

Do not use a canvas cover on the windshield unless freezing rain or sleet is anticipated, as the cover may scratch the plastic surface.

Painted Surfaces

Refer to the Airplane Maintenance Manual for the products and procedures to apply.

PIM TBM 960 - Edition 0 Rev. 00 Page 8.8.1

Propeller Care

Preflight inspection of propeller blades for nicks – and cleaning them occasionally with a cloth soaked with soapy water to remove grass and bug stains – will assure long blade life. Never use an alkaline cleaner on the blades; remove grease and dirt. Refer to the Airplane Maintenance Manual for the procedures to follow.

Engine Care

Refer to the Airplane Maintenance Manual for the procedures to follow.

Interior Care

To remove dust and loose dirt from the upholstery and carpet, clean the interior regularly with a vacuum cleaner.

For additional information, refer to the Airplane Maintenance Manual.

8.9 - Preparation of the Airplane (Equipment and Furnishings)

— WARNING —

For all cabin layouts, make sure that access to emergency exit is free at all times.

- CAUTION -

Removed equipment items must be stored in a manner that ensures their integrity.

Numerous cabin layout configurations are authorized by airplane manufacturer. They are outlined in Section 7.

This procedure specifies how to change the 6-seat layout into a 4-seat configuration, and vice versa. Also, it can be used partly to remove or install equipment items.

However, it is the pilot's responsibility to ensure that all necessary authorizations are obtained from the appropriate regulatory authority.

- 1. Conversion of 6-seat accommodation into 4-seat accommodation see <u>Figure 8.9.1, Figure 8.9.2, Figure 8.9.3</u> and <u>Figure 8.9.4</u>
 - A. Tools and consumable materials
 - Seat protective covers
 - B. Preparation
 - 1) Make sure the SOURCE selector is set to OFF and the crash lever is down.
 - C. Removal of rear seats see Figure 8.9.1

To remove rear seats, perform the following operations:

—— CAUTION —

To prevent damage to seat cushion covers, protective covers should be put on the seats.

- 1) Install protective covers.
- 2) Unlock backrest using backrest tilting handle and fold it forward.

PIM TBM 960 - Edition 0 Rev. 01

Page 8.9.1

NOTE -

For the right-side rear seat, the backrest tilting handle is located behind backrest.

3) Unlock seat using seat tilting handle and tilt it forward.

----- CAUTION -

Make sure to disconnect the seat heating system and the headset plug harnesses before the removal of the seat to prevent harness damage.

 Disconnect both the heating system and the headset plug harnesses. Clip the loose connectors to the holders located on the seat structure.

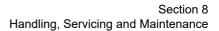
— **NOTE** —

Left-side rear seat does not have a plug for headset. At this station, the headset is plugged behind the right-side rear seat backrest.

- 5) Clear the carpet from under the seat to facilitate moving in rails.
- 6) Open the floor hatch and clip the loose connectors to the holders located under floor panel. Close the floor hatch.
- 7) Hold the seat in tilted position and unscrew quick links of strap located under the left-side seatpan.

_____ NOTE _____

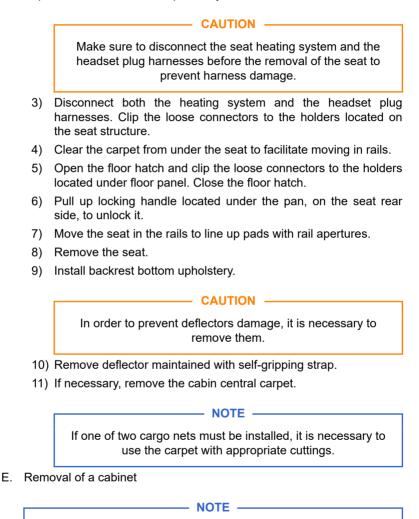
This operation is specific to the left-side seat.


- Pull up and hold left-side and right-side rings, and turn knobs by 90° in order to release and keep locks in up position.
- 9) Move the seat in the rails to line up pads with rail apertures.
- 10) Remove the seat.

—— NOTE ——

Ensure proper storage of strap with left-side rear seat to avoid loosing part.

D. Removal of intermediate seats – see Figure 8.9.2 and Figure 8.9.4


PIM TBM 960 - Edition 0 Rev. 01 Page 8.9.2

To remove intermediate seats, perform the following operations:

- 1) Install protective covers.
- 2) Pull backrest bottom upholstery to remove it.

This operation must be carried out by a service center.

F. Installation of intermediate seats – see Figure 8.9.2 and Figure 8.9.4

PIM TBM 960 - Edition 0 Rev. 01 Page 8.9.3

1) Install deflector, ensuring that both red marks are aligned with the deflector holes – see Figure 8.9.4.

- NOTE -

Position deflectors as indicated on label, according to future position of intermediate seat, in order to optimize cabin cooling.

– NOTE –

If seats are installed facing flight direction (frontwards), the left-side seat must be installed on the right and the right-side seat on the left in order to have the armrest on aisle side.

- 2) Pull backrest bottom upholstery to remove it.
- 3) Clear the carpet from seat area to facilitate moving in rails.
- 4) Position the seat and put lock near the color mark made on rail bottom on aisle side.

—— NOTE —

The color mark in the rail is aligned with red marks.

- 5) Open the floor hatch and remove the clips from the holders located under the floor panel and connect both the heating system and headset plug harnesses. Clip the connectors on the holders located on the seat structure.
- 6) Pull up locking handle , insert pads into rail apertures and then, move the seat so that lock is in front of the color mark.
- 7) Release locking handle to lock the seat.

- WARNING

Verify that lock and all pads are engaged and locked into rails, trying to move seat forward and backward.

8) Install backrest bottom upholstery.

—— NOTE —

Adjust it properly; make sure not to obstruct deflector outlet.

9) Slide properly the carpet under the seat.

PIM TBM 960 - Edition 0 Rev. 01 Page 8.9.4

- 10) Remove protective covers.
- G. Final operations
 - 1) If removed, install cabin central carpet suited to the intended use.

Slide properly the carpet under doorstep.

- If necessary, remove the baggage compartment partition net and install the small or large cargo net – refer to <u>Paragraph Use of</u> <u>Cargo Nets in Subsection 7.3.</u>.
- 3) Make sure the work area is clean and free from debris.
- 4) Determine weight and balance refer to <u>Paragraph General in</u> <u>Subsection 6.4.</u>.
- 2. Conversion of 4-seat accommodation into 6-seat accommodation see <u>Figure 8.9.1, Figure 8.9.2, Figure 8.9.3</u> and <u>Figure 8.9.4</u>
 - A. Tools and consumable materials
 - Seat protective covers
 - B. Preparation

- 1) Make sure the SOURCE selector is set to OFF and the crash lever is down.
- 2) If installed, remove the cargo net.
- 3) Remove intermediate seats refer to paragraph <u>1.D.</u>
- 4) Remove the deflectors maintained with self-gripping strap.
- 5) If necessary, remove the cabin central carpet.
- C. Installation of cabinet

- NOTE -

This operation must be carried out by a service center.

- D. Installation of intermediate seats
 - 1) Install intermediate seats refer to paragraph <u>1.F.</u>
 - 2) If removed, install the baggage compartment partition net.
 - 3) If removed, install cabin central carpet.
- E. Installation of rear seats see Figure 8.9.1
 - 1) Make sure the work area is clean and free from debris.
 - 2) Clear the carpet from seat area to facilitate moving in rails.
 - 3) Check that knobs maintain locks in up position.

PIM TBM 960 - Edition 0 Rev. 01 Page 8.9.5

- 4) Position the seat, fold it forward, refer to detail B, and insert pads into rail apertures.
- 5) Move the seat so that locks are in front of the color mark made on rail bottom.
- 6) Pull up and hold left-side and right-side rings and turn knobs by 90° in order to insert locks into rail apertures.
- 7) Make sure the seat is correctly locked on rails.
- 8) Tilt seat forward, hold it and slip strap around the locking control hinge pin. Screw quick links.
- Open the floor hatch and remove clip from holder located under floor panel and connect heating system harness. Clip connectors on the holder located on the seat structure.
- 10) Tilt the seat rearward and lock it using seat tilting handle.
- 11) Fold up the backrest and lock it using backrest tilting handle.
- 12) Slide properly the carpet under the seat.
- 13) Remove protective covers.
- F. Reconditioning
 - 1) Make sure the work area is clean and free from debris.
 - 2) Determine weight and balance refer to <u>Paragraph General in</u> <u>Subsection 6.4.</u>.
- 3. Additional configurations

- NOTE -

Removed seats can only be reinstalled at their original locations. Rear seats (left or right) are the only ones that can be installed in the rear seat zone along the cabin axis on both central rails – refer to <u>Paragraph</u> <u>Seats</u>, <u>Belts and Harnesses in Subsection 7.3.</u>.

- NOTE -

Numerous cabin layout combinations involving the seats (rear and intermediate) are authorized, and can be performed by the pilot or service centers; installation arrangements with cabinet(s) are to be performed by service centers only.

However, it is the pilot's responsibility to ensure that all necessary authorizations are obtained from the appropriate regulatory authority.

PIM TBM 960 - Edition 0 Rev. 01 Page 8.9.6

- NOTE —

To remove or install these elements, use Paragraph 1 or 2. Refer to <u>Table</u> <u>8.9.1</u>.

– NOTE ––––

After these operations, determine the weight and balance. Refer to Paragraph General in Subsection 6.4.

Table 8.9.1 - Additional Configurations

Equipment	Action	Description / Operation	
Rear seat	Removal	Paragraph <u>1.C.</u>	
iteal seat	Installation	Paragraph <u>2.E.</u>	
Intermediate seat	Removal	Paragraph <u>1.D.</u>	
internetiate seat	Installation	Paragraph <u>1.F.</u>	
Cargo net	Installation	Paragraph Use of Cargo Nets in Subsection 7.3.	

Key to Figure 8.9.1

- 1) Seat tilting handle
- 2) Ring
- 3) Lock
- 4) Pad
- 5) Rail
- 6) Backrest tilting handle
- 7) Quick link
- 8) Knob
- 9) Strap
- 10) Seat heaters and headset connectors

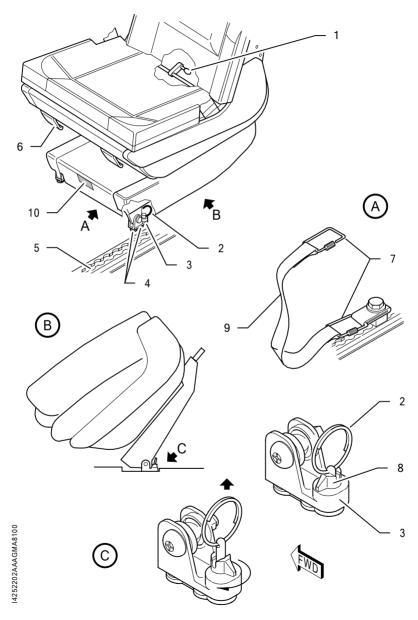
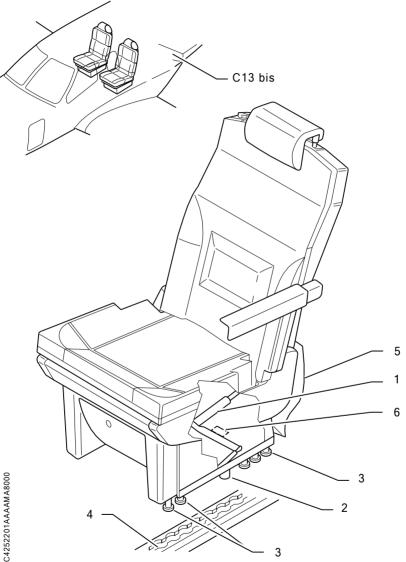


Figure 8.9.1 - Removal / Installation of Rear Seat


Key to Figure 8.9.2

- 1) Locking handle
- 2) Lock
- 3) Pad
- 4) Rail

- 5) Backrest bottom upholstery
- 6) Seat heaters and headset connectors

Key to Figure 8.9.3

- 1) Blanking plug
- 2) Blanking plug
- 3) Blanking device assy
- 4) Deflector

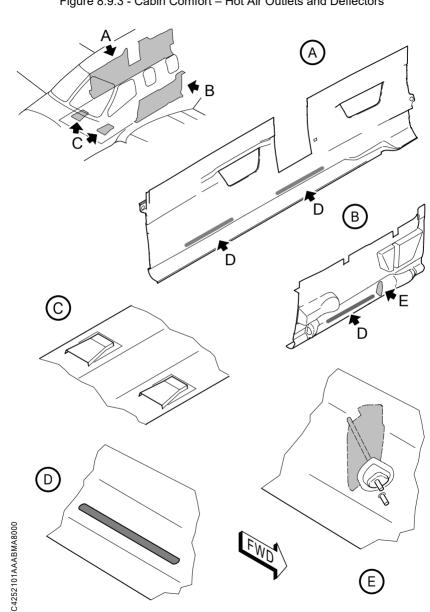
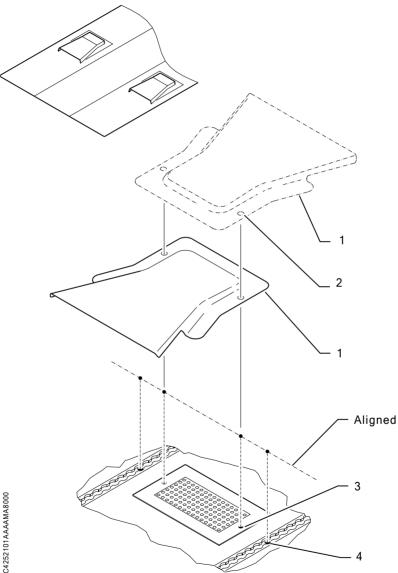


Figure 8.9.3 - Cabin Comfort – Hot Air Outlets and Deflectors

PIM TBM 960 - Edition 0 Rev. 01

Page 8.9.13



Key to Figure 8.9.4

- 1) Deflector
- 2) Deflector hole
- 3) Red mark
- 4) Color mark

PIM TBM 960 - Edition 0 Rev. 01

Page 8.9.15

Intentionally left blank

PIM TBM 960 - Edition 0 Rev. 01 Page 8.9.16

8.10 - Utilization in Cold Weather (-0 °C to -25 °C) or Very Cold Weather (-25 °C to -40 °C)

——— NOTE –

Check shock absorber and tire pressure values inside a hangar that is heated at about 15 °C with control equipment at room temperature.

If a landing is foreseen in cold or very cold weather, or if prolonged operation of the airplane is anticipated in such conditions, it is recommended to prepare the airplane as follows:

- 1. Smear the door and engine cowlings seals with silicone grease, as well as the leading-edge deicers.
- 2. Apply engine oil on the engine cowling latches.
- 3. Inflate the main landing gear shock absorbers to 247 psi (17 bars) at a room temperature of 15 °C.
- 4. Position a 0.59 in (15 mm) shim at the bottom of the piston tube and against the forward landing gear's half-fork to reduce shock absorber travel. Then refill the shock absorber with hydraulic liquid. Remove the shim and inflate the shock absorber to 138 psi (9.5 bars) at a room temperature of 15 °C.
- 5. Inflate main landing gear tires to 130 psi (8.96 bars) and the nose tire to 102 psi (7 bars) at a room temperature of 15 °C.

See	Table 8.10.1 to check	pressure values	and to	inflate t	ires a	and	shock
		absorbers.					

- NOTE –

Check pressure values and inflate shock absorbers and tires if necessary, according to <u>Table 8.10.1</u> during operation in cold weather only.

Table 8.10.1 - Tire and Shock	Absorber Pressures	in Cold or Very Co	ld Weather
	Absoluter ritessures	In Cold of Very Co	iu weather

Inflation Pressures		OAT (°C)				
		-40	-30	-20	-10	+15
Main landing gear shock absorber	psi (bars)	189 (13)	196 (13.5)	203 (14)	218 (15)	247 (17)

Continue ►

PIM TBM 960 - Edition 0 Rev. 00 Page 8.10.1

► Continuing

Table 8.10.1 - Tire and Shock Absorber Pressures in Cold or Very Cold Weather

Inflation Pressures		OAT (°C)				
		-40	-30	-20	-10	+15
Nose gear shock absorber	psi	102	109	116	123	138
	(bars)	(7)	(7.5)	(8)	(8.5)	(9.5)
Main landing gear tire	psi	144	144	130	130	130
	(bars)	(9.96)	(9.96)	(8.96)	(8.96)	(8.96)
Nose gear tire	psi	94	94	102	102	102
	(bars)	(6.5)	(6.5)	(7)	(7)	(7)

Section 3

Emergency Procedures

Table of Contents

3.1	- General Alarm System Recall Procedure Format	3.1.1 3.1.1 3.1.2
3.2	- Rejected Takeoff Engine Failure at Takeoff Before Rotation Rejected Takeoff for Any Other Reason	3.2.1 3.2.1 3.2.2
3.3	 Engine Failures	3.3.1 3.3.2 3.3.4 3.3.6 3.3.8 3.3.12 3.3.13 3.3.15 3.3.16 3.3.18
3.4	- Air Start Air Start Envelope Air Start Procedure	3.4.1 3.4.1 3.4.2
3.5	- Fire and Smoke Engine Fire on Ground Cabin Fire on Ground Engine Fire in Flight Fire or Smoke in Flight	3.5.1 3.5.1 3.5.2 3.5.3 3.5.4
3.6	- Emergency Descents Emergency Descents Profiles Maximum Rate Descent	3.6.1 3.6.1 3.6.2

Fire or Smoke in Flight 1 / 4

Symptoms: smoke or fire is detected in the cockpit or the cabin area. 1 - Oxygen masks and goggles Use Refer to procedure Oxygen Use in Subsection 3.13. 2 - PASSENGER OXYGEN switch DEPLOY — WARNING – The pilot and the front passenger must set the regulator control tab on oxygen masks to 100 % oxygen, and the control knob to EMERGENCY to breathe oxygen at positive pressure. 3 - BLEED switch OFF/RST — WARNING -The cabin pressurization system is inoperative, and the cabin altitude increases towards airplane altitude. 4 - FAN selector OFF 5 - Transmit a MAYDAY signal on current ATC frequency, or on COM VHF 121.5 MHz 6 - Perform procedure Maximum Rate Descent in Subsection 3.6. 7 When the cabin differential pressure is below 0.5 psi: - DUMP switch Press 8 - EMERGENCY RAM AIR control knob Pull 9 If smoke or fire increases: 10 - EMERGENCY RAM AIR control knob Push 11 - Cabin fire extinguisher As required Continue

Fire or Smoke in Flight 2 / 4

► Continuing

WARNING
Avoid prolonged exposure to toxic residue from the extinguishing agents.
If smoke or fire disappears:
► Land as soon as possible <
End of procedure ■
If smoke or fire persists:
12 - GENERATOR selector OFF
13 - Left hand DISPLAY BACKUP pushbutton
14 - ESS BUS TIE switch EMER
► Land as soon as possible <
WARNING
If the cause of the smoke is an unextinguished fire, maintain OFF/RST for the BLEED switch and OFF for the FAN selector to eliminate the risk of spreading the fire.
CAUTION
Only the left Primary Flight Display (PFD 1) is available. Autopilot (AP) and Autothrottle (AT) are inoperative. Ice detection and de-icing system are inoperative. Landing Gear and Flaps controls are inoperative. Automatic fuel tank selection is inoperative. Electric Boost Pump (AUX BP) is inoperative.
NOTE
In this configuration, the battery only supplies power to ESS BUS 1, ESS BUS 2, and BATT BUS, refer to BUS Bars <u>BUS Bars in Subsection 3.9.</u> .

Continue 🕨

PIM TBM 960 - Edition 0 TR30 - July 2023 Page 3.5.5

Fire or Smoke in Flight 3 / 4

► Continuing If smoke or fire persists: ► Fly the airplane ◄ 15 - Crash lever Pull down 16 - Use the standby instrument (MD302) for: attitude airspeed altitude heading ——— NOTE — The internal battery will provide power to the MD302 for one hour. If smoke or fire stops: —— NOTE — This will allow the pilot to use PFD 1 and COM 1. 18 - Use VHF 1 to seek assistance from Air Traffic Control for landing If not: 19 - Return to VMC conditions if possible For approach and landing: 20 - Perform procedure Emergency Gear Extension in Subsection 3A.7. 21 - Minimum airspeed according to conditions and flaps configuration

	Normal Conditions	Icing Conditions
Flaps UP	105	135
Flaps TO	100	115

Continue ►

PIM TBM 960 - Edition 0 TR30 - July 2023 Page 3.5.6

Fire or Smoke in Flight 4 / 4

► Continuing

Flaps LDG	85	95				
22 - Land normally	22 - Land normally					
When airplane is stopped:						
23 - THROTTLE IDL						
24 - ENGINE MODE switc	h	OFF				
25 - FUEL TANK SELECTOR						
26 - Brakes	As required					
27 - Crash lever Pull d						
► Evacuate as soon as possible <						

End of procedure.

Intentionally left blank

Page 3.5.8