TBM 940
OVERVIEW

1.01
THE DAHER TBM 940

1.02
SPEED

1.03
AUTOMATION

1.04
ADVANCED FLIGHT DECK

1.05
NEW FUNCTIONS WITH THE G3000

1.06
CONNECTED COCKPIT

1.07
THE WORLD AT YOUR FINGERTIPS

1.08
YOUR TBM E-COPILOT IS ALWAYS WITH YOU

1.09
GO THE DISTANCE

1.10
PROVEN AIRCRAFT DESIGN

1.11
COMFORT FOR TRAVELERS

1.12
YOUR LOUNGE IN THE SKY

1.13
FLEXIBILITY

1.14
PROPELLER

1.15
POWER

PILOT'S CORNER

2.01
FLYING THE VERY FAST TURBOPROP

2.02
TAKEOFF & CLIMB PERFORMANCE

2.03
HOT & HIGH PERFORMANCE

2.04
CRUISE SPEED

2.05
ALL THE RANGE YOU NEED

2.06
LANDING PERFORMANCE

2.07
SPECIFICATIONS & PERFORMANCE
3.00 BUILD YOUR TBM

3.01 PERSONALIZE YOUR TBM

3.02 PAINT PROCESS

3.03 TBM 940 2019 PAINT SCHEME SELECTION

3.04 TBM 940 PAINT SCHEME EXAMPLES

3.05 PRE-SELECTED HARMONIES

3.06 SEATS & CABINETS

3.07 MAKING THE TBM EVEN MORE PERSONALIZED

4.00 TBM OPERATIONS

4.01 SUPERIOR SERVICE

4.02 EASY MAINTENANCE COMPUTER FOLLOW UP WITH CAMP

4.03 WARRANTIES THE INDUSTRY’S BEST

4.04 TBM OPERATING COSTS ANALYSIS

4.05 TBM EASY TRAINING

4.06 A GLOBAL NETWORK PROVIDES CARE FOR THE TBM
THE DAHER TBM 940

Daher’s TBM 940 offers the ultimate developments in avionics and comfort for a general aviation airplane. As an evolution of the TBM 900, the TBM 940 retains the airframe commonality with its predecessor — including the Pratt & Whitney Canada PT6A-66D powerplant — while opening a new era by offering an enhanced human-machine interface environment for pilots and providing more comfort to its passengers — a perfect match with the TBM very fast turboprop aircraft’s legendary of superior performance.
Wherever it flies, Daher’s TBM 940 gets there faster, with speeds of 330 kts./380 mph.

This is maximum cruise speed at 28,000 ft in ISA conditions. At the TBM 940’s service ceiling of 31,000 ft, it is 327 KTAS. The TBM 940’s performance at “mid-teen” altitudes enables cruise speeds exceeding 300 KTAS. It offers a range of options to maximize ground speed in case of strong headwind at higher altitudes.

Speed means the TBM 940 can quickly fly distances across a continent and have enough time at destination for business or pleasure. It helps owners and operators to cope with their busy agendas. With thousands of destinations accessible in less than two hours, the TBM makes travel easy.

Speed is of the essence with the TBM!
TBM’s cruising speed is typical of a light jet with the economy of a single-engine turboprop.
The Daher TBM 940, the latest member of the family of very fast single-engine turboprop aircraft, increases automation in the cockpit to reduce pilot's workload, enhancing safety and performance.

The main feature of the TBM 940 is an automated throttle – the first ever installed on a production turboprop aircraft in the TBM weight category.

The autothrottle integrated system automates the engine power control and monitoring. Fully integrated with the autopilot and linked to a smart engine gauge on the Garmin G3000 integrated flight deck, this single power lever can be used from climb-out to landing approach.

The large and new autopilot controller, the GMC 711 AT, decreases the pilot's workload with new Autopilot modes such as selection of vertical speed (VS) or indicated airspeed (IAS).

During the climb phase, the pilot no longer needs to adjust continuously the throttle to reach the optimum torque. Climb to cruise transitions as well as settings with inertial separator activated are anticipated and smoothed by the autothrottle system.

It also optimizes the cruise, adjusting automatically to the mode selected or to the active user's profile settings.

During the descent and approach phase, the speed control mode allows to hold the approach path more accurately than following the angle of attack (AoA) indicator.

User profiles can be selected for a whole flight from climb to approach, managing vertical navigation and the autothrottle system. Thus the TBM 940 is able to handle complex approaches with altitude and speed constraints.

The autothrottle definitely improves safety through the engine protection. The autothrottle algorithm continuously monitor the engine parameters and protect the engine independently whatever the system is engaged or not.

In addition, the engine parameters monitoring are now displayed on an intuitive smart single engine indicator when reaching the limit with different color codes (Green, amber and red) for Torque, ITT and NG.

Welcome to the ultimate user-friendly cockpit!
The TBM 940 model year 2019 features the latest version of the Garmin G3000 integrated avionics system. Powered by a state-of-the-art processor, the new version offers a faster start-up than its predecessor. Three 12-inch ultra-high-resolution displays (1920 x 1200 pixels) provide enhanced perspective view of terrain features, obstacles and traffic – all shown in relative proximity to the aircraft.

The displays’ split-screen functionality enables separate vertical pages to be viewed side-by-side, helping the TBM pilot to manage screens by priority that best suits each phase of flight. As examples, this allows the simultaneous display of airway charts and approach plates; satellite weather and flight planning pages; and traffic, radar or terrain alerts. By centralizing data entry in one easy-to-access location, the Garmin G3000 takes flight deck management to a whole new level – providing more focused control for pilots.

With an extended 16:9 width-to-height ratio, the G3000’s all-purpose GDU 1250W displays can function either as a primary flight display (PFD) or multi-function display (MFD) – or in reversionary mode as both.

When used as the pilot’s PFD, the high-resolution screens provide excellent situational awareness with the Garmin SVT™ Synthetic Vision Technology – with enhanced 3-D perspective topography displaying a realistic view of ground and water features, obstacles and traffic. Everything is there to help the pilot visualize what lies beyond the nose of the TBM, even in marginal weather conditions. In addition, a large inset map allows more traffic and terrain/obstacle data to be accommodated on the primary flight display for even better situational awareness.

The G3000’s graphical synoptics for airframe, electrical and fuel systems offer easy monitoring and faster troubleshooting. Higher-resolution displays allow enhanced viewing and management of multiple sensor inputs – thus making the multi-functional displays even more multi-functional.

In another improvement for pilot interface, Daher has introduced backlighting on the TBM 940 cockpit’s central console to provide enhanced visibility at night for the manual trim, power lever, flaps lever and override controls.
The Model Year TBM 940’s high-definition display screens are teamed with the latest software version that brings high processing power. Informative messages from the crew alerting system (CAS) are now displayed in white for easier distinction from caution (yellow) and warning (red).

The current G3000 software version includes the following functions:

SURFACE WATCH
Surface Watch™ provides aural and visual alerts to help the pilot maintain enhanced situational awareness in the airport environment – including the avoidance of potential risks from wrong runway use.

BARO VNAV
The aircraft’s Baro-VNAV system allows precision approaches to be flown with vertical guidance (LNAV+V) at airports where Space-Based Augmentation System (SBAS) or Wide Area Augmentation System (WAAS) are not available. The vertical guidance is provided by barometric altitude information from the aircraft.

The specified vertical path typically is computed between two waypoints, or an angle from a single way point.
VISUAL APPROACH

This new feature provides assistance for visual approaches to non-controlled airports based on terrain and the classic 3-degree vertical path. It uses altimeter information from the aircraft’s pitot-static system and the air data computer to provide advisory vertical guidance while taking terrain and obstacle clearance into account. The procedure is designed to help pilots fly a stabilized approach. The visual approach can be activated when the aircraft is within five miles of the airport.
The TBM 940 is equipped to be fully connected with the environment.

FLIGHT STREAM 510

This patented memory card contains Wi-Fi and Bluetooth® connectivity capability. It streams information wirelessly via Connext® link in real time between G3000® and compatible mobile devices running the Garmin Pilot™ or ForeFlight Mobile apps. This functionality enables advance flight planning to be performed on an iPad®, tablet or other smart device – at home or in the office – with the data wirelessly loaded into the aircraft at the airport. Pilots also can update databases by simply collecting all the information on a mobile device, followed by the data transfer to the aircraft’s avionics suite once at the airport.

GTX 345

On the TBM 940, the GTX 345 all-in-one transponder solution provides for ADS-B “Out” and “In.” The 1090 MHz ADS-B “Out” enables operation at any altitude in airspace around the globe, with the Mode S Extended Squitter (ES) transponder and optional WAAS/GPS position source in a single unit. It provides access to dual-link ADS-B “In” traffic, weather, GPS position and backup attitude via Connext® link to Garmin Pilot™ and ForeFlight Mobile apps, as well as some portable devices.

The extra-precise GPS position reference meets the traffic monitoring requirements of ADS-B can be provided either by the WAAS/SBAS-compliant navigation system.

The ADS-B weather link is continuously broadcast on the 978 MHz Universal Access Transceiver (UAT) frequency, and is similar to the basic services offered by leading commercial satellite weather providers. It gives access to all types of available information, such as NEXRAD imagery, METARs, TAFs, winds and temperatures aloft, PIREPs, NOTAMs, and much more.

GSR 56

Iridium-based satphone GSR 56 enables communications via text and messaging from the TBM 940. It also provides global weather and communication tools to enhance flight safety, with access on the multi-function display. Services include graphical radar imagery, METARs, TAFs and more.

In addition, through the GDL 69 DATALINK SYSTEM, the TBM 940 can be connected to the XM WX weather and radio services in countries where this service is available. It delivers continuous weather updates throughout the flight.
Aboard the TBM 940, navigation is at the pilot’s fingertips.

The avionics system’s new GTC 580 glass touchscreen controller, sized at 5.7 inches, provides highly intuitive control with a host of functions. Landscape-oriented for better integration into the cockpit panel, the controller brings a new level of interface with pilots and their electronics. It incorporates streamlined menu structures to remove visual clutter and eliminate mechanical knobs, buttons and selector switches.

Featuring a desktop-style, icon-driven interface that is built on a new “shallow” menu structure, the GTC 580 allows a pilot to access more systems and sensors with fewer keystrokes or page sequences. Its user interface is totally software-based, making configuration easy. In addition, future enhancements, applications and system growth capabilities can be readily accommodated without physically altering the mechanical controls.

Responsive, icon-identified “touchkeys” on the GTC 580 controller make functions easy to locate and access with fewer hand/eye movements in
the cockpit. In addition to full NAV/COMM radio management and simplified page navigation on the cockpit multi-function display, the GTC 580’s high-resolution screen can be used to control the remote audio/intercom system, as well as transponder codes and idents, electronic checklist entries, flight plan entry and editing – plus optional synoptic data and other selected mapping, traffic, weather, entertainment, and custom display options. What’s more, handy “BACK” and “HOME” keys on the GTC 580 allow the user to quickly retrace steps or return to the desktop from any page.

When a more manual approach is preferred, the GTC 580 controller facilitates the process with its single set of mechanical concentric knobs, along with a volume control knob and dedicated map joystick. At the pilot’s option, the dual knobs can be used in lieu of the touchscreen to enter frequencies for selected radios or to toggle between Comm 1 and 2. The current function of these knobs is always clearly identified in the touchscreen window above them – so there’s no confusion as to which knob is doing what.
The TBM 940 benefits from a concentration of innovation, technology and safety improvements that can be compared to bringing an “e-copilot” into the cockpit to reduce the pilot’s workload. These innovations reflect Daher’s policy of constant improvement, which offers TBM customers the latest technology available for the optimized use of their aircraft.

The newest addition to the TBM e-copilot® featured on Model Year 2019 aircraft is the Ice Protector function.

Activation of the TBM ice protection systems remains the pilot’s responsibility based on the identification of icing conditions. If the pilot does not activate the ice protection systems in a preventive way and fails to recognize ice accretion through current visual, the Advisory Automatic In-flight Ice Detection System will operate as a backup.

An ice detector based on frequency variations located on the top of the fin triggers the ice
protection systems when icing conditions are detected if the pilot fails to identify icing conditions or ice accretion.

It activates the following systems:
- Pneumatic de-icing boots on the wings and tailplane
- Electric propeller de-icing
- Electric windshield de-icing
- Inertial Particle Separator.

TBM e-copilot® includes also the following features:
• An Angle of Attack (AOA) sensor with visualization on the cockpit’s Primary Flight Display electronic instruments;
• Flight envelope monitoring through the Electronic Stability and Protection (ESP) and the Under-speed Protection (USP) systems, both of which have been added to the autopilot. These electronic monitoring and stability augmentation systems assist the pilot in maintaining the aircraft in a stable flight condition when flight parameters are exceeded;
• Aural alerts for stall, overspeed, landing gear extension and oxygen mask use. These alerts replace aural sounds for better warning identification;
• The stick-shaker, a mechanical device to rapidly and audibly vibrate the control yoke to warn the pilot of an imminent stall.
At long-range cruise speed with four people on board, the TBM 940 can reach a maximum range of 1,730 nm. In routine operations, the TBM 940 offers tremendous “legs” for its operators - consistently enabling trips of 1,200 NM at altitudes high enough to clear the weather below, with 1.5 hours of reserve. This is true efficiency!

It enables a typical business trip to be flown direct on most of the typical business trips within continents. And those with an adventurous spirit can explore new destinations in their TBM, bringing the world within reach.

The TBM 940 provides greater range and load carrying performance than the capabilities of typical light jets particularly allowing for the likely limited availability of flight levels above FL310 across most of the continental US and Western Europe to light jets that depend on access to these “higher” flight levels to obtain their quoted cruise range performance.
PROVEN AIRCRAFT DESIGN

The aircraft’s proven design and unmatched safety record provides owners and operators with much more than a light jet can offer. Daher designed its TBM 940 to be a revolutionary aircraft, and the proof is in its features. The aircraft offers impressive range and light jet-like speed, but with much better fuel efficiency, lower operational costs, a comfortable cabin and remarkably high reliability.

Winglets give Daher’s TBM 940 its signature look – reflecting the advanced aerodynamic research that went into making this very fast turboprop family the ultimate airplane. Not only do these surfaces add stylish a touch, they significantly reduce drag while improving handling at low speeds and high angles of attack. In addition, the aerodynamically-optimized wings incorporate fail-safe technology and offer superior handling qualities throughout the flight envelope. These wings are built around two wing spars, one forward and one aft, which are milled from a solid billet of aircraft-grade aluminum alloy. Two milled aluminum carry-through spars provide additional rigidity and strength.
Incorporating a variety of aluminum and steel alloys, titanium, as well as advanced composite materials, the TBM airframe offers unmatched structural strength and durability at the lowest possible weight.

From its inception, the TBM family has employed a fail-safe airframe design, including the use of multiple load paths, a crack-stopper band, and an optimized number of access panels to maximize structural life and sub-system reliability while also minimizing repair-cycle times. All TBM versions are fully certified, with support from a worldwide network of service centers.
COMFORT FOR TRAVELERS

All TBM aircraft are designed to provide a smooth ride – comfortably flying over the weather and at high cruise altitudes. With a host of new features, the TBM 940 version offers even more comfort and luxury than previous TBM models, combining hand-made craftsmanship in a thoroughly modern package. Its interior appointments benefit from the cooperation between Daher’s design department and specialists in high-end and VIP aircraft cabin outfitting.

New styling on the TBM 940 begins with a refined cabin entrance that incorporates a harmony of black fittings and polished metal elements in the doorstep stairs and handle.

By creating and building aircraft since 1911, Daher understands that pilot and aircraft must form a single entity. For the TBM family, its ergonomic architecture integrates a pilot and the passengers into the vehicle. Top grain leather with detailed stitching is used on all seated surfaces, and the seats easily recline – creating a relaxing environment in generously-sized, sculpted deep cushions with padded leather armrests.
YOUR LOUNGE IN THE SKY

All seats are equipped with adjustable backrests and folding armrests, while passengers also can take advantage of a large folding table in the center of the cabin. Finishing touches include convex molding, known as gadrooning – further adding to the overall sports-car feel and the sensation of speed.

Cabin illumination consists of dome lights, baggage compartment lights, access stair lighting and individual reading lights at all seats. Keeping connected and entertained is enhanced by I4/24 Volt power outlets with a USB interface, allowing mobile devices linkup. Sirius XM satellite music or radio. Many optional storage cabinets are available to make every flight an enjoyable experience.

Every seat is now heated, with the heating function controlled. Once the mode is engaged by the pilot via a master control in the cockpit, each occupant can choose whether to utilize the heating – and select either light or moderate heat settings.

For customization, the TBM 940’s interior can be even more individualized through to a diverse selection of options, with the palette of materials and decors ranging from classic (elegant dark walnut wood) to sporty (carbon fiber or brushed aluminum). (see page 68)
Photographie: Maxime Fourcade
FLEXIBILITY

The Daher TBM 940 gives SUV-type flexibility while providing sports car-style performance. In just a few minutes, the rear seats can be removed and the cabin converted into a four-seat forward-facing configuration with an unrestricted baggage area capable of holding over 500 lb. (230 kg.) of cargo, including business equipment, skis and golf clubs. The pilot door comes standard and makes boarding easy.

In addition, the “Elite Privacy” option enable the TBM owner to integrate a quick-change lavatory compartment in the TBM’s aft fuselage. It serves as a bench-type seat with a low divider wall when not in use during flight, and converts to a fully private toilet compartment at the simple touch of a button. Two electric motors drive a deployable multi-segment partition with an lockable door to ensure privacy, and the compartment includes a large courtesy mirror that illuminates automatically.

Built using lightweight, resistant composite materials and cabin soundproofing, the “Elite Privacy” compartment weighs only 90 lb. (45 kg.), and can be installed/removed by a mechanic in 30 minutes – converting the TBM cabin’s standard six-seat layout to a four-passenger configuration.
The TBM 940’s five-blade composite propeller has been designed by Hartzell Propeller specifically to improve the aircraft’s takeoff distance, climb and cruise speed. The TBM 940 also is a quiet operator wherever it flies, with the propeller system helping continue the “airport-friendly” profile of Daher’s TBM aircraft family. Its sound level during takeoff is just 76.4 decibels, meeting the latest international noise standards.

Just as Daher has a rich heritage in aircraft development and production, Hartzell Propeller’s roots go back to the early days of flying. The company traces its history to a 1914 relationship between pioneers Orville Wright and Robert Hartzell, which led to the manufacture of the first Hartzell propeller in 1917. Hartzell’s original designs were used for the Glenn Curtiss JN-4 Jenny.

Today, Hartzell propellers are produced using an innovative blend of sophisticated engineering analytics, certification skills and world-class manufacturing technologies. Its products are utilized on a full range of engines, including the PT6A powerplants that equip the entire TBM fleet.
POWER

A single, ergonomically-designed lever controls the engine power, propeller and engine condition. In addition, its 300-amp starter generator enables the TBM 940 to start almost twice as fast as its predecessors, while an automatic starter cutoff reduces pilot workload during the startup sequence.

The lower section of the cockpit panel has been re-designed to allow easier access to de-icing, internal separator and other controls, as well as to provide more legroom for taller pilots. Pressurization settings are completely automatic. Overall, the TBM 940 is the most ergonomic and easiest TBM to fly!

The TBM 940 is powered by a Pratt & Whitney Canada PT6A engine. This powerplant’s simple design offers easy maintenance, efficiency and low operational costs – and it is covered by one of the industry’s most extensive support networks.

PT6A variants are used on more than 100 different aircraft types. Proven in years of regional airliner and commercial aircraft operations – and with over 43,000 engines in the field that have accumulated more than 390 million flight hours – the PT6A is recognized as one of the most reliable aircraft powerplants ever built.

The PT6A-66D model used on the Daher TBM 940 has a thermodynamic rating of 1,825 horsepower – making it one of the most powerful engines in the PT6A family. Its main components include: a multi-stage compressor (centrifugal and axial); a combustion chamber, a compressor turbine with an enhanced wheel; a first stage compressor with single crystal blades allowing higher interstage turbine temperature (ITT) operating limits; and an independent two-stage turbine driving the output shaft through a reduction gearbox.

Single-lever power control and auto-starter shut-off make the Daher TBM 940 one of the simplest PT6A-powered aircraft to manage.
PT6A ENGINE CUTAWAY

01 PROPELLER GOVERNOR
02 REDUCTION GEARBOX
03 PROPELLER SHAFT
04 TACHOMETER PAD
05 POWER TURBINE
06 COMBUSTION CHAMBER
07 AXIAL COMPRESSOR
08 ACCESSORY GEARBOX
09 ENGINE FUEL CONTROL UNIT
10 AIR INLET
11 CENTRIFUGAL COMPRESSOR
12 COMPRESSOR
FLYING THE VERY FAST TURBOPROP

The TBM 940 benefits from everything that Daher has learned from previous versions of the TBM family, while offering even greater speed, range and efficiency. It also has improved short field capabilities and, as a result, can be used on just about any general aviation runway.

This is a distinct difference from light jets, especially with “hot and high” runway performance. A runway available to the TBM may simply not be accessible to light jets, or would require substantial reductions to the number of passengers, baggage or fuel load carried.

With the TBM 940, pilots can arrive closer to their destinations, while still bringing everything needed for the trip.
Approaching at only 90 KIAS or less, short runways or short unpaved surfaces accommodate with ease. Its new five-blade Hartzell propeller reduces noise and improves takeoff performance. The availability of thrust reverse on the TBM 940 substantially improves safety margins over aircraft without these capabilities when flying into shorter airfields, allowing landings on extremely short strips and runways – safely using a distance of less than 1,500 ft.
TAKEOFF & CLIMB PERFORMANCE

Excellent short field performance and load carrying capabilities are designed by Daher into the TBM 940. While FAR Part 23 airworthiness standards only require ground roll to be used in calculating necessary runway length, the TBM’s published runway distances are based on the requirements to clear a 50 ft. obstacle – which provides an enhanced safety margin.

Impressive safety margins on short, hot and high runways are part of the TBM 900’s performance attributes.

CLIMB PERFORMANCE
The Daher TBM 940 can climb to its certified service ceiling of 31,000 ft. in just over 18 min. when departing from sea level at its maximum takeoff weight.

This performance exceeds the vast majority of turboprops and some light jets, allowing the operator to climb faster above weather and to fly more of the trip at higher, more fuel-efficient altitudes – reducing operating costs while at the same time enhancing passenger comfort.
Even on a hot summer day, (example: ISA +30°C, at Aspen, Colorado, elevation 8,000 ft.), the TBM 940 provides enough power to operate from the airport.

This is a distinct difference from light jets, especially with “hot and high” runway performance. A runway available to the TBM may simply not be accessible to light jets, or would require substantial reductions to the number of passengers, baggage or fuel load carried.
Impressive safety margin on short, hot and high runways. On a hot summer day, ISA +30°C, at Aspen, Colorado (elevation 8,000 ft.), the Daher TBM 940 takes off using short runway distance.
Daher’s TBM 940 offers the cruise speed typical of a light jet but with the economy of a single-engine turboprop. Maximum cruise speed at 28,000 ft. in ISA conditions is 330 KTAS; at the TBM 940’s service ceiling of 31,000 ft., cruise speeds of 326 KTAS can be achieved.

These are among the keys to the TBM 940’s utility. Rather than having to fly at lower altitudes for speed or travel efficiency, the aircraft offers exceptional performance and operating economy at its maximum cruise altitude.

Another important TBM 940 feature is its excellent performance at “high-teens” altitudes, offering cruise speeds exceeding 290 KTAS. This flexibility provides the pilot a range of options to maximize ground speed in cases of strong headwinds at higher altitudes, or for shorter trips. The TBM 940 offers both better fuel consumption and performance than typical turboprops, as well as substantially better fuel consumption with equivalent performance to typical light jets.
FUEL EFFICIENCY

The TBM 940 offers better fuel consumption and performance than typical turboprops, and is significantly better when compared to typical light jets with equivalent performance.
Figures on the payload/range diagram are calculated for maximum cruise, recommended cruise and long-range cruise settings as defined in the Daher TBM 940’s Pilot Operating Handbook:
• Takeoff weight includes the fuel required to complete the trip with the indicated number of passengers and fuel reserves;
• Payload figures are calculated with a 200-lb. pilot included in the basic operating weight according to NBAA (National Business Aviation Association) flight profiles;
• Flight time includes climb, cruise and descent. No allowance has been calculated for taxi time or ATC procedures.
• Block fuel includes takeoff, climb, cruise and descent;
• Cruise altitude represents an optimum altitude for the distance flown;
• Reserve fuel is based on NBAA IFR specifications using 100 NM. as the alternate distance, and assuming a climb to 20,000 ft.
• The TBM 940 provides greater range and load carrying performance than light jets, particularly allowing for the likely limited availability of flight levels above FL310 (31,000 ft.) across most of the continental United States and Western Europe.
• The aircraft’s NBAA reserve maximum cruise IFR range with four adults aboard is 1,290 NM., and the NBAA reserve long-range cruise with the same number of passengers is 1,466 NM.
• Excellent load and passenger carrying capabilities of the TBM 940 allows four adults to travel more than 1,200 NM. at a maximum cruise speed of 330 KTAS and 31,000 ft. with NBAA reserves.

To illustrate the TBM 940’s range possibilities, here are examples of maximum range in ISA conditions, no wind with 45 min. fuel reserve at different speed settings.
PAYLOAD RANGE (NM) WITH NBAA RESERVE

(100 NM ALTERNATE + FUEL RESERVE)

0
200
400
600
800
1000
1200
1400
0
200
400
600
800
1000
1200
1400

PAYLOAD RANGE (NM) WITH NBAA RESERVE
(100 NM ALTERNATE + FUEL RESERVE)

MAXIMUM CRUISE FL280

LONG RANGE CRUISE FL310

PILOT'S CORNER
To illustrate the TBM 940's range possibilities, here are examples of maximum range in ISA conditions, no wind with 45 min. fuel reserve at different speed settings.

Note: The circles on the maps indicate range possibilities in ISA conditions, no wind with 45 min fuel reserve. It gives indication only and should not be used for flight preparation and navigation purposes.
Thanks to its single-slotted flaps that span 71 percent of the wing, the TBM 940 can land at an approach speed of 85 KIAS without wind on an 1,840-ft. (560-meter) runway at sea level and with the maximum landing weight. Short runways or unpaved surfaces accommodate the TBM 940 with ease. Its five-blade Hartzell propeller reduces noise and improves takeoff performance.

The availability of thrust reverse on the TBM 940 substantially improves safety margins over aircraft without these capabilities when flying into shorter airfields, allowing landings on extremely short strips and runways — safely using a distance of less than 1,500 ft.
SPECIFICATIONS & PERFORMANCE

POWERPLANT - P&W CANADA PT6A-66D TURBOPROP

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermodynamic power</td>
<td>1,825 hp.</td>
</tr>
<tr>
<td>Nominal power</td>
<td>850 shp.</td>
</tr>
<tr>
<td>Usable fuel capacity</td>
<td>291 U.S. gal. 1,100 liters</td>
</tr>
</tbody>
</table>

EXTERNAL DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wingspan</td>
<td>42.10 ft. 12.833 m.</td>
</tr>
<tr>
<td>Height</td>
<td>14.29 ft. 4.355 m.</td>
</tr>
<tr>
<td>Length</td>
<td>35.22 ft. 10.736 m.</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>9.56 ft. 2.914 m.</td>
</tr>
<tr>
<td>Tailplane span</td>
<td>16.36 ft. 4.988 m.</td>
</tr>
</tbody>
</table>

INTERNAL DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum cabin width</td>
<td>3 ft. 11.64 in. 1.21 m.</td>
</tr>
<tr>
<td>Maximum cabin length</td>
<td>13 ft. 3.45 in. 4.05 m.</td>
</tr>
<tr>
<td>Maximum cabin height</td>
<td>4 ft. 1.22 m.</td>
</tr>
<tr>
<td>Maximum volume in cabin</td>
<td>123 cu. ft. 3.5 sq. m.</td>
</tr>
</tbody>
</table>

LOADING

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic empty weight</td>
<td>4,629 lb. 2,097 kg.</td>
</tr>
<tr>
<td>Maximum ramp weight (MRW)</td>
<td>7,430 lb. 3,370 kg.</td>
</tr>
<tr>
<td>Maximum takeoff weight</td>
<td>7,394 lb. 3,354 kg.</td>
</tr>
<tr>
<td>Maximum zero fuel weight</td>
<td>6,032 lb. 2,736 kg.</td>
</tr>
<tr>
<td>Maximum payload</td>
<td>1,403 lb. 636 kg.</td>
</tr>
<tr>
<td>Maximum payload with full fuel</td>
<td>891 lb. 404 kg.</td>
</tr>
<tr>
<td>Maximum luggage in storage areas (4 seats)</td>
<td>507 lb. 230 kg.</td>
</tr>
<tr>
<td>Maximum luggage in storage areas (6 seats)</td>
<td>330 lb. 150 kg.</td>
</tr>
<tr>
<td>Maximum luggage volume (large net)</td>
<td>30 cu. ft. 0.969 cu. m.</td>
</tr>
</tbody>
</table>

PERFORMANCE

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum cruise speed at long-range settings</td>
<td>252 KTAS 467 km/h</td>
</tr>
<tr>
<td>Maximum cruise speed at 28,000 ft.</td>
<td>330 KTAS 611 km/h</td>
</tr>
<tr>
<td>Time-to climb to 31,000 ft.</td>
<td>18 min. 45 sec.</td>
</tr>
<tr>
<td>Certified ceiling</td>
<td>31,000 ft. 9,449 m.</td>
</tr>
</tbody>
</table>

RUNWAY DISTANCES

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takeoff</td>
<td>2,380 ft. 726 m.</td>
</tr>
<tr>
<td>Landing</td>
<td>2,430 ft. 741 m.</td>
</tr>
</tbody>
</table>

MAX. RANGE WITH MAX. FUEL

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>252 KTAS cruise speed</td>
<td>1,730 NM 3,204 km</td>
</tr>
<tr>
<td>290 KTAS cruise speed</td>
<td>1,585 NM 2,935 km</td>
</tr>
<tr>
<td>326 KTAS cruise speed</td>
<td>1,440 NM 2,666 km</td>
</tr>
</tbody>
</table>
BUILD YOUR TBM
PERSONALIZE YOUR TBM

Daher offers its customers the opportunity to make their TBM very personalized – both inside and out. Now it’s your turn to build your TBM!

FIRST STEP
Select among factory-standard paint schemes from the past or present, and choose the registration style, which can be painted or applied by decals. To help with color selection, a free “TBM Paint Configurator” iPad application is available at the Apple Store or on the TBM website in the following section: www.tbm.aero/personalize-your-tbm/

SECOND STEP
Pick out the colors among 105 samples.

THIRD STEP
Decide on the interior’s composition – with eight standard leather shades, four carpet colors, and add the final touch with a choice of metal fittings and wood or carbon trim options. Stitching, belts and cowling are harmonized with the selection. Combinations can be made between the different cabin zones to reach the perfect harmony.
To help with color selection, a free “TBM Interior” iPad application is available at the Apple Store or on the TBM website in the following section: http://www.tbm.aero/personalize-your-tbm/
All airframe elements (wings, fuselage, tailplane and control surfaces) receive a water-diluted primer coating for protection. The assembled fuselage, along with the wings and all other main airframe components, are brought together in the paint shop for customization based on the decoration and colors selected by the customer. To ensure the best quality, all of these elements are painted separately.

The painting process includes the several phases:
- Sanding is used to prepare the surfaces for a better paint adherence, while additional priming ensures corrosion protection;
- The application of a matte base;
- The finish paint according to the customer’s color selection with several layers of colors;
- The application of lacquer to improve the final rendering.

The average process for a standard paint scheme requires 72 hours from the first color application to the lacquer finish, with four hours of drying time after each application.
TBM 940 2019 PAINT SCHEME SELECTION

Three different standard paint scheme styles have been developed specifically for the TBM 940. Nevertheless all Daher TBM previous standard factory paint scheme are available. TBM 940 logos can be positioned on the winglets (inboard and outboard) or on the tail. Different styles are offered for a painted or sticker registration.
TBM 940 PAINT SCHEME EXAMPLES

SOCATA WHITE | ALBEILLE BLACK | CANIGOU RED | CANIGOU RED

GREY METAL 7068 | ALBEILLE BLACK | SIGNAL RED | ESTAGNOS SILVER
PRE-SELECTED HARMONIES

Three pre-selected harmonies for the TBM interior are included in the standard definition with a choice of fine components:
01 Black diamond
02 Luxor beige
03 Agate gray

Creating a customized TBM interior is simple and easy. The opposite page presents all the samples of the standard configuration: leather shades for seat, armrest, upper and lower side panels, as well as the carpet colors. Stitching and belts are harmonized with the selection. The final touch is provided by a choice of metal fittings for the air vents, and wood or carbon trim for the tablet cover and the central overhead panel. Seat fairings are covered with carbon ultraleather. To perfect the harmony combinations with the different cabin zones, the “TBM Interior” application can be used (available on iPad, and with TBM website in the following section: http://www.tbm.aero/personalize-your-tbm/).
<table>
<thead>
<tr>
<th>STANDARD LEATHER SHADES</th>
<th>METAL FITTINGS</th>
<th>WOOD & CARBON TRIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLACK ONYX</td>
<td>FLAT BLACK</td>
<td>WOOD WALNUT</td>
</tr>
<tr>
<td>DESERT DUST</td>
<td>BRUSHED STAINLESS</td>
<td>WOOD WENG</td>
</tr>
<tr>
<td>MOCHA</td>
<td>GOLD</td>
<td>CARBON</td>
</tr>
<tr>
<td>MOOREA SAND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>METEOR GRAY</td>
<td>ANTHRACITE</td>
<td></td>
</tr>
<tr>
<td>POLYNESIAN PEARL</td>
<td>LIGHT GRAY</td>
<td></td>
</tr>
<tr>
<td>RIVERSTONE</td>
<td>CHANVRE</td>
<td></td>
</tr>
<tr>
<td>SAFFRON</td>
<td>TAUPE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARPET</th>
<th>SEAT BELT COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAT BLACK</td>
<td>BLACK ONYX</td>
</tr>
<tr>
<td>BRUSHED STAINLESS</td>
<td>BLACK ONYX</td>
</tr>
<tr>
<td>GOLD</td>
<td>BLACK ONYX</td>
</tr>
<tr>
<td>ANTHRACITE</td>
<td>BLACK ONYX</td>
</tr>
<tr>
<td>LIGHT GRAY</td>
<td>BLACK ONYX</td>
</tr>
<tr>
<td>CHANVRE</td>
<td>BLACK ONYX</td>
</tr>
<tr>
<td>TAUPE</td>
<td>BLACK ONYX</td>
</tr>
</tbody>
</table>
Comfort and performance: the TBM 940’s beautifully gadrooned seats reflect this combination.

Seats easily recline, allowing passengers to relax in generously-sized, sculpted deep cushions with padded leather armrests.

Every seat is now heated, with the heating function controlled. Once the mode is engaged by the pilot via a master control in the cockpit, each occupant can choose whether to utilize the heating – and select either light or moderate heat settings.

FITTINGS & STORAGE CABINETS

Several storage cabinet configurations are offered on both sides of the interior. There is a simple lower storage cabinet, which also can be equipped with a hard support on top for the pilot’s case. Also available is a top storage cabinet.
MAKING THE TBM EVEN MORE PERSONALIZED

As the TBM 940 is the ultimate personal aircraft, Daher enables customers to make their airplane even more personalized.

Interior: As an option, 32 additional leather colors are available to enhance the cabin ambiance.

Exterior: In partnership with Scheme Designers (a world leader in aircraft paint scheme and vinyl decal designs), Daher provides assistance to owners for TBM painting and detailing with external paint schemes and colors that can make an aircraft truly unique.
TBM OPERATIONS
SUPERIOR SERVICE

Daher’s TBM aircraft are designed, built and tested to operate safely and reliably throughout the world. When service, inspection and maintenance are required, conveniently-placed service panels and doors provide technicians access to all systems – enabling them to complete necessary actions in the minimum time possible while using standard FAA or EASA repair procedures.

In addition, a host of services are provided with each new TBM.

Garmin Pilot™: A one-year subscription with the popular Electronic Flight Bag application, which includes FliteChart, Safe Taxi, Obstacles, Terrain, Airport Directory.

Jeppesen: 1-year subscription for the selected bundle (Americas or International), including Jeppesen NavData and Chart View, with Garmin Obstacles, SafeTaxi, Terrain, and Airport Directory.
Sirius XM WX weather & radio: A three-month trial subscription gives access to XM WX Satellite Weather, which boosts pilots’ situational awareness through interactive graphical weather updates on compatible displays. Available instantly and broadcast continuously, the XM WX data stream provides the following information:

- High-resolution NEXRAD radar
- Lightning
- Satellite imagery
- METARs
- Winds aloft
- Freezing level
ME & MY TBM

THE POWER OF DATA IN YOUR POCKET.

eMe & My TBM is a revolutionary new smartphone application for TBM aircraft owners and operators. This cloud-based app leverages data that is automatically collected during every phase of flight, enabling pilots to enhance the TBM’s operating efficiency, ensure they are operating the aircraft to the highest safety standards, and optimize maintenance management.

The TBM “Me & My TBM” app: This application for Android & iOS was introduced in 2018, providing unique and valuable feedback on TBM flights, key parameters of the engine and other systems, and a full range of statistics accessible from wherever the aircraft goes. Based on an automated transmission of flight data on a secured cloud-based storage, it avoids the fastidious task of downloading data on a PC, while also directly updating aircraft counters on the CAMP tracking system. This eliminates the need to send flight logs, Trend.dat and Report.dat files to CAMP.
Advanced customer support when needed is now possible. It gives TBM Care teams the capability to access and analyze all flight parameters in less than one hour.
EASY MAINTENANCE COMPUTER FOLLOW UP WITH CAMP

Proper maintenance tracking and planning is the key to operating an aircraft safely and efficiently. The CAMP maintenance management service allows accurate tracking and prediction of all aircraft maintenance requirements. CAMP implements the customized aircraft-recommended maintenance schedule (RMS), with the RMS evolving based on such changes as Daher’s maintenance recommendations, service bulletins and more. CAMP tracks these changes and how they apply to the aircraft – making planning aircraft maintenance much easier. The program provides online access to maintenance records, allowing the identification of upcoming maintenance events regardless of the operator’s location.
TBM MAINTENANCE PROGRAM

Recommended maintenance intervals are 200 hours or 12 months. The complete TBM maintenance program is described in the TBM Maintenance Manual. All TBM Maintenance Manuals are available on-line, free of charge, to aircraft owners and operators at: www.mysocata.com, or via the innovative “MyTBMDocs” iPad application, which allows the operator to carry automatically-updated TBM maintenance, parts and pilot information manuals in flight. If, after reviewing maintenance documentation, questions or concerns arise, the aircraft’s maintenance provider or Daher Airplane Business Unit Customer Support can be contacted at any time. While the manufacturer recommends that all maintenance be carried out via a TBM-approved service center, all inspection actions can be accomplished by any certified mechanic using TBM inspection checklists.
WARRANTIES
THE INDUSTRY’S BEST

Daher offers one of the industry’s best nose-to-tail warranties which complement the unique TBM’s Total Care Program (TCP):
<table>
<thead>
<tr>
<th>AIRFRAME (excluding systems, major components and consumables*)</th>
<th>7 years or 3,500 hours of aircraft operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT6A POWERPLANT</td>
<td>5 years or 2,500 hours of aircraft operation</td>
</tr>
<tr>
<td>AVIONICS</td>
<td>5 years</td>
</tr>
<tr>
<td>All Garmin equipment, L3 WX500 Stormscope, RA4500 radar altimeter and KN63 DME</td>
<td></td>
</tr>
<tr>
<td>SYSTEMS</td>
<td>5 years or 1,000 hours</td>
</tr>
<tr>
<td>Flap actuators, fuel unit, gauging system, oxygen system, bleed air system, cabin pressure control system, air conditioning system, landing gear and actuators, mechanical fuel pump, hydraulic unit, vacuum system, windshield, flight controls actuators, electrical power unit, starter generator, standby altimeter and airspeed indicators, torque and oil pressure transducers, overspeed governor</td>
<td></td>
</tr>
<tr>
<td>HARTZELL PROPELLER</td>
<td>6 years or 4,000 hours</td>
</tr>
<tr>
<td>(*) consumables include brakes, tires, batteries, etc.</td>
<td></td>
</tr>
</tbody>
</table>
TBM OPERATING COSTS ANALYSIS

The following cost analysis is for a new Daher TBM 940 without the TBM Total Care Program (TCP), based on the latest TBM monitoring data available for an aircraft in its first five years of operations (analysis as of early 2019). For more information, contact the TBM Customer support department.
A. DIRECT COSTS OF DAHER TBM 940 OWNERSHIP

<table>
<thead>
<tr>
<th>DIRECT OPERATING COSTS</th>
<th>QUANTITY PER HOUR</th>
<th>UNIT COST</th>
<th>TOTAL PER HOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>JET A</td>
<td>60</td>
<td>4.73</td>
<td>$283.80</td>
</tr>
<tr>
<td>OIL</td>
<td>0.07</td>
<td>$20.00</td>
<td>$1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$285.13</td>
</tr>
</tbody>
</table>

B. MAINTENANCE COSTS: (200 HOURS PER YEAR)

<table>
<thead>
<tr>
<th>MAINTENANCE COSTS</th>
<th>QUANTITY</th>
<th>UNIT COST</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINTENANCE COSTS</td>
<td>0.73</td>
<td>$95.00</td>
<td>$69.35</td>
</tr>
<tr>
<td>MAINTENANCE PARTS</td>
<td></td>
<td></td>
<td>$73.59</td>
</tr>
<tr>
<td>PROPELLER OVERHAUL</td>
<td>4,000</td>
<td>$33,320.00</td>
<td>$8.33</td>
</tr>
<tr>
<td>ENGINE RESTORATION</td>
<td></td>
<td>$339,990.00</td>
<td>$97.14</td>
</tr>
<tr>
<td>TOTAL MAINTENANCE COSTS</td>
<td></td>
<td></td>
<td>$248.41</td>
</tr>
</tbody>
</table>

A+B

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total operating costs without TCP</td>
<td></td>
<td>$533.54</td>
</tr>
<tr>
<td>Total operating costs with TCP</td>
<td></td>
<td>$390.80</td>
</tr>
</tbody>
</table>

What is included in the labor calculation?
- All labor and consumable parts required for:
 - Scheduled maintenance to include the flat rate labor cost for all inspections that occur during a 10-year time period.
 - Discrepancies found during scheduled maintenance inspections/events on the airframe or avionics (on-condition).
 - Routine engine maintenance not covered by our estimated engine restoration costs.
 - Labor for the removal/replacement of components requiring overhaul/inspection/servicing.
 - Unscheduled maintenance discrepancies.

Source 2019 Conklin & DeDecker.
Flying the TBM very fast single-engine turboprop requires the appropriate endorsements, such as high performance and high-altitude, or ratings added to a private pilot’s license. However, 500 flight hours of aviation experience and an instrument rating are recommended, along with a satisfactory transition course. Three flight training organizations are factory-approved by Daher to provide training for a well-qualified TBM pilot. In North America, SimCom in Orlando, Florida operates TBM flight training devices (FTDs) equipped with visualization. Europe has two authorized training organizations: Airways and SimAvia, both of which can perform both the FAA endorsement and the Single Turboprop Class rating training required by the European Aviation Safety Authority (EASA), with training on the aircraft.

To standardize high-quality instruction within the TBM flight instructor community, Daher has introduced a full TBM training kit, available online for constant updating, to which access is given by the flight instructor to insure future TBM pilots receive the appropriate instruction on their version of the TBM.
The TBM training kit includes the following items:

- TBM ground course
- Flight training manual
- Educational videos
- Pilot’s instruction manual
- Garmin guides
- Quick reference handbook
- Onboard checklist
- TBM cockpit poster
- Onboard checklist
IN THE USA

Factory-approved initial TBM flight training in the Americas is provided through TBM’s partner, Simcom International. Simcom utilizes three flight training devices that are based on real TBM cockpits, in the EFIS/GNS 530, GI000 and G3000 configurations. Simcom’s headquarters in Orlando, Florida centrally positions the training center for TBM pilots with U.S. licenses.

Simcom also provides factory-approved maintenance training for the TBM family.

TBM INITIAL TRAINING CONSISTS OF THE FOLLOWING:

A/ Ground school training, which includes TBM systems knowledge tests;
B/ Flight training device (FTD) training;
C/ In-aircraft training;
D/ Flight review to Private Pilot Practical Test Standards and an Instrument Proficiency Check.

Based on a new TBM pilot’s previous experience and competency, training will be conducted using one of three training tracks for a maximum of six days’ training:

- **Track one** | Pilots with a minimum of 500 hours, but no turbine time,
- **Track two** | Pilots with 1,000 hours and turbine experience,
- **Track three** | Pilots with existing type ratings.

INFORMATION

Tel: +1 (866) 361-9620
http://www.simulator.com/tbm-series/
IN EUROPE

Factory-approved initial TBM flight training outside the Americas is offered by two approved training organizations (ATOs) in France, certified by the European Aviation Safety Agency (EASA):
- SIM Aero, at Tarbes-Lourdes-Pyrénées airport (LFBT),
- Airways College, an aviation training organization based at Agen airport (LFBA)
 www.airways-college.com/professional-pilot-training/qc-qt/

The training is provided “in aircraft,” using the owner’s aircraft or a rented TBM.

Both courses are conducted by highly experienced class rating instructors approved by EASA to deliver a TBM SET (Single-engine Turboprop) Class rating.

GROUND TRAINING:
- Theoretical training (3-5 days, concluded by a written exam, minimum passing score: 75 correct answers out of a 100-question multiple choice questionnaire).
 - vhf GI000 training is required, a Garmin System Trainer (GST) is used to provide initial training and a skill test also is performed to confirm knowledge of the pilot on the Garmin system.
 - Trainees also will receive a training kit for self-learning/training beforehand.

IN-FLIGHT TRAINING:
- Practical training (flight training with a minimum of 10 hours in flight, covering all aspects from low-speed handling to Instrument Flight Rules/IFR flight).
 - At the completion of flight training, a check-ride will be performed to confirm the pilot’s knowledge and flying skills with the TBM. Whatever the license origin or skill level of the pilot is, training will be performed following the approved syllabus.

For more information and updates on training possibilities, contact:

CHRISTIAN PRAT

Tel: +33 5 62 41 76 79
c.prat@daher.com
A GLOBAL NETWORK PROVIDES CARE FOR THE TBM

To provide efficient support at remote locations, the Daher Airplane Business Unit’s technical support field staff is on-call 24/7. TBM Support representatives are always available to answer phone calls and to help operators decide on the best course of action. In addition to online and cell phone support, 15 TBM service centers in North America – plus 15 others worldwide – provide the most complete service package in the industry. The current list of TBM Authorized Service Centers is available at:

www.tbm.aero/support-network

- Service Centers Worldwide
- Distributor worldwide

More informations on the website www.tbm.aero
Editorial team Jeff Lenorovitz
(The InfoWEST Group)

Photos credits Airborne Films (p. 3, 4, 8, 14, 16, 18, 20, 22, 25, 26, 37, 38, 40, 41, 44, 46, 78, 80, 81, 82, 84, 88), Maxime Fourcade (p. 12, 13, 15, 18, 20, 22, 24, 26, 27, 28, 29, 30, 31, 50, 59, 60, 62, 63, 64, 66, 67, 68, 69, 70, 74, 76, 80), Garmin (p. 8), Isabel Goyer (p. 34, 38, 92), Peter Handley (p. 34, 35), Thomas Jullien (p. 7), Camellia Menard (p. 58), P&W Canada (p. 36), Pro Pilot (p. 80), Dierk Reuter (p. 24), Andrzej Rutkowski (p. 40, 41), SimCom (p. 92, 93), Jon Whittle (p. 18, 40, 42, 44, 45, 90, 92).

Infographics Anthony Larre and Patrice Viau,© Daher

Graphic design Malherbe Paris, April 2019

This book is a non-contractual document and for information only. Daher reserves the right to revise all information presented in this document whenever occasioned by product improvements, government regulations or other good cause.

AIRPLANE BUSINESS UNIT
Headquarters, production and final assembly facility
Aéroport de Tarbes-Lourdes-Pyrénées
65921 Tarbes Cedex 9 — France
Telephone: +33 (0) 5 62 41 77 88
U.S. headquarters and service center
601 NE 10th Street — Pompano Beach, FL 33060 — USA
Telephone: +1 954-993-8477

www.tbm.aero